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Abstract: The conditions of the equivalence relation limit the application fields of the methodology 
of Pawlak’s rough sets. So, to expand the application areas of this theory, it is generalized to any 
binary relation. Neighborhoods induced from the relations represent a core bridge between rough 
sets and application since it represents easy tools for dealing with daily-life problems. Accordingly, 
the first core objective of the current research is to propose a novel neighborhood (so-called an 
initial-neighborhood) generated from any binary relation. Based on this neighborhood, we suggest a 
new generalization to Pawlak rough sets and some of their extensions. The proposed approaches 
satisfy all properties of classical rough sets without adding any extra restrictions and hence we can 
apply them in any real-life problem. The second aim is to generalize the notion of nano-topology into 
any binary relation to extend the applications of this concept. Properties of the suggested methods 
are introduced with many counter-examples. Comparisons between the suggested techniques and the 
others studies published in the literature are examined. We proved that the proposed techniques are 
extra precise than the earlier approaches. Finally, the medical application of COVID-19 is provided 
to illustrate the significance of our approaches in deciding the impact factors for COVID-19 
infection. The proposed application is based on a reflexive relation, so Pawlak rough sets and some 
of its generalizations couldn’t be applied to solve this problem. Accordingly, we have successes in 
solving this problem using the suggested techniques. Hence, we write an algorithm to be a useful 
tool that may help the doctor in diagnosing the infection of COVID-19. 
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1. Introduction 

Recently, the world interests in dealing with the risk of the new virus (SARS-CoV-2) or (COVID-19). 
This novel coronavirus emerged recently from China with a total of 45171 confirmed pneumonia 
cases. It is the third highly pathogenic human coronavirus that occurs in the last two decades after 
coronavirus and coronavirus of Severe Acute Respiratory Syndrome (SARS) [1]. In both hospital 
and family settings, the person-to-person transmission was documented [1]. Consequently, further 
spread in public and healthcare environments is crucial. The transfer of coronaviruses from 
contaminated dry surfaces, including self-inoculation of the nose, eye, or mouth mucous membranes, 
was proposed, emphasizing the importance of a thorough comprehension of the persistence of 
coronavirus on inanimate surfaces [1]. A series of public social distancing measures to reduce 
transmission rates of COVID-19 were implemented in the context of the emergency response. As a 
result, many researchers have published several papers in order to study and examine this virus, such 
as ([1–12]). 
Pawlak’s [13] methodology for dealing with rough sets has been proposed to solve the problems of 
the inexact and ambiguous knowledge. This theory is centered on equivalence relations induced from 
the data composed from the studied real-life problem. Therefore, the application of this theory is 
restricted by the equivalence relation, since it is only dealing with an information-system with whole 
information. So, to handle complex and difficult applied problems, many authors proposed numerous 
generalizations such as similarity relation [14], pre-order relation [15], reflexive relation [16], 
general binary relation [17–19], topological approaches [20–24] and coverings [25–26]. Most of 
them failed in satisfying Pawlak’s rough set properties. 
The central aims of the current work are divided into three objectives. Firstly, we define for the first 
time; a new generalized neighborhood called (initial-neighborhood) induced from a binary relation. 
Properties of this neighborhood are examined and the special cases of the binary relation for this 
neighborhood are studied. Based on this new neighborhood, we introduce new generalized rough 
approximation operators called (initial-rough approximations). These approximations are a generalization 
to Pawlak’s rough sets and their applications. The properties of the suggested approximations are 
studied and the relationships among them and the previous works such as (Yao’s approach [17], 
Allam et al.’s approach [18], and Dai et al.’s approach [27]) are established. Many examples and 
counterexamples to illustrate these relationships are investigated. Moreover, we will prove that the 
proposed approximations satisfy all characteristics of Pawlak’s rough sets in the general case. 
Decision-making problems need some accurate tools to make an accurate decision. In 2020, Zhang et 
al. [28] and Zhan et al. [29] presented different types of multi-criteria decision-making methods 
based on a fuzzy rough set model with fuzzy α-neighborhoods and applied them in decision-making 
problems. On other hand, Ghorui et al. [8] have successes in the identification of dominant risk 
factors involved in the spread of COVID-19 using a hesitant fuzzy MCDM methodology. 
Topology and its applications [30] have been pivotal subjects in many real-life applications (such as 
[31–36]). In (2013), M. Lellis Thivagar and C. Richard [36] presented the concept of a 
“nano-topology” based on a general topology induced from Pawlak’s rough set approximations. 
They have exposed numerous applications of this model in resolving various applied problems in the 
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economics, engineering, social science, and the medical sciences, etc. Nano-topology represents a 
minimal topology that can be constructed from the rough approximations which consist of three open 
sets namely (the lower approximation, upper approximation, and the boundary region of a rough set) 
beside the universe and the empty set. So, this notion depends basically on an equivalence relation 
and thus this restricts the application field. Accordingly, the second aim is to extend this notion to 
any binary relation, and hence we will induce generalized nano-topologies using the suggested 
approximations. In addition, we will state and prove the conditions that any generalized rough set 
approximations generate generalized nano-topology such as (Yao [17], Allam [18], and Dai [27] 
approximations). We will prove that the proposed method is more accurate than the others methods. 
Moreover, we study its properties and give some examples of these topologies. 
On the other hand, we will introduce a new method to make a topological reduction of the attributes 
generated from a multi-information table. In the multi-information table, the suggested relation is a 
general binary relation (for example, a reflexive relation), so Pawlak’s approach cannot be applied 
and hence we cannot use M. Lellis Thivagar and C. Richard [36] method in this case. Accordingly, 
the suggested method in the current paper can be used, and hence we can apply the notion of 
generalized nano-topology in decision-making. 
The third purpose of our contribution is to create a specific effect of such crucial mathematical ideas 
with continuous nature and to propose a novel methodology for mathematical exploration in real-life 
problems. In fact, we introduce a medical application in decision-making on coronavirus disease 
(COVID-19). Thus, we determine the impact factors in infection caused by Coronavirus 
“COVID-19”. Finally, we also give some algorithms which can be used to have the infected values 
with COVID-19 for a sample of ten patients. These results may help the doctor to make the best 
decision. Therefore, we can say that the suggested approaches may be useful in discovering the 
vagueness of the data and help in the decision-making of real-life problems such as in the medical 
diagnosis which needs accurate decisions. 

2. Pawlak’s rough sets and generalized rough sets 

The main objective of the current article is to present the basic definitions and results that used 
through the paper. 

2.1. Pawlak rough set theory 

Definition 2.1.1 [37] Suppose that 𝔸 and 𝔹 are two sets. A binary relation ℜ from 𝔸 to 𝔹 (or 
between 𝔸 and 𝔹) is defined by a subset of the Cartesian product 𝔸 𝔹, that is the set of ordered 
pairs 𝜃, 𝜔 ∈ ℜ where 𝜃 ∈ 𝔸 and 𝜔 ∈ 𝔹. 
Note that: The binary relation ℜ can be from 𝔸 to itself, and then ℜ is said to be a binary 
relation on 𝔸. In addition, the ordered pair 𝜃, 𝜔  can be represented by 𝜃ℜ𝜔 and we say that 𝜔 
is related to 𝜃 by ℜ. Accordingly, 𝜃 is a predecessor of 𝜔 and 𝜔 is a successor of 𝜃 and thus 
we describe the 𝜃ℜ 𝜔 ∈ 𝔸: 𝜃ℜ𝜔  (resp. ℜ𝜃 𝜔 ∈ 𝔸: 𝜔ℜ𝜃 ) as after set (resp. fore set) of the 
element 𝜃 ∈ 𝔸. 

Definition 2.1.2 [37] A binary relation ℜ on a set 𝔸 is said to be: 
(i) Reflexive: if for every 𝜃 ∈ 𝔸, 𝜃ℜ𝜃. 
(ii) Symmetric: if for every 𝜃, 𝜔 ∈ 𝔸 and 𝜃ℜ𝜔, then 𝜔ℜ𝜃. 
(iii) Transitive: if for all 𝜃, 𝜔, 𝜌 ∈ 𝔸, 𝜃ℜ𝜔 and 𝜔ℜ𝜌, then 𝜃ℜ𝜌.  
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(iv) Similarity or tolerance: if ℜ is a reflexive and symmetric. 
(v) Pre-order or dominance: if ℜ is a reflexive and transitive. 
(vi) Equivalence: if ℜ is a reflexive, symmetric and transitive relation. 

Definition 2.1.2 [13] Consider 𝔘 is a finite set called (universe), and 𝔅 represents an equivalence 
relation on 𝔘, we write 𝔘/𝔅 to symbolize the class of all equivalence classes of 𝔅 and 𝛼 𝔅 to 
indicate an equivalence class in 𝔅 containing an element 𝑥 ∈ 𝔘. Then, the pair 𝔘, 𝔅  is called an 
approximation space and for any 𝔸 ⊆ 𝔘 , we propose the Pawlak-lower and Pawlak-upper 
approximations of 𝔸  by: 𝔅∗ 𝔸 𝛼 ∈ 𝔘: 𝛼 𝔅 ⊆ 𝔸  and 𝔅∗ 𝔸 𝛼 ∈ 𝔘: 𝛼 𝔅⋂𝔸 ∅ , 
respectively. Accordingly, we define the following regions: 
 The boundary region of 𝔸 ⊆ 𝔘: BND𝔅 𝔸 𝔅∗ 𝔸 𝔅∗ 𝔸 . 
 The positive region of 𝔸 ⊆ 𝔘: POS𝔅 𝔸 𝔅∗ 𝔸 . 
 The negative region of 𝔸 ⊆ 𝔘: NEG𝔅 𝔸 𝔘 𝔅∗ 𝔸 . 

The accuracy of Pawlak’s approximation is: 𝜇𝔅 𝔸
|𝔅∗ 𝔸 |

|𝔅∗ 𝔸 |
 , where 𝔅∗ 𝔸 𝜑. 

Remark 2.1.1 According to Pawlak in [13], we notice that: 
(i) 𝔸 is called an exact set if 𝔅∗ 𝔸 𝔅∗ 𝔸  and we refer to the pair (𝔅∗ 𝔸 , 𝔅∗ 𝔸  by rough 
sets with respect to 𝔅. 
(ii) If 𝐵𝑁𝐷𝔅 𝔸 𝜑, then 𝔸 is an exact set with respect to 𝔅 and thus 𝜇𝔅 𝔸 1. On the other 
hand, 𝔸 is a rough set with respect to 𝔅 if 𝐵𝑁𝐷𝔅 𝔸 𝜑 and 𝜇𝔅 𝔸 1. 
(iii) If a subset 𝔸 is defined by a predicate P and 𝑥 ∈ 𝔘, we get the next interpretation: 
- 𝑥 ∈ 𝑃𝑂𝑆𝔅 𝔸  interprets to 𝑥 certainly has property P. 
- 𝑥 ∈ 𝐵𝑁𝐷𝔅 𝔸  interprets to 𝑥 possibly has property P. 
- 𝑥 ∈ 𝑁𝐸𝐺𝔅 𝔸  interprets to 𝑥 definitely does not have property P. 
Thus, a boundary region represents the doubtful (or uncertainty) region. So if we reduce this region, 
then we can make an accurate decision. 

Proposition 2.1.1 [13] Suppose that 𝜑 represents an empty set and 𝔸  is a complement of 𝔸 in 
𝔘. For each 𝔸, 𝔹 ⊆ 𝔘 , the followings are held: 

(L1) 𝔅∗ 𝔸 ⊆ 𝔸 
(L2) 𝔅∗ 𝜑 𝜑 
(L3) 𝔅∗ 𝔘 𝔘 
(L4) 𝔅∗ 𝔸⋂𝔹 𝔅∗ 𝔸 ⋂𝔅∗ 𝔹  
(L5) If 𝔸 ⊆ 𝔹, then 𝔅∗ 𝔸 ⊆ 𝔅∗ 𝔹  
(L6) 𝔅∗ 𝔸 ⋃𝔅∗ 𝔹 ⊆ 𝔅∗ 𝔸⋃𝔹  
(L7) 𝔅∗ 𝔸 𝔅∗ 𝔸  
(L8) 𝔅∗ 𝔅∗ 𝔸 𝔅∗ 𝔸  
(L9) 𝔅∗ 𝔅∗ 𝔸 𝔅∗ 𝔸  

(U1) 𝔸 ⊆ 𝔅∗ 𝔸  
(U2) 𝔅∗ 𝜑 𝜑 
(U3) 𝔅∗ 𝔘 𝔘 
(U4) 𝔅∗ 𝔸⋃𝔹 𝔅∗ 𝔸 ⋃𝔅∗ 𝔹  
(U5) If 𝔸 ⊆ 𝔹, then 𝔅∗ 𝔸 ⊆ 𝔅∗ 𝔹  
(U6) 𝔅∗ 𝔸 ⋂𝔅∗ 𝔹 ⊇ 𝔅∗ 𝔸⋂𝔹  
(U7) 𝔅∗ 𝔸 𝔅∗ 𝔸  
(U8) 𝔅∗ 𝔅∗ 𝔸 𝔅∗ 𝔸  
(U9) 𝔅∗ 𝔅∗ 𝔸 𝔅∗ 𝔸  

Note that: The properties (L9) and (U9) mean that the lower and upper approximations are exact 
sets while the properties (L10) and (U10) illustrate that the elements in 𝔘/𝔅, are exact sets. 
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2.2. Yao’s rough sets 

Definition 2.2.1 [17] If ℜ is a binary relation on the universe 𝔘. Then, for each α ∈ 𝔘, we propose 
its “right neighborhood” as follows: 

𝔑𝓇 𝛼 𝛽 ∈ 𝔘: 𝛼ℜ𝛽 . 

Definition 2.2.2 [17] If ℜ is a binary relation on the universe 𝔘. Then, the right-lower and 
right-upper approximations of 𝔸 ⊆ 𝔘 are proposed, respectively, by 

ℒ𝓇 𝔸 𝛼 ∈ 𝔘: 𝔑𝓇 𝛼 ⊆ 𝔸  and 𝒰𝓇 𝔸 𝛼 ∈ 𝔘: 𝔑𝓇 𝛼 ∩ 𝔸 𝜑 . 

Definition 2.2.3 If ℜ  is a binary relation on 𝔘 . The right-positive, right-negative and 
right-boundary, region and the right-accuracy of approximations of a subset 𝔸 ⊆ 𝔘 are defined, 
respectively, by: 

𝒫𝑜𝑠𝓇 𝔸 ℒ𝓇 𝔸 , 𝒩𝑒𝑔𝓇 𝔸 𝔘 𝒰𝓇 𝔸 , ℬ𝑛𝑑𝓇 𝔸 𝒰𝓇 𝔸 ℒ𝓇 𝔸  and 

𝜅𝓇 𝔸
ℒ𝓇 𝔸

𝒰𝓇 𝔸
 , where 𝒰𝓇 𝔸 𝜑. 

Note that: If 𝜅𝓇 𝔸 1 , then ℬ𝑛𝑑𝓇 𝔸 𝜑 and 𝔸 is a right-exact set. Else, it is a right-rough 
set. The above approximations satisfy the properties (L3–L7), and (U2, U4–U7) in a general case. 
The remainder properties of Pawlak are satisfied for some cases of relation, as Theorem 2.2.1 
illustrates. 

Theorem 2.2.1 [17] If ℜ  is a pre-order relation on the universe 𝔘  and 𝔸 ⊆ 𝔘 . Then, the 
right-lower and right-upper approximations of 𝔸, defined by Definition 2.2.2, satisfy the properties 
of Pawlak; rough sets in Proposition 2.1.1. 

2.3. Allam et al.’s rough sets 

Definition 2.3.1 [18] If ℜ is a binary relation on the universe 𝔘. Then, for each α ∈ 𝔘, we propose 
its “minimal right neighborhood” (in briefly, minimal-neighborhood) as follows: 

𝔑⊓ 𝛼
𝔑𝓇 𝛽

∈𝔑𝓇

,   𝑖𝑓 ∃ 𝛽 𝑠. 𝑡. 𝛼 ∈ 𝔑𝓇 𝛽 ,

𝜑 ,                                  Otherwise.
 

Definition 2.3.2 [18] If ℜ is a binary relation on 𝔘. Then, the minimal-lower and minimal-upper 
approximations of 𝔸 ⊆ 𝔘 are given, respectively, by 

ℒ⊓ 𝔸 𝛼 ∈ 𝔘: 𝔑⊓ 𝛼 ⊆ 𝔸  and 𝒰⊓ 𝔸 𝛼 ∈ 𝔘: 𝔑⊓ 𝛼 ∩ 𝔸 𝜑 . 

Definition 2.3.3 [18] If ℜ is a binary relation on 𝔘. Then, the minimal-positive, minimal-negative 
and minimal-boundary, region and the minimal-accuracy of minimal-approximations of a subset 
𝔸 ⊆ 𝔘 are defined, respectively, by: 
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𝒫𝑜𝑠⊓ 𝔸 ℒ⊓ 𝔸 , 𝒩𝑒𝑔⊓ 𝔸 𝔘 𝒰⊓ 𝔸 , ℬ𝑛𝑑⊓ 𝔸 𝒰⊓ 𝔸 ℒ⊓ 𝔸  and 

𝜅⊓ 𝔸
ℒ⊓ 𝔸

𝒰⊓ 𝔸
 , where 𝒰⊓ 𝔸 𝜑. 

Note that: If 𝜅⊓ 𝔸 1, then ℬ𝑛𝑑⊓ 𝔸 𝜑 and 𝔸 is a minimal-exact set. Otherwise, it is a 
minimal-rough set. The above approximations satisfy the properties (L3–L7), and (U2, U4–U7) in a 
general case. The rest properties of Pawlak are satisfied for some cases of relation, as Theorem 2.3.1 
illustrates. 

Theorem 2.3.1 [18] If ℜ is a reflexive relation on 𝔘 and 𝔸 ⊆ 𝔘. Then, the minimal-lower and 
minimal-upper approximations of 𝔸, defined by Definition 2.3.2, satisfy the properties of Pawlak’s 
rough sets in Proposition 2.1.1. 

2.4. Dai et al.’s rough sets 

Definition 2.4.1 [27] If ℜ is a binary relation on the universe 𝔘. Then, for each α ∈ 𝔘, we define 
its “maximal right neighborhood” (in briefly, maximal-neighborhood) as follows: 

𝔑⊔ 𝛼
𝔑𝓇 𝛽

∈𝔑𝓇

,   𝑖𝑓 ∃ 𝛽 𝑠. 𝑡. 𝛼 ∈ 𝔑𝓇 𝛽 ,

𝜑 ,                                  Otherwise.
 

Definition 2.4.2 [27] If ℜ is a binary relation on 𝔘. Then, the maximal-lower and maximal-upper 
approximations of 𝔸 ⊆ 𝔘 are defined, respectively, by 

ℒ⊔ 𝔸 𝛼 ∈ 𝔘: 𝔑⊔ 𝛼 ⊆ 𝔸  and 𝒰⊔ 𝔸 𝛼 ∈ 𝔘: 𝔑⊔ 𝛼 ∩ 𝔸 𝜑 . 

Definition 2.4.3 [27] Consider ℜ  is a binary relation on 𝔘 . The maximal-positive, 
maximal-negative and maximal-boundary, region and the maximal-accuracy of 
maximal-approximations of a subset 𝔸 ⊆ 𝔘 are defined, respectively, by: 

𝒫𝑜𝑠⊔ 𝔸 ℒ⊔ 𝔸 , 𝒩𝑒𝑔⊔ 𝔸 𝔘 𝒰⊔ 𝔸 , ℬ𝑛𝑑⊔ 𝔸 𝒰⊔ 𝔸 ℒ⊔ 𝔸  and 

𝜅⊔ 𝔸
ℒ⊔ 𝔸

𝒰⊔ 𝔸
 , where 𝒰⊔ 𝔸 𝜑. 

Note that: If 𝜅⊔ 𝔸 1, then ℬ𝑛𝑑⊔ 𝔸 𝜑  and 𝔸 is a maximal-exact set. Else, it is a 
maximal-rough set. The above approximations satisfy the properties (L3–L7), and (U2, U4–U7) 
in a general case. The remainder properties of Pawlak are satisfied for some cases of relation, as 
Theorem 2.4.1 illustrates. 

Theorem 2.4.1 [27] If ℜ  is a similarity relation on the universe 𝔘  and 𝔸 ⊆ 𝔘 . Then, the 
maximal-lower and maximal-upper approximations of 𝔸, that defined by Definition 2.4.2, satisfy 
the properties of Pawlak’s rough sets in Proposition 2.1.1. 
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3. Generalized rough sets based on a new type of generalized neighborhoods 

The main objective of the current section is to suggest new generalized rough set approximations 
called “initial-approximations” based on a new neighborhood called “initial-neighborhood”. This 
neighborhood is established from a general binary relation and then no restricted conditions on the 
application field. So, the existing section is divided into three subsections. The first one is dedicated 
to suggesting the new generalized neighborhood “initial-neighborhood” generated from a general 
binary relation. Besides, its properties are studied and the relationships between it and the other 
neighborhoods are examined with counterexamples. In the second subsection, we generate new 
generalized rough sets based on the initial-neighborhood. These approximations satisfy all properties 
of Pawlak’s rough sets without any restrictions. Finally, in the last subsection, we introduce many 
comparisons between the suggested methods and the others that existing in the literature. 

3.1. Initial neighborhood and its properties 

The concept of “initial-neighborhood”, generated from a general binary relation, is introduced and its 
properties are studied in the current subsection. Moreover, we study the different cases of it in 
different kinds of the binary relation. Besides, the connections between this neighborhood and the 
other types are investigated with counterexamples. 

Definition 3.1 Consider ℜ is a binary relation on the universe 𝔘. For each 𝛼 ∈ 𝔘, we define its 
initial right neighborhood (in briefly, initial-neighborhood) as follows: 

𝔑𝒾 𝛼 𝛽 ∈ 𝔘: 𝔑𝓇 𝛼 ⊆ 𝔑𝓇 𝛽 . 

The key goal of the next results is to present the elementary properties of the initial-neighborhoods. 

Lemma 3.1 If ℜ is a binary relation on 𝔘. Then, for each 𝛼 ∈ 𝔘: 
(i) 𝛼 ∈ 𝔑𝒾 𝛼 . 
(ii) 𝔑𝒾 𝛼 𝜑. 
(iii) If 𝛽 ∈ 𝔑𝒾 𝛼 , then 𝔑𝒾 𝛽 ⊆ 𝔑𝒾 𝛼 . 

Proof: 

The proof of (i) and (ii) is follows from Definition 3.1. 
The proof of (iii) is follows by using Definition 3.1, if 𝛽 ∈ 𝔑𝒾 𝛼 . Then 𝔑𝓇 𝛼 ⊆ 𝔑𝓇 𝛽      (1) 
Now, let 𝛾 ∈ 𝔑𝒾 𝛽 . Then 𝔑𝓇 𝛽 ⊆ 𝔑𝓇 𝛾 . Therefore, by (1), 𝔑𝓇 α ⊆ 𝔑𝓇 γ  and this implies 
𝛾 ∈ 𝔑𝒾 𝛼 . Consequently, 𝔑𝒾 𝛽 ⊆ 𝔑𝒾 𝛼 . ∎ 
Note that: In Lemma 3.1 (iii), it needn’t be 𝔑𝒾 𝛽 𝔑𝒾 𝛼  generally. The next example 
demonstrates this fact. 

Example 3.1 Consider 𝔘 𝑎, 𝑏, 𝑐, 𝑑  and ℜ 𝑎, 𝑎 , 𝑏, 𝑎 , 𝑎, 𝑑 , 𝑐, 𝑏  is a binary relation 
on 𝔘. Then we get the following: 

𝔑𝓇 𝑎 𝑎, 𝑑
𝔑𝓇 𝑏 𝑎     
𝔑𝓇 𝑐 𝑏     
𝔑𝓇 𝑑 𝜑      

    

⎭
⎬

⎫
⟹

⎩
⎨

⎧
  

𝔑𝒾 𝑎 𝑎 .
𝔑𝒾 𝑏 𝑎, 𝑏 .    

𝔑𝒾 𝑐 𝑐 .    
𝔑𝒾 𝑑 𝔘.       
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Clearly, 𝑎 ∈ 𝔑𝒾 𝑏  and 𝔑𝒾 𝑎 𝔑𝒾 𝑏 . 

Remark 3.1 Suppose that ℜ be a binary relation on 𝔘. For each 𝛼 ∈ 𝔘, the right-neighborhood and 
initial-neighborhood are independent (not comparable) in general as demonstrated in Example 3.1. 

The next examples show that the right-neighborhood and initial-neighborhood are not 
comparable in case of ℜ is a reflexive, symmetric and transitive relation, respectively.  

Example 3.2 Consider 𝔘 𝑎, 𝑏, 𝑐, 𝑑  and ℜ 𝑎, 𝑎 , 𝑎, 𝑏 , 𝑎, 𝑐 , 𝑏, 𝑏 , 𝑏, 𝑐 , 𝑏, 𝑑 ,  
𝑐, 𝑐 , 𝑑, 𝑑  is a reflexive relation on 𝔘. Then we get the following: 

𝔑𝓇 𝑎 𝑎, 𝑏, 𝑐
𝔑𝓇 𝑏 𝑏, 𝑐, 𝑑
𝔑𝓇 𝑐 𝑐          
𝔑𝓇 𝑑 𝑑        

    

⎭
⎬

⎫
⟹

⎩
⎨

⎧
  

𝔑𝒾 𝑎 𝑎 .    
𝔑𝒾 𝑏 𝑏 .

𝔑𝒾 𝑐 𝑎, 𝑏, 𝑐 .         
𝔑𝒾 𝑑 𝑏, 𝑑 .        

 

Example 3.3 Consider 𝔘 𝑎, 𝑏, 𝑐, 𝑑  and ℜ 𝑎, 𝑏 , 𝑏, 𝑎 , 𝑏, 𝑐 , 𝑐, 𝑏 , 𝑐, 𝑑 , 𝑑, 𝑐  is a 
symmetric relation on 𝔘. Then we get the following: 

𝔑𝓇 𝑎 𝑏             
𝔑𝓇 𝑏 𝑎, 𝑐         
𝔑𝓇 𝑐 𝑏, 𝑑          
𝔑𝓇 𝑑 𝑐            

    

⎭
⎬

⎫
⟹

⎩
⎨

⎧
  

𝔑𝒾 𝑎 𝑎, 𝑐 .       
𝔑𝒾 𝑏 𝑏 .    
𝔑𝒾 𝑐 𝑐 .     

𝔑𝒾 𝑑 𝑏, 𝑑 .        

 

Example 3.4 Consider 𝔘 𝑎, 𝑏, 𝑐, 𝑑  and ℜ 𝑎, 𝑎 , 𝑎, 𝑏 , 𝑏, 𝑑 , 𝑐, 𝑐 , 𝑎, 𝑑  is a transitive 
relation on 𝔘. Then we get the following: 

𝔑𝓇 𝑎 𝑎, 𝑏, 𝑑
𝔑𝓇 𝑏 𝑑         
𝔑𝓇 𝑐 𝑐          
𝔑𝓇 𝑑 𝜑          

    

⎭
⎬

⎫
⟹

⎩
⎨

⎧
  

𝔑𝒾 𝑎 𝑎 .
𝔑𝒾 𝑏 𝑎, 𝑏 .    
𝔑𝒾 𝑐 𝑐 .     
𝔑𝒾 𝑑 𝔘.        

 

The subsequent results clarify the relationships among the suggested neighborhood 
“initial-neighborhood” and the previous neighborhoods (right-neighborhood, minimal-neighborhood 
and maximal-neighborhood). 
Lemma 3.2 If ℜ is a reflexive relation on the universe 𝔘. Then, for each 𝛼 ∈ 𝔘: 

(i) 𝔑⊓ 𝛼 ⊆ 𝔑𝓇 𝛼 . 
(ii) 𝔑𝓇 𝛼 ⊆ 𝔑⊔ 𝛼 . 

(iii) 𝔑𝒾 𝛼 ⊆ 𝔑⊔ 𝛼 . 
(iv) 𝔑⊓ 𝛼 ⊆ 𝔑⊔ 𝛼 . 

Proof: 

(i) Let 𝛽 ∈ 𝔑⊓ 𝛼 , then 𝛽  belongs to every right-neighborhood contains 𝛼 . Since ℜ  is a 
reflexive relation, then 𝛼 ∈ 𝔑𝓇 𝛼  and this implies 𝛽 ∈ 𝔑𝓇 𝛼 . 
(ii) Let 𝛽 ∈ 𝔑𝓇 𝛼  and since 𝛼 ∈ 𝔑𝓇 𝛼 . Then, 𝛽 ∈ ⋃ 𝔑𝓇 𝛾∈𝔑𝓇

𝔑⊔ 𝛼 . 

(iii) Let 𝛽 ∈ 𝔑𝒾 𝛼 , then 𝔑𝓇 𝛼 ⊆ 𝔑𝓇 𝛽 . But 𝛼 ∈ 𝔑𝓇 𝛼 , thus 𝛼 ∈ 𝔑𝓇 𝛽 . Accordingly, 
𝔑𝓇 𝛽 ⊆ ⋃ 𝔑𝓇 𝛾∈𝔑𝓇

 and hence 𝛽 ∈ ⋃ 𝔑𝓇 𝛾∈𝔑𝓇
𝔑⊔ 𝛼 . 

(iv) Follows from (i) and (ii).∎ 
Note that: The next example shows that: 
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(i) The initial-neighborhood 𝔑𝒾 𝛼  and the minimal-neighborhood 𝔑⊓ 𝛼  of each element 𝛼 ∈
𝔘 are independent in the case of ℜ is a reflexive relation on 𝔘. 
(ii) The reverse relations in Lemma 3.2 needn’t be true in general. 

Example 3.5 Consider 𝔘 𝑎, 𝑏, 𝑐, 𝑑  and ℜ 𝑎, 𝑎 , 𝑏, 𝑏 , 𝑏, 𝑐 , 𝑐, 𝑐 , 𝑐, 𝑑 , 𝑑, 𝑑  is a 
reflexive relation on 𝔘. Then, we get the following neighborhoods: 

Right neighborhoods Minimal neighborhoods Maximal neighborhoods Initial neighborhoods 

𝔑𝓇 𝑎 𝑎             
𝔑𝓇 𝑏 𝑏, 𝑐          
𝔑𝓇 𝑐 𝑐, 𝑑          
𝔑𝓇 𝑑 𝑑             

 

𝔑⊓ 𝑎 𝑎       
𝔑⊓ 𝑏 𝑏, 𝑐    
𝔑⊓ 𝑐 𝑐        
𝔑⊓ 𝑑 𝑑       

 

𝔑⊔ 𝑎 𝑎 . 

𝔑⊔ 𝑏 𝑏, 𝑐 . 

𝔑⊔ 𝑐 𝑏, 𝑐, 𝑑 . 

𝔑⊔ 𝑑 𝑐, 𝑑 . 

  

𝔑𝒾 𝑎 𝑎
𝔑𝒾 𝑏 𝑏
𝔑𝒾 𝑐 𝑐
𝔑𝒾 𝑑 𝑐, 𝑑

 

Lemma 3.3 If ℜ is a similarity relation on 𝔘, then, for each 𝛼 ∈ 𝔘: 
(i) 𝔑𝒾 𝛼 𝔑⊓ 𝛼 . 
(ii) 𝔑⊓ 𝛼 ⊆ 𝔑𝓇 𝛼 ⊆ 𝔑⊔ 𝛼 . 
(iii) 𝔑𝒾 𝛼 ⊆ 𝔑𝓇 𝛼 ⊆ 𝔑⊔ 𝛼 . 

Proof: 

(i) First, let 𝛽 ∈ 𝔑𝒾 𝛼 , then 𝔑𝓇 𝛼 ⊆ 𝔑𝓇 𝛽 . Since ℜ is a reflexive relation, then 𝛼 ∈ 𝔑𝓇 𝛼  
and this implies 𝛼 ∈ 𝔑𝓇 𝛽 . Since ℜ is a symmetric relation, then 𝛽 ∈ 𝔑𝓇 𝛼 . Accordingly, 𝛽 ∈
⋂ 𝔑𝓇 𝛾∈𝔑𝓇

𝔑⊓ 𝛼  and hence 𝔑𝒾 𝛼 ⊆ 𝔑⊓ 𝛼 . Conversely, if 𝛽 ∈ 𝔑⊓ 𝛼 . Then 𝛽 ∈
⋂ 𝔑𝓇 𝛾∈𝔑𝓇

 and thus 𝛽 ∈ 𝔑𝓇 𝛼 . Since ℜ is a symmetric relation, then 𝛼 ∈ 𝔑𝓇 𝛽 . Thus, 

𝔑𝓇 𝛼 ⊆ 𝔑𝓇 𝛽  and hence 𝔑⊓ 𝛼 ⊆ 𝔑𝒾 𝛼 . 
(ii) By using Lemma 3.2, the proof is obvious. 
(iii) The proof follows from (i) and (ii). ∎ 
Note that: The subsequent example proves that the reverse relations in Lemma 3.3 needn’t be 
correct generally. 

Example 3.6 Consider 𝔘 𝑎, 𝑏, 𝑐, 𝑑  and ℜ 𝑎, 𝑎 , 𝑎, 𝑏 , 𝑏, 𝑎 , 𝑏, 𝑏 , 𝑏, 𝑐 , 𝑐, 𝑏 , 
𝑐, 𝑐 , 𝑑, 𝑑  is a similarity relation on 𝔘. Then we get the next neighborhoods: 

Right neighborhoods Minimal neighborhoods Maximal neighborhoods Initial neighborhoods 

𝔑𝓇 𝑎 𝑎, 𝑏              
𝔑𝓇 𝑏 𝑎, 𝑏, 𝑐          
𝔑𝓇 𝑐 𝑏, 𝑐             
𝔑𝓇 𝑑 𝑑                

 

𝔑⊓ 𝑎 𝑎, 𝑏  
𝔑⊓ 𝑏 𝑏   

𝔑⊓ 𝑐 𝑏, 𝑐    
𝔑⊓ 𝑑 𝑑      

𝔑⊔ 𝑎 𝑎, 𝑏, 𝑐  

𝔑⊔ 𝑏 𝑎, 𝑏, 𝑐  

𝔑⊔ 𝑐 𝑎, 𝑏, 𝑐  

𝔑⊔ 𝑑 𝑑  

𝔑𝒾 𝑎 𝑎, 𝑏
𝔑𝒾 𝑏 𝑏

𝔑𝒾 𝑐 𝑏, 𝑐  
𝔑𝒾 𝑑 𝑑     

Lemma 3.4 If ℜ is an equivalence relation on 𝔘, then, for each 𝛼 ∈ 𝔘: 

𝔑𝓇 𝛼 𝔑⊓ 𝛼 𝔑⊔ 𝛼 𝔑𝒾 𝛼 𝛼 ℜ. 

Proof: 
Straightforward.∎ 

3.2. Generalized rough sets based on initial neighborhoods 
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Based on the generalized neighborhood (initial-neighborhood), new generalized rough sets (called 
initial-approximations) are constructed and their properties will be examined. We will prove that 
these approximations represent a generalization to Pawlak’s rough sets and some of their 
generalizations. 

Definition 3.2 Consider ℜ  is a binary relation on 𝔘 . The initial-lower and initial-upper 
approximations of 𝔸 ⊆ 𝔘 are proposed, respectively, by 

ℒ𝒾 𝔸 𝛼 ∈ 𝔘: 𝔑𝒾 𝛼 ⊆ 𝔸  and 𝒰𝒾 𝔸 𝛼 ∈ 𝔘: 𝔑𝒾 𝛼 ∩ 𝔸 φ . 

Definition 3.3 Suppose that ℜ is a binary relation on 𝔘. The initial-positive, initial-negative and 
initial-boundary regions and the accuracy of initial-approximations of a subset 𝔸 ⊆ 𝔘 are given, 
respectively, by: 

𝒫𝑜𝑠𝒾 𝔸 ℒ𝒾 𝔸 , 𝒩𝑒𝑔𝒾 𝔸 𝔘 𝒰𝒾 𝔸 , ℬ𝑛𝑑𝒾 𝔸 𝒰𝒾 𝔸 ℒ𝒾 𝔸  and 

𝜅𝒾 𝔸
ℒ𝒾 𝔸

𝒰𝒾 𝔸
 , where 𝒰𝒾 𝔸 φ. 

Remark 3.2 
(i) Obviously 0 𝜅𝒾 𝔸 1, for each 𝔸 ⊆ 𝔘. 
(ii) If 𝜅𝒾 𝔸 1 , then ℬ𝑛𝑑𝒾 𝔸 𝜑 and 𝔸 is an initial-exact set. Otherwise, it is an initial-rough 
set. 
The next theorem gives the main properties of the initial-approximations. 

Theorem 3.1 Suppose that ℜ is a binary relation on 𝔘 and 𝔸, 𝔹 ⊆ 𝔘. Thus, the initial-lower and 
upper approximations satisfy the following statements: 

(L1) ℒ𝒾 𝔸 ⊆ 𝔸 
(L2) ℒ𝒾 φ φ 
(L3) ℒ𝒾 𝔘 𝔘 
(L4) If 𝔸 ⊆ 𝔹, then ℒ𝒾 𝔸 ⊆ ℒ𝒾 𝔹  
(L5) ℒ𝒾 𝔸⋂𝔹 ℒ𝒾 𝔸 ⋂ℒ𝒾 𝔹  
(L6) ℒ𝒾 𝔸 ⋃ℒ𝒾 𝔹 ⊆ ℒ𝒾 𝔸⋃𝔹  

(L7) ℒ𝒾 𝔸 𝒰𝒾 𝔸  
(L8) ℒ𝒾 ℒ𝒾 𝔸 ℒ𝒾 𝔸  

(U1) 𝔸 ⊆ 𝒰𝒾 𝔸  
(U2) 𝒰𝒾 φ φ 
(U3) 𝒰𝒾 𝔘 𝔘 
(U4) If 𝔸 ⊆ 𝔹, then 𝒰𝒾 𝔸 ⊆ 𝒰𝒾 𝔹  
(U5) 𝒰𝒾 𝔸⋃𝔹 𝒰𝒾 𝔸 ⋃𝒰𝒾 𝔹   
(U6) 𝒰𝒾 𝔸 ⋂𝒰𝒾 𝔹 ⊇ 𝒰𝒾 𝔸⋂𝔹  
(U7) 𝒰𝒾 𝔸 ℒ𝒾 𝔸  

(U8) 𝒰𝒾 𝒰𝒾 𝔸 𝒰𝒾 𝔸  

Proof:  

The properties (L1–L3) and (U1–U3) are obvious. So, we prove the rest properties as follows: 
(L4) Let 𝔸 ⊆ 𝔹 and 𝑧 ∈ ℒ𝒾 𝔸 , then 𝔑𝒾 𝑧 ⊆ 𝔸. Therefore, 𝔑𝒾 𝑧 ⊆ 𝔹 and this implies 𝑧 ∈
ℒ𝒾 𝔹 . Accordingly, ℒ𝒾 𝔸 ⊆ ℒ𝒾 𝔹 . 
(L5) Firstly, since 𝔸⋂𝔹 ⊆ 𝔸 and 𝔸⋂𝔹 ⊆ 𝔹. Then ℒ𝒾 𝔸⋂𝔹 ⊆ ℒ𝒾 𝔸 ⋂ℒ𝒾 𝔹 . 
Now, let 𝑧 ∈ ℒ𝒾 𝔸 ⋂ℒ𝒾 𝔹 . Therefore, 𝔑𝒾 𝑧 ⊆ 𝔸 and 𝔑𝒾 𝑧 ⊆ 𝔹. Thus 𝔑𝒾 𝑧 ⊆ 𝔸⋂𝔹  and 
accordingly 𝑧 ∈ ℒ𝒾 𝔸⋂𝔹 . Hence ℒ𝒾 𝔸 ⋂ℒ𝒾 𝔹 ⊆ ℒ𝒾 𝔸⋂𝔹 . 
(L6) Since 𝔸 ⊆ 𝔸⋃𝔹  and 𝔹 ⊆ 𝔸⋃𝔹 . Then, ℒ𝒾 𝔸 ⋃ℒ𝒾 𝔹 ⊆ ℒ𝒾 𝔸⋃𝔹 . 
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(L7) 𝒰𝒾 𝔸 𝑥 ∈ 𝔘: 𝔑𝒾 𝑥 ∩ 𝔸 𝜑 𝑥 ∈ 𝔘: 𝔑𝒾 𝑥 ∩ 𝔸 𝜑 𝑥 ∈ 𝔘: 𝔑𝒾 𝑥 ⊆
𝔸 ℒ𝒾 𝔸 . 
(L8) First, ℒ𝒾 ℒ𝒾 𝔸 ⊆ ℒ𝒾 𝔸 , by using (L4). Now, let 𝑥 ∈ ℒ𝒾 𝔸 , then 𝔑𝒾 𝑥 ⊆ 𝔸. We need to 
prove that 𝔑𝒾 𝑥 ⊆ ℒ𝒾 𝔸  as follows: 
Let 𝑦 ∈ 𝔑𝒾 𝑥 , then 𝔑𝒾 𝑦 ⊆ 𝔑𝒾 𝑥  and thus i𝓃 y ⊆ 𝔸 . So, y ∈ ℒ𝒾 𝔸  and this implies 
𝔑𝒾 𝑥 ⊆ ℒ𝒾 𝔸 . Accordingly, 𝑥 ∈ ℒ𝒾 ℒ𝒾 𝔸  and hence ℒ𝒾 𝔸 ⊆ ℒ𝒾 ℒ𝒾 𝔸 . 
By a similar way, we can prove the properties (U4)–(U8).∎ 

Remark 3.3 The reverse relations in (L6) and (U6) in Theorem 3.1 need not be right generally as 
demonstrated in Example 3.5. 

Example 3.7 In Example 3.1, let 𝔸 𝑎, 𝑏, 𝑐 , 𝔹 𝑎, 𝑏, 𝑑 , ℂ 𝑏, 𝑐, 𝑑  and 𝔻 𝑎, 𝑐, 𝑑 . 
Then, we get ℒ𝒾 𝔸 𝑎, 𝑏, 𝑐 , ℒ𝒾 𝔹 𝑎, 𝑏 , and ℒ𝒾 𝔸 ∪ 𝔹 𝔘 . Thus ℒ𝒾 𝔸 ∪ ℒ𝒾 𝔹
ℒ𝒾 𝔸 ∪ 𝔹 . Similarly, 𝒰𝒾 ℂ ∩ 𝔻 𝒰𝒾 ℂ ∩ 𝒰𝒾 𝔻 . 

Remark 3.4 Theorem 3.1 proved that the proposed approximations (initial-approximations) satisfy 
all properties of Pawlak approximations, in the general case, without adding any restrictions or 
conditions on the relation. Accordingly, we can say that our methodology represents a generalization 
to Pawlak's rough set theory. The following result confirms this fact. 

Lemma 3.5 If ℜ  is an equivalence relation on 𝔘  and 𝔸 ⊆ 𝔘 . Then,  ℒ𝒾 𝔸 𝔅∗ 𝔸  and 

𝒰𝒾 𝔸 𝔅∗ 𝔸 , that is Pawlak approximations coincide with the initial-approximations in this case. 
Proof: By Lemma 3.4, the proof is obvious.∎ 

3.3. Comparisons among Yao’s method, Allam’s method, Dai’s method and current method 

The current subsection is devoted to introducing numerous comparisons between the suggested 
approaches in the previous subsection and the other methods (such as Yao [17], Allam [18], and Dai 
[27]). We investigate several results to illustrate that the suggested technique is more accurate and 
stronger than the other methods. Besides, we will discuss the different types of relations in the 
different approaches. Moreover, we will show that the previous methods make some contradictions 
to Pawlak’s rough set theory in the general case and hence they restrict the application fields. On the 
other hand, we prove that the proposed approach extends the application fields and does not make 
any contradiction to Pawlak’s rough set theory.  
Firstly, we introduce a comparison between the proposed method and the previous one (Yao, Allam, 
Dai approaches) in a general case of the binary relation to identifying the best method in real-life 
problems. 

Example 3.8 Consider 𝔘 𝑎, 𝑏, 𝑐, 𝑑  and ℜ 𝑎, 𝑎 , 𝑎, 𝑑 , 𝑏, 𝑎 , 𝑐, 𝑏  is a binary relation 
on 𝔘. Then, we get the subsequent neighborhoods: 

Right neighborhoods Minimal neighborhoods Maximal neighborhoods Initial neighborhoods 

𝔑 𝑎 𝑎, 𝑑 . 

𝔑 𝑏 𝑎 . 

𝔑 𝑐 𝑏 . 

𝔑 𝑑 𝜑. 

𝔑⊓ 𝑎 𝑎 . 

𝔑⊓ 𝑏 𝑏 . 

𝔑⊓ 𝑐 𝜑. 

𝔑⊓ 𝑑 𝑎, 𝑑 . 

𝔑⊔ 𝑎 𝑎, 𝑑 . 

𝔑⊔ 𝑏 𝑏 . 

𝔑⊔ 𝑐 𝜑. 

𝔑⊔ 𝑑 𝑎, 𝑑 . 

𝔑𝒾 𝑎 𝑎 . 

𝔑𝒾 𝑏 𝑎, 𝑏 . 

𝔑𝒾 𝑐 𝑐 . 

𝔑𝒾 𝑑 𝔘. 



7883 

AIMS Mathematics  Volume 6, Issue 7, 7872–7894. 

Therefore, we calculate the approximations of all subsets of 𝔘 using the current method and the 
previous methods (Yao [17], Allam [18], Dai [27] approaches) as shown in Table 1. 

Table 1. Comparison among Yao, Allam, Dai approaches and the suggested method in general case. 

𝔸 Yao’s method Allam’s method Dai’s method Current method 
ℒ

𝑟
𝔸  𝒰𝑟 𝔸  ℒ

⊓
𝔸  𝒰⊓ 𝔸  ℒ

⊔
𝔸  𝒰⊔ 𝔸  ℒ

𝒾
𝔸  𝒰𝒾 𝔸  

𝑎  𝑏, 𝑑  𝑎, 𝑏  𝑎, 𝑐  𝑎, 𝑑  𝑐  𝑎, 𝑑  𝑎  𝑎, 𝑏, 𝑑

𝑏  𝑐, 𝑑  𝑐  𝑏, 𝑐  𝑏  𝑏, 𝑐  𝑏  𝜑 𝑏, 𝑑  

𝑐  𝑑  𝜑 𝑐  𝜑 𝑐  𝜑 𝑐  𝑐, 𝑑  

𝑑  𝑑  𝑎  𝑐  𝑑  𝑐  𝑎, 𝑑  𝜑 𝑑  

𝑎, 𝑏  𝑏, 𝑐, 𝑑  𝑎, 𝑏, 𝑐  𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑑  𝑏, 𝑐  𝑎, 𝑏, 𝑑  𝑎, 𝑏  𝑎, 𝑏, 𝑑

𝑎, 𝑐  𝑏, 𝑑  𝑎, 𝑏  𝑎, 𝑐  𝑎, 𝑑  𝑐  𝑎, 𝑑  𝑎, 𝑐  𝔘 

𝑎, 𝑑  𝑎, 𝑏, 𝑑  𝑎, 𝑏  𝑎, 𝑐, 𝑑 𝑎, 𝑑  𝑎, 𝑐, 𝑑 𝑎, 𝑑  𝑎  𝑎, 𝑏, 𝑑

𝑏, 𝑐  𝑐, 𝑑  𝑐  𝑏, 𝑐  𝑏  𝑏, 𝑐  𝑏  𝑐  𝑏, 𝑐, 𝑑

𝑏, 𝑑  𝑐, 𝑑  𝑎, 𝑐  𝑏, 𝑐  𝑎, 𝑏, 𝑑  𝑏, 𝑐  𝑎, 𝑏, 𝑑  𝜑 𝑏, 𝑑  

𝑐, 𝑑  𝑑  𝑎  𝑐  𝑎, 𝑑  𝑐  𝑎, 𝑑  𝑐  𝑐, 𝑑  

𝑎, 𝑏, 𝑐  𝑏, 𝑐, 𝑑  𝑎, 𝑏, 𝑐  𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑑  𝑏, 𝑐  𝑎, 𝑏, 𝑑  𝑎, 𝑏, 𝑐  𝔘 

𝑎, 𝑏, 𝑑  𝔘 𝑎, 𝑏, 𝑐  𝔘 𝑎, 𝑏, 𝑑  𝔘 𝑎, 𝑏, 𝑑  𝑎, 𝑏  𝑎, 𝑏, 𝑑
𝑎, 𝑐, 𝑑  𝑎, 𝑐, 𝑑  𝑎, 𝑏  𝑎, 𝑐, 𝑑 𝑎, 𝑑  𝑎, 𝑐, 𝑑 𝑎, 𝑏, 𝑑  𝑎, 𝑐  𝔘 

𝑏, 𝑐, 𝑑  𝑐, 𝑑  𝑎  𝑏, 𝑐  𝑎, 𝑏, 𝑑  𝑏, 𝑐  𝑎, 𝑏, 𝑑  𝑐  𝑏, 𝑐, 𝑑
𝔘 𝔘 𝑎, 𝑏, 𝑐  𝔘 𝑎, 𝑏, 𝑑  𝔘 𝑎, 𝑏, 𝑑  𝔘 𝔘 

𝜑 𝑑  𝜑 𝑐  𝜑 𝑐  𝜑 𝜑 𝜑 

Remark 3.5 From Table 1, we can notice the following: 
(i) Yao, Allam, and Dai methods are not suitable to approximate the rough sets in the general case, 
since they couldn’t be applied for any relation (since the main properties of the approximations 
didn’t hold) and thus these methods restrict the applications of rough set theory, for instance: 

o ℒ 𝔸 ⊈ 𝔸 ⊈ 𝒰 𝔸 , for every 𝔸 ⊆ 𝔘 and 𝑘 ∈ 𝑟,⊓,⊔ . 

o 𝒰 𝔘 𝔘 and ℒ 𝜑 𝜑. 

For example, see the red highlighted cells in Table 1. Accordingly, these methods make some 
contradictions to the Rough set theory. Besides, all subsets are rough according to these methods and 
this represents vagueness for data. 
(ii) On the other hand, our methods in the present paper are the best methods for approximating the 
sets in the general case, since the initial-approximations satisfy all properties of Pawlak’s rough sets 
without any conditions or restrictions. Moreover, there are exact subsets in our approaches and this 
means that the suggested method can help in discovering the vagueness in the data. 
The subsequent results familiarize the relationships between the methods of Yao, Allam, Dai and the 
current approaches. 

Theorem 3.3 If ℜ is a reflexive relation on 𝔘, then, for each 𝔸 ⊆ 𝔘: 
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(i) ℒ⊔ 𝔸 ⊆ ℒ𝒾 𝔸 . 

(ii) 𝒰𝒾 𝔸 ⊆ 𝒰⊔ 𝔸 .  
(iii) ℬ𝑛𝑑𝒾 𝔸 ⊆ ℬ𝑛𝑑⊔ 𝔸 . 
(iv) 𝜅⊔ 𝔸 𝜅𝒾 𝔸 . 

Proof: 

We will demonstrate only the first statement and the others similarly. 
Let 𝑥 ∈ ℒ⊔ 𝔸 , then 𝔑⊔ 𝑥 ⊆ 𝔸. By using Theorem 3.1, we obtain 𝔑 𝑥 ⊆ 𝔸 and this implies 
𝑥 ∈ ℒ 𝔸 .∎ 

Corollary 3.2 Consider ℜ is a similarity relation on the universe 𝔘 and 𝔸 ⊆ 𝔘. If 𝔸 is a 
maximal-exact set, then 𝔸 is an initial-exact set. 
Note that: According to Example 3.5, we notice that: 
(i) The initial-approximations, minimal-approximations and right-approximations needn’t be a 

comparable (i. e. independent) in the case of ℜ is a reflexive relation on 𝔘. For instance, if 
𝔸 𝑏, 𝑑 . Then we get: ℒ𝒾 𝔸 𝑏 . But: ℒ 𝔸 𝑑 , and ℒ⊓ 𝔸 𝑑 . 

(ii) The reverse relations in Theorem 3.3 needn’t be true in general. For instance, if 𝔸 𝑎, 𝑏 . 
Then we get: ℒ𝒾 𝔸 𝔸. But: ℒ⊔ 𝔸 𝑎 ⊊ 𝔸. 

Theorem 3.4 If ℜ is a similarity relation on 𝔘, then, for each 𝔸 ⊆ 𝔘: 
i  ℒ𝒾 𝔸 ℒ⊓ 𝔸  and 𝒰𝒾 𝔸 𝒰⊓ 𝔸 . 
ii  ℒ⊔ 𝔸 ⊆ ℒ 𝔸 ⊆ ℒ𝒾 𝔸 . 
iii  𝒰𝒾 𝔸 ⊆ 𝒰 𝔸 ⊆ 𝒰⊔ 𝔸 . 

Proof: 
(i) The proof of (i) follows from Lemma 3.3. 
(ii) Let 𝑥 ∈ ℒ⊔ 𝔸 , then 𝔑⊔ 𝑥 ⊆ 𝔸. By using Lemma 3.1, we obtain: 
- 𝔑⊔ 𝑥 ⊆ 𝔸 ⇒ 𝔑 𝑥 ⊆ 𝔸 and this implies 𝑥 ∈ ℒ 𝔸 . 
- 𝔑 𝑥 ⊆ 𝔸 ⇒ 𝔑⊓ 𝑥 ⊆ 𝔸 and this implies 𝑥 ∈ ℒ⊓ 𝔸 . 
(iii) By similar way like (ii).∎ 

Corollary 3.3 If ℜ is a similarity relation on 𝔘, then, for each 𝔸 ⊆ 𝔘: 
(i) ℬ𝑛𝑑𝒾 𝔸 ℬ𝑛𝑑⊓ 𝔸  and 𝜅𝒾 𝔸 𝜅⊓ 𝔸 . 
(ii) ℬ𝑛𝑑𝒾 𝔸 ⊆ ℬ𝑛𝑑 𝔸 ⊆ ℬ𝑛𝑑⊔ 𝔸 . 
(iii) 𝜅⊔ 𝔸 𝜅 𝔸 𝜅𝒾 𝔸 . 

Corollary 3.3 If ℜ is a similarity relation on the universe 𝔘 and 𝔸 ⊆ 𝔘. Then we get: 
(i) If 𝔸 is a minimal-exact set ⟹ 𝔸 is an initial-exact set. 
(ii) If 𝔸 is a maximal-exact set ⟹ 𝔸 is a right-exact set ⟹ 𝔸 is an initial-exact set. 
Note that: The opposite of the previous results is not correct generally as Example 3.9 explains. 

Example 3.9 According to Example 3.6, we compute the approximations of all subsets of 𝔘 using 
the current method and the previous methods (Yao and Dai methods) as illustrated in Table 2. 
Remark 3.6 According to Table 2, we note the next: 
(i) The proposed method is more accurate than the other methods such as (Yao and Dai methods), 
that is: ℬ𝑛𝑑𝒾 𝔸 ⊆ ℬ𝑛𝑑 𝔸 and 𝜅 𝔸 𝜅𝒾 𝔸  for every 𝔸 ⊆ 𝔘 and 𝑘 ∈ 𝑟,⊔ . 
(ii) Every an exact set in Yao and Dai is also exact in the current method. The converse is not true. 

Table 2. Comparison among Yao, Dai approaches and the current method in the case of a 
similarity relation. 
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𝔸 Yao’s method Dai’s method Current method 

ℒ 𝔸  𝒰 𝔸  ℬ𝑛𝑑 𝔸 𝜅 𝔸 ℒ⊔ 𝔸 𝒰⊔ 𝔸 ℬ𝑛𝑑⊔ 𝔸 𝜅⊔ 𝔸 ℒ𝒾 𝔸  𝒰𝒾 𝔸  ℬ𝑛𝑑𝒾 𝔸 𝜅𝒾 𝔸
𝑎  𝜑 𝑎, 𝑏  𝑎, 𝑏  0 𝜑 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 0 𝜑 𝑎  𝑎  0 

𝑏  𝜑 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐  0 𝜑 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 0 𝑏  𝑎, 𝑏, 𝑐 𝑎, 𝑐  1 3⁄
𝑐  𝜑 𝑏, 𝑐  𝑏, 𝑐  0 𝜑 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 0 𝜑 𝑐  𝑐  0 

𝑑  𝑑  𝑑  𝜑 1 𝑑  𝑑  𝜑 1 𝑑  𝑑  𝜑 1 

𝑎, 𝑏  𝑎  𝑎, 𝑏, 𝑐 𝑏, 𝑐  1 3⁄  𝜑 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 0 𝑎, 𝑏  𝑎, 𝑏, 𝑐 𝑐  2 3⁄
𝑎, 𝑐  𝜑 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐  0 𝜑 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 0 𝜑 𝑎, 𝑐  𝑎, 𝑐  0 

𝑎, 𝑑  𝑑  𝑎, 𝑏, 𝑑 𝑎, 𝑏  1 3⁄  𝑑  𝔘 𝑎, 𝑏, 𝑐 1 4⁄ 𝑑  𝑎, 𝑑  𝑎  1 2⁄
𝑏, 𝑐  𝑐  𝑎, 𝑏, 𝑐 𝑎, 𝑏  1 3⁄  𝜑 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 0 𝑏, 𝑐  𝑎, 𝑏, 𝑐 𝑎  2 3⁄
𝑏, 𝑑  𝑑  𝔘 𝑎, 𝑏, 𝑐  1 4⁄  𝑑  𝔘 𝑎, 𝑏, 𝑐 1 4⁄ 𝑏, 𝑑  𝔘 𝑎, 𝑐  1 2⁄
𝑐, 𝑑  𝑑  𝑏, 𝑐, 𝑑 𝑏, 𝑐  1 3⁄  𝑑  𝔘 𝑎, 𝑏, 𝑐 1 4⁄ 𝑑  𝑐, 𝑑  𝑐  1 2⁄
𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 𝜑 1 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 𝜑 1 𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐 𝜑 1 

𝑎, 𝑏, 𝑑 𝑎, 𝑑  𝔘 𝑏, 𝑐  1 2⁄  𝑑  𝔘 𝑎, 𝑏, 𝑐 1 4⁄ 𝑎, 𝑏, 𝑑 𝔘 𝑐  3 4⁄
𝑎, 𝑐, 𝑑 𝑑  𝔘 𝑎, 𝑏, 𝑐  1 4⁄  𝑑  𝔘 𝑎, 𝑏, 𝑐 1 4⁄ 𝑑  𝑎, 𝑐, 𝑑 𝑎, 𝑐  1 3⁄
𝑏, 𝑐, 𝑑 𝑐, 𝑑  𝔘 𝑎, 𝑏  1 2⁄  𝑑  𝔘 𝑎, 𝑏, 𝑐 1 4⁄ 𝑏, 𝑐, 𝑑 𝔘 𝑎  3 4⁄

𝔘 𝔘 𝔘 𝜑 1 𝔘 𝔘 𝜑 1 𝔘 𝔘 𝜑 1 

4. Generalized nano-topology and its applications 

The core aim of this section is to extend the notion of Nano-topology [36] into any generalized rough 
sets. In fact, we generate a nano-topology induced from generalized rough set approximations. The 
necessary condition for generating this topology is proposed. Moreover, we illustrate the conditions 
for generating generalized nano-topology using Yao [17], Allam [18], and Dai [27] approximations. 
Besides, we demonstrate a medical application to show how we can use these types of techniques in 
deciding the impact factors of COVID-19 infections. These new types of basic models, as well as the 
procedure for decision-making techniques and the algorithm for applying the new approach in a 
medical setting, are described in detail. 

4.1. Generalized nano-topology and its properties 

Definition 4.1 Consider 𝔘 is a finite set, and let ℒ 𝔸  and 𝒰 𝔸  be the lower and upper 

approximations of 𝔸 ⊆ 𝔘. The class 𝒯𝒢𝓃 𝔘, 𝜑, ℒ 𝔸 , 𝒰 𝔸 , ℬ𝑛𝑑 𝔸 , where ℬ𝑛𝑑 𝔸  is the 

boundary region of 𝔸 ⊆ 𝔘, is a topology on 𝔘 if ℒ 𝔸  and 𝒰 𝔸  satisfy Pawlak’s rough set 
properties (L1-L8) and (U1-U8). Accordingly, 𝒯𝒢𝓃 is said to be a “generalized nano-topology” (in 
briefly, 𝒢𝓃-topology) generated by the generalized rough approximations of 𝔸 ⊆ 𝔘. 
Note that: The above definition introduces the condition of generating a nano-topology by using any 
generalized rough sets. So, the following result illustrates the method of generating 𝒢𝓃-topology via 
Yao, Allam, Dai and the suggested approximations.  

Theorem 4.1 Consider ℜ to be a binary relation on a finite set 𝔘 and 𝔸 ⊆ 𝔘. The class 

 𝒯 𝒢𝓃 𝔘, 𝜑, ℒ 𝔸 , 𝒰 𝔸 , ℬ𝑛𝑑 𝔸  is a 𝒢𝓃-topology on 𝔘 if and only if 

(i) Yao’s approach (For 𝑘 𝑟): ℜ is a pre-order relation. 
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(ii) Dai’s approach (For 𝑘 ⊔): ℜ is a similarity relation. 
(iii) Allam’s approach (For 𝑘 ⊓): ℜ is a reflexive relation. 
(iv) Current approach (For 𝑘 𝒾): ℜ is a general binary relation. 

Proof:  

We only prove (iv) and the others by a similar way (using Theorems 2.2.1, 2.3.1 & 2.4.1).  
(1) Firstly, it is clear that 𝜑 ∈ 𝒯𝒾

𝒢𝓃. 

(2) By using Theorem 3.1, we get ∀𝐴, 𝐵 ∈ 𝒯𝒾
𝒢𝓃 ⇒ 𝐴 ∩ 𝐵 ∈ 𝒯𝒾

𝒢𝓃. 

(3) By using Theorem 3.1, we get ∀𝐴, 𝐵 ∈ 𝒯𝒾
𝒢𝓃 ⇒ 𝐴 ∪ 𝐵 ∈ 𝒯𝒾

𝒢𝓃. ∎ 

Lemma 4.1 Let 𝔘 be a finite set, and 𝔸 ⊆ 𝔘. Then the base of the 𝓖𝓷-topology 𝒯  is given by 

the class: 𝔅𝒢𝓃 𝔘, ℒ 𝔸 , ℬ𝑛𝑑 𝔸 , for each 𝑘 ∈ 𝑟, 𝒾, ⊓, ⊔ . 

Proof: 
Straightforward.∎ 

The next example clarifies that the topologies 𝒯 𝒢𝓃 and 𝒯𝒾
𝒢𝓃 are independent. 

Example 4.1 Consider 𝔘 𝑎, 𝑏, 𝑐, 𝑑  and ℜ 𝑎, 𝑎 , 𝑎, 𝑏 , 𝑎, 𝑐 , 𝑏, 𝑏 , 𝑏, 𝑐 , 𝑐, 𝑐 , 𝑑, 𝑑  
is a pre-order relation on 𝔘. Then we get the following neighborhoods: 
𝔑 𝑎 𝑎, 𝑏, 𝑐 , 𝔑 𝑏 𝑏, 𝑐 , 𝔑 𝑐 𝑐  and 𝔑 𝑑 𝑑 . 
𝔑𝒾 𝑎 𝑎 , 𝔑𝒾 𝑏 𝑎, 𝑏 , 𝔑𝒾 𝑐 𝑎, 𝑏, 𝑐  and 𝔑𝒾 𝑑 𝑑 . 
Therefore, the 𝒢𝓃-topologies of a subset 𝑋 𝑎, 𝑐  are: 
Using Yao’s approach: 𝒯 𝒢𝓃 𝔘, 𝜑, 𝑐 , 𝑎, 𝑏, 𝑐 , 𝑎, 𝑏 . 

Using initial approach: 𝒯𝒾
𝒢𝓃 𝔘, 𝜑, 𝑎 , 𝑎, 𝑏, 𝑐 , 𝑏, 𝑐 .  

Obviously, 𝒯 𝒢𝓃 ⊈ 𝒯𝒾
𝒢𝓃. 

The subsequent example explains that 𝒯⊔
𝒢𝓃 and 𝒯𝒾

𝒢𝓃 needn’t be comparable. 

Example 4.2 Consider Example 3.9, Therefore, 𝒢𝓃-topologies of a subset 𝑋 𝑐, 𝑑  are: 
Using Dai’s approach: 𝒯⊔

𝒢𝓃 𝔘, 𝜑, 𝑑 , 𝑎, 𝑏, 𝑐 . 

Using initial approach: 𝒯𝒾
𝒢𝓃 𝔘, 𝜑, 𝑑 , 𝑐, 𝑑 , 𝑐 . 

Obviously, 𝒯⊔
𝒢𝓃 ⊈ 𝒯𝒾

𝒢𝓃. 

4.2. A medical application via a nano- topology in decision-making of COVID-19 

The fast diffusion of the COVID-19 epidemic has caused widespread societal, economic, and 
political disruption. COVID-19 can be spread through physical contact between people. 
Unfortunately, no successful therapy exists at this time. Wearing masks, washing, sterilizing, and 
social distancing are the only preventive measures available. So, the importance of an accurate 
decision to diagnosis the infection of this virus is very useful to avoid the spread of the COVID-19.  
This subsection aims to demonstrate the significance of our approach in obtaining better and accurate 
tools to identify deciding factors of infections for COVID-19 in humans. In the present application, 
we use a general binary relation to illustrate the significance of the suggested technique in 
decision-making. Therefore, the other methods (such as Pawlak [13], M. Lellis Thivagar and C. 
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Richard [36], Yao [17], Allam et al. [18], and Dai et al. [27]) can’t apply here and hence we can say 
that our technique extends the application field of rough sets. Accordingly, we demonstrate that the 
suggested tools are more accurate than the other methods.  
Our approach is based on removing redundant attributes to produce the successfully reduced set and 
formulate the core set of attributes. According to [12], we would like to mention that the information 
obtained in this Corona-virus analysis is from 1000 patients. Since the attributes in rows (objects) 
were identical, 1000 patients were reduced to 10 patients, and the most symptoms of COVID-19 are: 
Difficulty breathing, Chest pain, Dry cough, Headache, High Temperature, Loss of taste or smell. So, 
the application can be described as follows: 
The set of objects as 𝔘 𝑝 , 𝑝 , . . . , 𝑝  denotes 10 listed patients, the attributes as 𝑎 , 𝑎 , . . . , 𝑎  
= {Difficulty breathing, Chest pain, Dry cough, Headache, High Temperature, Loss of taste or 
smell}and Decision COVID-19 {d}, as follows in Information was collected by the World Health 
Organization as well as through medical groups specializing in corona virus (COVID-19). 
Consider the following information system in the Table 3: 

Table 3. The information’s decisions data set. 

We are again drawing the consistent part of Table 3 by the next Table 4. 

 

 

 

Table 4. Consistent part of Table 3. 

Objects Attributes Decision 

a1 a2 a3 a4 a5 a6 d 
𝑝  2 2 1 2 2 2 2 
𝑝  2 2 2 2 2 2 2 
𝑝  2 2 1 2 1 2 1 

Patients Serious symptoms Most common symptoms Decision 

COVID-19 Difficulty 

breathing 

Chest pain Headache Dry cough High 

Temperature 

Loss of taste 

or smell 

𝑝  yes yes no yes yes yes yes 

𝑝  yes yes yes yes yes yes yes 

𝑝  yes yes no yes no yes no 

𝑝  yes yes no no no no no 

𝑝  yes yes no yes no no no 

𝑝  yes no yes yes yes no yes 

𝑝  no no no yes yes no yes 

𝑝  no no no yes yes no no 

𝑝  no no no no no yes yes 

𝑝  no no yes yes yes no yes 
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𝑝  2 2 1 1 1 1 1 
𝑝  2 2 1 2 1 1 1 
𝑝  1 1 2 2 2 1 2 
𝑝  1 1 1 2 2 1 2 
𝑝  1 1 1 2 2 1 1 
𝑝  1 1 1 1 1 2 2 
𝑝  1 1 2 2 2 1 2 

From Table 4, we obtain the symptoms of every patient are: 
𝑉 𝑝 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 𝑎 , 𝑎  , 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑉 𝑝
𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 
𝑝 𝑎  and 𝑉 𝑝  𝑎 , 𝑎 , 𝑎 . 

Now, we can generate the following relation: 

𝑝 𝑅𝑝 ⇔ 𝑉 𝑝 ⊆ 𝑉 𝑝 . 

We apply this relation for all attributes in the table to induce the neighborhoods as follows: 𝑅
𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 ,  

𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 ,  
𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 ,  
𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 . 

Thus, the right neighborhoods of each element in 𝔘 of this relation are: 
𝔑 𝑝 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 
𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝  𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 
𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝  and 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 . 
Accordingly, the initial neighborhoods are: 
𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝔘 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 
𝔑 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝
𝑝  and 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 .  

Now, from Table 4, we get two cases are: 

Case 1: (Patients infected with COVID-19) 

The set of infected patients with COVID-19 is 𝑋 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , then we get: 

ℒ𝒾 𝑋 𝑝 , 𝒰𝒾 𝑋 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝  and ℬ𝒾 𝑋 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 . 

Therefore, by using Theorem 4.1 and Lemma 4.1, the 𝒢𝓃-topology and its basis of X are: 

𝒯𝒾
𝒢𝓃 𝔘, 𝜑, 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝   and 

𝔅𝒾
𝒢𝓃 𝔘, 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 . 

Step 1: When the attribute 𝑎  “Difficulty breathing” is removed: 
Therefore, the symptoms of every patient are: 
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𝑉 𝑝 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑉 𝑝  𝑎 , 𝑎 , 𝑎  , 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 
𝑉 𝑝  𝑎 , 𝑎 , 𝑉 𝑝  𝑎 , 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 𝑉 𝑝 𝑎 , 𝑎 , 𝑝 𝑎  and 
𝑉 𝑝  𝑎 , 𝑎 , 𝑎 . 

Thus, the right neighborhoods of each element in 𝔘 of this relation are: 

𝔑 𝑝 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 

𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 ,  

𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝  and 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 . 

Accordingly, the initial neighborhoods are: 

𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝔘 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 
𝔑 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝
𝑝  and 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 .  

Therefore, by using Theorem 4.1 and Lemma 4.1, the 𝒢𝓃-topology and its basis of 𝑋 are: 

𝒯𝒾
𝒢𝓃 𝔘, φ, p , p , p , p , p , p , p , p , p , p , p , p , p , p , p , p 𝒯𝒾

𝒢𝓃 and 

𝔅𝒾
𝒢𝓃 𝔅𝒾

𝒢𝓃. 

Step 2: When the attribute 𝑎  “Chest pain” is removed: 
By the same manner as in Step 1, we get the initial neighborhoods are: 𝔑𝒾 𝑝
𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝔘 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝔑 𝑝
𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝  and 

𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 . 

Therefore, by using Theorem 4.1 and Lemma 4.1, the 𝒢𝓃-topology and its basis of 𝑋 are: 

𝒯𝒾
𝒢𝓃 𝔘, 𝜑, 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 𝒯𝒾

𝒢𝓃 and 

𝔅𝒾
𝒢𝓃 𝔅𝒾

𝒢𝓃. 

Step 3: When the attribute 𝑎  “Headache” is removed:  
By the same manner as in Step 1, we get the initial neighborhoods are: 

𝔑𝒾 𝑝 𝔘 , 𝔑𝒾 𝑝 𝔘 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 
𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝  and 
𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 . 

Therefore, by using Theorem 4.1 and Lemma 4.1, the 𝒢𝓃-topology and its basis of X are: 

𝒯𝒾
𝒢𝓃 𝔘, 𝜑, 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 𝒯𝒾

𝒢𝓃 and  

𝔅𝒾
𝒢𝓃 𝔅𝒾

𝒢𝓃. 
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Step 4: When the attribute 𝑎  “Dry cough” is removed: 
By the same manner as in Step 1, we get the initial neighborhoods are: 

𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝔘 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 
𝔑 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝
𝑝  and 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 . 

Therefore, by using Theorem 4.1 and Lemma 4.1, the 𝒢𝓃-topology and its basis of 𝑋 are: 

𝒯𝒾
𝒢𝓃 𝔘, 𝜑, 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 𝒯𝒾

𝒢𝓃 and  

𝔅𝒾
𝒢𝓃 𝔅𝒾

𝒢𝓃. 

Step 5: When the attribute 𝑎  “High Temperature” is removed: 
By the same manner as in Step 1, we get the initial neighborhoods are: 

𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝔘 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝
𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 

𝔑𝒾 𝑝 𝑝  and 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 . 

Therefore, by using Theorem 4.1 and Lemma 4.1, the 𝒢𝓃-topology and its basis of 𝑋 are: 

𝒯𝒾
𝒢𝓃 𝔘, φ, p , p , p , p , p , p , p , p , p , p , p , p , p , p , p , p , p , p 𝒯𝒾

𝒢𝓃 and  

𝔅𝒾
𝒢𝓃 𝔅𝒾

𝒢𝓃. 

Step 6: When the attribute 𝑎  “Loss of taste or smell” is removed: 
By the same manner as in Step 1, we get the initial neighborhoods are:  

𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝔘, 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 
𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝔑 𝑝 𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝
𝑝 , 𝑝 , 𝑝 , 𝔑𝒾 𝑝 𝑝  and 𝔑𝒾 𝑝 𝑝 , 𝑝 , 𝑝 , 𝑝 .  

Therefore, by using Theorem 4.1 and Lemma 4.1, the 𝒢𝓃-topology and its basis of 𝑋 are: 

𝒯𝒾
𝒢𝓃 𝔘, 𝜑, 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝 𝒯𝒾

𝒢𝓃 and 𝔅𝒾
𝒢𝓃 𝔅𝒾

𝒢𝓃. 

Hence, from Steps (1–6), we observe that: the CORE is {𝑎 , 𝑎 }, that is the impact factors to 
determine COVID-19 infection are “High Temperature and Loss of taste or smell”. 

Case 2: (Patients are not infected with COVID-19) 

The set of infected patients with COVID-19 is 𝑌 𝑝 , 𝑝 , 𝑝 , 𝑝 . By made the same steps like as 
Case (1), we obtain the same results. 

Observation: From the CORE, we observed that “High Temperature and Loss of taste or smell” are 
the key factors for COVID-19 infection. Hence, these attributes are not dispensable attributes that 
represent the impact factors for COVID-19 infection. 
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At the end of the paper, we introduce an algorithm for decision making using our approaches. 

Algorithm 1  A decision making via the initial-approximations.
Step 1: Input the finite universe 𝔘 and the set of attributes represent the data as an 

information table, rows of which are labeled by attributes (C), columns by objects 
and entries of the table are attribute values.

Step 2: From the information table compute the initial-neighborhoods of each object, 
according to Definition 3.1.

Step 3: Compute the initial-upper approximation, initial-lower approximation and 
initial-boundary for the decision set 𝑋 ⊆ 𝔘 , say ℒ𝒾 𝑋 , 𝒰𝒾 𝑋  and ℬ𝒾 𝑋
respectively, according to Definition 3.2.

Step 4: Generate the 𝒢𝓃 -topology 𝒯𝒾
𝒢𝓃  on 𝔘  and its base 𝔅𝒾

𝒢𝓃 induced by 𝑋  using 
Definition 4.1. 

Step 5: Remove an attribute a  from the conditions attributes (C) and then find the 
initial-upper approximation, initial-lower approximation and initial-boundary for 
the decision set 𝑋 ⊆ 𝔘 on C − (𝑎 ).

Step 6: Generate a 𝒢𝓃-topology 𝒯𝒾
𝒢𝓃 on 𝔘 and its base 𝔅𝒾

𝒢𝓃 by Definition 4.1. 

Step 7: Repeat steps 5 and 6 for all attributes in C.
Step 8: Those attributes in C for which 𝔅𝒾

𝒢𝓃 𝔅𝒾
𝒢𝓃forms the CORE 𝔘 . 

5. Discussion and conclusions 

In our daily life, we often look some difficulties in which the correct decision-making is highly 
crucial. But in most of these cases, we become disordered about the precise solution. To obtain the 
best practicable explanation to these problems, we have to consider several factors involving to the 
solution. One of the significant subjects on rough sets is minimizing the boundary region, which 
aims to maximize the accuracy measure of decision-making. Neighborhoods, that generating from 
relations, are one of the techniques that have been used to achieve this goal. For this reason, in the 
current work, we have achieved three different goals. The first achievement is to introduce a new 
generalized neighborhood (initial-neighborhood) induced from a general binary relation without any 
extra restrictions. Besides, we have studied its properties in different cases of the relation and 
investigated the relationships with the other types of neighborhoods. Based on the suggested 
neighborhoods, we established new generalized rough sets (called initial-approximations). Theorem 3.1 
and its consequences proved that these approximations represent a generalization to Pawlak’s rough 
sets and their extensions. Many comparisons among the proposed approximations and the previous 
approaches such as (Yao [17], Allam et al. [18], and Dai et al. [27] methods) were investigated with 
counterexamples. In fact, we have illustrated that the proposed techniques extend the applications 
because it was used a general binary relation to define the approximations, and hence we can solve 
any real-life problem. On the other hand, we proved that the other methods couldn’t apply to solve 
these problems in the general case as illustrated in Table 1. M. Lellis Thivagar and C. Richard [36] 
have introduced the notion of nano-topology based on Pawlak’s rough sets [13] which restrict the 
application fields. So, our second goal, we have extended the concept of nano-topology to 
generalized nano-topology (𝒢𝓃 -topology) in order to emphasize the application field of this 
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approach. Theorem 4.1 showed the condition of generating 𝒢𝓃-topology by Yao, Allam, and Dai 
methods.  

Finally, we have used the suggested techniques to identify the impact factors (symptoms) of 
Corona-virus infection. The approach used here can be applied to analyze data of COVID-19 with 
quantitative or qualitative data by coding the data into the consistent part such as Table 4. In this 
application, we use a general binary relation to illustrate the significance of the suggested technique 
in decision-making. Therefore, Pawlak’s approach and other methods couldn’t apply here and hence 
we can say that our method extends the application field of rough sets. We have applied a topological 
reduction using a 𝒢𝓃-topology generated from the initial-approximations for data of 10 patients and 
hence we identified the impact factors of COVID-19 infection. Consequently, we may help the 
doctor to make an accurate decision about the diagnosis of patients. At the end of the paper, we 
introduced an algorithm for our method to be useful tools in the decision-making of any real-life 
problem.  
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