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for judging the efficiency of preconditioners, we propose some comparison results for K-nonnegative
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1. Introduction

Let Rn be the set of n-dimensional vectors, K be a proper cone in Rn. Let π(K) denote the set of
n × n matrices which leave the proper cone K ⊆ Rn invariant, then π(K) is closed under multiplication
and is a proper cone in Rn×n [1]. It should be noted that both the nonnegative cone Rn

+ and the ice cream
cone {x ∈ Rn|(x2

2 + x2
3 + · · · + x2

n)
1
2 < x1} are particular proper cones.

In this note, we consider the linear system

Ax = b, (1.1)

where A ∈ Rn×n is a nonsingular matrix and A−1 ∈ π(K), b ∈ Rn is given and x ∈ Rn is unknown.
Woźniki in [18] introduced the double splitting of A as

A = P − R − S , (1.2)

where P is nonsingular, and the approximate solution xi+1 of Eq (1.1) is generated by three successive
iterations:

xi+1 = P−1Rxi + P−1S xi−1 + P−1b, i = 1, 2, · · · . (1.3)
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It follows from [6] that the iterative scheme (1.3) can be rewritten in the following equivalent form(
xi+1

xi

)
=

(
P−1R P−1S

I 0

) (
xi

xi−1

)
+

(
P−1b

0

)
, i = 1, 2, · · · , (1.4)

where I denotes the identity matrix with compatible size.
The iterative scheme (1.4) converges to the unique solution x? = A−1b of (1.1) if and only if the

spectral radius of the iteration matrix

W =

(
P−1R P−1S

I 0

)
is less than one, i.e., ρ(W) < 1. Hou [7] gave convergence and comparison theorems for K-double
splittings of an K-monotone matrix. Wang [19] presented convergence and the comparison results for
K-nonnegative double splittings of an K-monotone matrix.

The smaller ρ(W), the faster convergence of the iterative scheme (1.4). One approach for improving
the convergence rate of the corresponding iterative method is the preconditioning techniques [2]. More
precisely, we may solve the preconditioned linear systems

QAx = Qb

instead of (1.1), here Q, called the preconditioner, is nonsingular. When there are two or more
preconditioners for the linear system (1.1), which one is the most efficient one is worth studying.
The comparison theorem between the spectral radii of iteration matrices is a useful tool for judging
the efficiency of preconditioner [5]. Therefore, in this note we will present the comparison results
between the spectral radii of the corresponding iteration matrices arising from K-nonnegative splittings
of different preconditioned matrices. For this purpose, we assume that the preconditioned matrices QA
with different preconditioners Q satisfy (QA)−1 ∈ π(K). The obtained results of this paper are the
generalizations of the corresponding results in [7, 16, 19].

The rest of this article is organized as follows. In Section 2, some definitions and results are
reviewed. In Section 3, the main comparison results for K-nonnegative double splittings of different
preconditioned matrices are given. Finally, in Section 4, conclusions are drawn.

2. Preliminaries

In this section, some definitions and lemmas, which will be used throughout the paper, will be given.

Definition 2.1. A vector x in Rn is called K-nonnegative (K-positive) if x belongs to K (x belongs to
intK, the the interior of K) and is denoted by x ≥K 0 (x >K 0). If x, y ∈ Rn satisfying x − y ≥K 0
(x − y >K 0), we denote x ≥K y (x >K y).

Definition 2.2. An n × n real matrix A is called K-nonnegative (K-positive) if AK ⊆ K (respectively,
A(K − {0}) ⊆ intK) and is denoted as A ≥K 0 (A >K 0). Similarly, for n × n real matrices A and B we
denote A − B ≥K 0 (A − B >K 0) by A ≥K B (A >K B).

Clearly, A is K-nonnegative is equivalent to A ∈ π(K) [7]. Basic properties of the K-nonnegative
matrix are given in [1, 7, 8]. It should be remarked that the properties of K-nonnegative matrices are
very similar to the theory of nonnegative matrices, see for example [1, 3, 4, 8].

Based on the definition of K-nonnegative matrix, we can give the definition of K-monotone matrix.
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Definition 2.3. Let A ∈ Rn×n be nonsingular, A is called K-monotone if A−1 ≥K 0, i.e., A−1 ∈ π(K).

Hou and Li [8] proposed the definition of the K-nonnegative single splittings, and Wang [19]
introduced the K-nonnegative double splittings as:

Definition 2.4. Let A be a nonsingular matrix. Then,

(i). the single splitting A = M − N is a K-nonnegative single splitting if M−1N ≥K 0 [8];
(ii). the double splitting A = P−R−S is a K-nonnegative double splitting if P−1R ≥K 0 and P−1S ≥K 0

[19].

It should be remarked that the K-nonnegative single splitting is termed as K-weak splitting in [9] or
K-weak splitting of the first type in [8]. Moreover, rewriting (1.2) as

A = P − (R + S ), (2.1)

then it is a single splitting of A. If the double splitting (1.2) is K-nonnegative, then the single splitting
(2.1) is also K-nonnegative.

3. Main result

In this section, we will present the comparison results for the K-nonnegative double splittings of
different K-monotone matrices. Assume that there are two preconditioners Q1 and Q2 for the linear
system (1.1), then we have two preconditioned linear systems with coefficient matrices A1 = Q1A and
A2 = Q2A, respectively. Moreover, we further assume that the preconditioned matrices A1 and A2 are
K-monotone matrices. Some excellent comparison results for K-nonnegative single splittings of A1

and A2 are given in [9, 11].
Let

A1 = P1 − R1 − S 1 and A2 = P2 − R2 − S 2 (3.1)

be K-nonnegative double splittings of A1 and A2, respectively. Define the corresponding iteration
matrices

W1 =

(
P−1

1 R1 P−1
1 S 1

I 0

)
and W2 =

(
P−1

2 R2 P−1
2 S 2

I 0

)
.

For i = 1, 2, if we split

Ai =

(
Ai 0
−I I

)
as

Ai = Mi − Ni (3.2)

with

Mi =

(
Pi S i

0 I

)
, Ni =

(
Ri + S i S i

I 0

)
,

then Wi = M−1
i Ni. Therefore, we can get comparison results for the double splitting (3.1) by

investigating the splitting (3.2).

AIMS Mathematics Volume 6, Issue 7, 7741–7748.



7744

Theorem 3.1. Let A1 and A2 be K-monotone matrices, the splittings (3.1) be K-nonnegative and
convergent. Suppose A−1

2 ≥K A−1
1 , S 2 ≥K S 1 and R2 + S 2 ≥K R1 + S 1, then

ρ(W1) ≤ ρ(W2).

Proof. Firstly, it is easy to see that the splittings Ai = Mi −Ni are K-nonnegative as the splittings (3.1)
are K-nonnegative. Secondly, note that

A−1
2 =

(
A−1

2 0
A−1

2 I

)
≥K

(
A−1

1 0
A−1

1 I

)
= A−1

1 ≥K 0

and

N2 =

(
R2 + S 2 S 2

I 0

)
≥K

(
R1 + S 1 S 1

I 0

)
= N1

hold under the assumptions. Hence, it follows from [9, Theorem 3.13] that ρ(W1) ≤ ρ(W2). �

The conditions S 2 ≥K S 1 and R2 ≥K R1 imply S 2 ≥K S 1 and R2 + S 2 ≥K R1 + S 1, so from
Theorem 3.1, we have the following corollary.

Corollary 3.2. Let A1 and A2 be K-monotone matrices, the splittings (3.1) be K-nonnegative and
convergent. Suppose A−1

2 ≥K A−1
1 , S 2 ≥K S 1 and R2 ≥K R1, then

ρ(W1) ≤ ρ(W2).

Remark 3.3. When we pay our attention to the particular proper cone K = Rn
+, then Theorem 3.1 and

Corollary 3.2 are Theorem 3.12 and Corollary 3.13 in [16], respectively.

The following example shows that the conditions that the splittings (3.1) are convergent cannot be
dropped in Theorems 3.1.

Example 3.4. Let K = {x ∈ R3|(x2
2 + x2

3)
1
2 < x1}. Assume that

A =


−1

2 0 0
− 1

10
5
4 0

0 1
4

5
4

 , P1 =


−4 0 0
−1 2 0
0 0 3

 and P2 =


−2 0 0
−1 2 0
0 0 3

 .
Then we have

A1 =


2 0 0
3

10
5
2 0

0 3
4

15
4

 and A2 =


1 0 0
3

10
5
2 0

0 3
4

15
4

 .
If A1 and A2 are splitted as

A1 = P1 − R1 − S 1 and A2 = P2 − R2 − S 2, (3.3)

respectively, here

R1 =


−3 0 0
−2

5 − 1
4 0

0 − 3
8 − 3

8

 , S 1 =


−3 0 0
− 9

10 − 1
4 0

0 − 3
8 − 3

8


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and

R2 =


−3

2 0 0
−2

5 − 1
4 0

0 − 3
4 − 3

8

 , S 2 =


−3

2 0 0
− 9

10 − 1
4 0

0 0 − 3
8

 .
It is easy to see that

A−1
1 =


1
2 0 0
− 3

50
2
5 0

3
250 − 2

25
4
15


and

A−1
2 =


1 0 0
− 3

25
2
5 0

3
125 − 2

25
4

15

 ,
i.e., A1 and A2 are K-monotone matrices, although A1 and A2 are not monotone matrices. By
calculating, we have

P−1
1 R1 =


3
4 0 0
7

40 − 1
8 0

0 − 1
8 − 1

8

 , P−1
1 S 1 =


3
4 0 0
− 3

40 − 1
8 0

0 − 1
8 − 1

8


and

P−1
2 R2 =


3
4 0 0
7

40 − 1
8 0

0 − 1
4 − 1

8

 , P−1
2 S 2 =


3
4 0 0
− 3

40 − 1
8 0

0 0 − 1
8

 .
Here the splittings (3.3) are not nonnegative double splittings, but K-nonnegative double splittings. It
is easy to verify that A−1

2 ≥K A−1
1 , S 2 ≥K S 1 and R2 + S 2 ≥K R1 + S 1, but ρ(W1) > 1 and ρ(W2) > 1. In

fact, we have
ρ(W1) = 1.3187 = ρ(W2).

In particular, if we restrict our discussion on the different K-nonnegative double splittings of one
K-monotone matrix A, then from Theorem 3.1, Corollary 3.2 and [9, Theorem 3.5], the following
corollaries are obtained.

Corollary 3.5. Let A be K-monotone matrix, the splittings A = P1 − R1 − S 1 = P2 − R2 − S 2 be
K-nonnegative and convergent. Suppose S 2 ≥K S 1 and R2 + S 2 ≥K R1 + S 1, then

ρ(W1) ≤ ρ(W2).

Corollary 3.6. Let A be K-monotone matrix, the splittings A = P1 − R1 − S 1 = P2 − R2 − S 2 be
K-nonnegative and convergent. Suppose S 2 ≥K S 1 and R2 ≥K R1, then

ρ(W1) ≤ ρ(W2).

Corollary 3.5 and 3.6 are just Theorem 2 and Corollary 1 in [19], respectively. In summary,
Theorem 3.1 extends some results in [16] and [19].
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In what follows, taking the inverses of P1 and P2 into account, we will derive another comparison
theorem. Note that for i = 1, 2,

M−1
i =

(
P−1

i − P−1
i S i

0 I

)
.

Hence, M−1
1 ≥K M

−1
2 if P−1

1 ≥K P−1
2 and P−1

1 S 1 ≤K P−1
2 S 2. If we assume A1 ≥K A2 additionally, then

the conditions of [9, Theorem 3.15] are satisfied. Therefore, from [9, Theorem 3.15], we have the
following comparison result.

Theorem 3.7. Let A1 and A2 be K-monotone matrices, the splittings (3.1) be K-nonnegative and
convergent. Suppose A1 ≥K A2, P−1

1 ≥K P−1
2 and P−1

1 S 1 ≤K P−1
2 S 2, then

ρ(W1) ≤ ρ(W2).

If we turn our attention to the particular proper cone K = Rn
+, then following conclusion is a direct

consequence of Theorem 3.7.

Corollary 3.8. Let A1 and A2 be monotone matrices, the splittings (3.1) be nonnegative and convergent.
Suppose A1 ≥ A2, P−1

1 ≥ P−1
2 and P−1

1 S 1 ≤ P−1
2 S 2, then

ρ(W1) ≤ ρ(W2).

Moreover, if we consider the different nonnegative double splittings of one matrix A, then from
Theorem 3.7, Corollary 3.8, the following corollaries are obtained.

Corollary 3.9. Let A be K-monotone matrix, the splittings A = P1 − R1 − S 1 = P2 − R2 − S 2 be
K-nonnegative and convergent. Suppose P−1

1 ≥K P−1
2 and P−1

1 S 1 ≤K P−1
2 S 2, then

ρ(W1) ≤ ρ(W2).

Remark 3.10. Corollary 3.9 extends [7, Theorem 3.1 (ii)] and [7, Theorem 3.3 (ii)].

Corollary 3.11. Let A be monotone matrices, the splittings A = P1 − R1 − S 1 = P2 − R2 − S 2 be
nonnegative and convergent. Suppose P−1

1 ≥ P−1
2 and P−1

1 S 1 ≤ P−1
2 S 2, then

ρ(W1) ≤ ρ(W2).

Remark 3.12. We assume in Corollary 3.11 that the splittings A = P1 − R1 − S 1 = P2 − R2 − S 2 be
nonnegative and convergent, while it assumed that A = P1 − R1 − S 1 be regular, A = P2 − R2 − S 2 be
nonegative and both be convergent in [16, Theorem 3.9]. So Corollary 3.11 is a new comparison results
for different nonnegative double splittings of one monotone matrix, which has weaker conditions than
Theorem 3.9 in [16].

The regular splitting A = P1 − R1 − S 1 is nonnegative, but not vice versa. The following example
shows that the inequality ρ(W1) ≤ ρ(W2) holds for nonnegative splittings A = P1−R1−S 1 = P2−R2−S 2

of one monotone matrix A instead of the regular splitting A = P1−R1−S 1 and the nonnegative splitting
A = P2 − R2 − S 2.
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Example 3.13. Let the monotone matrix

A =

(
4 − 2
−2 5

)
be splitted as A = P1 − R1 − S 1 = P2 − R2 − S 2 with

P1 =

(
5 0
1 6

)
, R1 =

(
1 1
2 3

4

)
, S 1 =

(
0 1
1 1

4

)
and

P2 =

(
5 0
2 6

)
, R2 =

(
1 1
2 1

2

)
, S 2 =

(
0 1
2 1

2

)
.

Some calculations yield

A−1 =

( 5
16

1
8

1
8

1
4

)
, P−1

1 =

( 1
5 0
− 1

30
1
6

)
and P−1

2 =

( 1
5 0
− 1

15
1
6

)
.

It should be noted that both splittings A = P1 − R1 − S 1 = P2 − R2 − S 2 are nonnegative splittings, not
regular splittings. It is easy to see that

P−1
1 S 1 =

(
0 1

5
1
6

1
120

)
≤

(
0 1

5
1
3

1
60

)
= P−1

2 S 2.

It follows from Corollary 3.11 that ρ(W1) ≤ ρ(W2). In fact, we have

ρ(W1) = 0.6751 < 0.7172 = ρ(W2).

4. Conclusions

In this paper, we established the comparison results for two K-nonnegative double splittings of
different K-monotone matrices, the obtained results generalized the corresponding results in [7,16,19].
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