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Abstract: In this paper, we focus on the finite-time and fixed-time stabilization of inertial memristive
Cohen-Grossberg neural networks. To cope with the effect caused by inertial (second-order) term,
most of the previous literature use the variable translation to reduce the order. Different from that, by
directly designing a Lyapunov functional and feedback controller, a novel non-reduced order method is
proposed in this paper to solve the finite-time (fixed-time) stabilization problem of inertial memristive
Cohen-Grossberg neural networks. Two kinds of time delays are considered in our network model,
novel criteria are then derived for both cases. Lastly, numerical examples are given to verify the
validity of the theoretical results.
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1. Introduction

Recently, neural networks (NNs) has received considerable attention from various fields of
engineering and science, including secure communication, brain science and pattern recognition. As
we know, Cohen-Grossberg NNs is a well-known network model, many famous networks like
Hopfield NNs and Cellular NNs can be regarded as its special case. Since it was first proposed in
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1983 [1], Cohen-Grossberg NNs has received increasing attention from different areas, such as
neurobiology, pattern recognition and parallel computation. To better understand the application of
Cohen-Grossberg NNs, the dynamical behavior of this network need to be further studied [2–5].

The second-order term in NNs is called inertial term. Physically, it represents the inductance in
a neural circuit system [6, 7]. It is known that, the inertial NNs have strong backgrounds from both
biology and engineering [8, 9]. The inertial term can arouse more complicated dynamical behavior to
the systems, like chaos and bifurcations. Recently, the dynamical behavior of inertial NNs has become
a hot topic both in theory and applications.

To cope with the effect caused by inertial (second-order) term, most of the previous literature use the
variable translation to reduce the second-order system to first-order system. However, this approach
may increase the system’s dimension and add the complexity of analysis process. Due to this great
shortage, it is necessary to propose a non-reduced order method to deal with the second-order system
directly and some results have come out recently [10–13]. In [10], the asymptotic stabilization of
inertial memristive NNs with mixed time delays is explored by non-reduced order method. In [12], by
proposing a direct analysis method, the asymptotic stabilization of Cohen-Grossberg inertial NNs is
investigated. In [13], a novel criteria is derived for global stabilization of delayed inertial MNNs, both
feedback control and adaptive control are considered. However, these investigations only focus on the
asymptotic stabilization, the corresponding results on finite-time or fixed-time stabilization have not
been reported yet.

Memristor is considered as the fourth fundamental circuit element, which can memorize the passed
amount of electronics [14, 15]. Due to the function of memory, the memristor can be used to emulate
the neural synapses with better performance than normal resistors [16–20]. Thus, by introducing the
memristor into NNs, the memristive NNs (MNNs) is formulated. Recently, the research of dynamical
behavior of MNNs has attracted various attention [21–26]. As we concern, the combination of inertial
term and memristive connections can widen the application scope of our model.

In recent decades, a great many literatures have been published on asymptotic and exponential
stabilization [24–28]. However, the convergence time of asymptotic stability tend to infinity, owing to
the limited life span of engineering machines, the asymptotic stability is invalid for some applications.
Hence, to overcome this shortage, the issue of finite-time stability is introduced, in which the system
state is required to converge to zero in finite time. Also, the finite-time control shows strong
robustness and fast convergence rate [29–34]. However, the settling time of finite-time control is
dependent on initial information of system, which may be difficult to obtain some times. To overcome
such shortage, the concept of fixed-time control is proposed later [36], in which the settling time can
be computed without the knowledge of initial condition. Hence, fixed-time control shows great
advantage among various areas [37–42]. As we considered, there are still no results on finite-time
(fixed-time) stabilization of inertial Cohen-Grossberg NNs by non-reduced order approach. Thus, our
research is novel and has a good application prospect.

Owing to the finite switching rate of amplifier, time delay is an unavoidable phenomenon in signal
transmission and information processing. Due to the parallel pathways in NNs, there exists another
type of time delay named distributed time delay. It is known that, mixed time delays can cause
oscillation and instability to systems [25, 26, 31]. Thus, the stabilization of NNs with mixed time
delays is a meaningful topic and deserves further discussion.

The main contribution of this work is as follows.
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1) Different from the reduced-order method in [37,38], this paper uses a non-reduced order method
to cope with the second-order Cohen-Grossberg neural networks. Novel criteria on finite-time (fixed-
time) stabilization of inertial Cohen-Grossberg NNs are derived.

2) Two types of time delays are considered in this work: the time-varying delays and mixed time
delays. To cope with such time delays, different types of feedback controllers and Lyapunov functionals
are designed to solve the problem. Moreover, the memristive connections are taken into the network
model, which gives a better application prospect.

3) The non-reduced order approach has been used to solve the asymptotic stabilization of inertial
NNs in many previous literature. However, the finite-time or fixed-time stabilization problem has not
been investigated by this approach yet. In this work, we extend the asymptotic stabilization to fixed-
time stabilization by designing novel control schemes.

The contents of our work is as follows. In part 2, the preliminaries are introduced. The main results
are given in part 3. Simulations are given to demonstrate our theorem in part 4. At last, the conclusion
is achieved in part 5.

Notations. In this work, R denotes the real field. For any vector χ = (χ1, · · · , χn)T ∈ Rn, it is

noted that |χ| = (|χ1|, · · · , |χn|)T . The vector norm is defined as ‖χ‖1 =
n∑

q=1
|χq|. sgn(·) denotes the sign

function. C(1)([−τ, 0],Rn) denotes the family of continuous functions from [−τ, 0] to Rn.

2. Preliminaries

The model of inertial memristive Cohen-Grossberg NNs is as follows:

ẍi(t) = − di ẋi(t) − ci(xi(t))[ki(xi(t)) −
n∑

j=1

ai j(xi(t)) f j(x j(t))

−

n∑
j=1

bi j(xi(t))g j(x j(t − τ(t)))] + ui(t) (2.1)

where i = 1, · · · , n; xi(t) ∈ R is the state value of ith neuron. f j(x j(·)), g j(x j(·)) ∈ R denote the
activation function satisfying that f j(0) = g j(0) = 0. ci(xi(t)) is the amplification function. ki(xi(t)) is
the behaved function of the ith node satisfying ki(0) = 0. ai j(xi(t)) and bi j(xi(t)) represent the memristor
connection weights. ui(t) is the control input to achieve the stabilization goal. The time delay τ(t)
satisfy τ̇(t) ≤ ρ < 1 and 0 ≤ τ(t) < τ, ρ, τ are positive numbers. The initial condition of system
(2.1) is taken as xi(s) = φi(s),−τ ≤ s ≤ 0. According to the Kirchhoff’s current law, the memristive
connections are defined as:

ai j(xi(t)) =

{
âi j, |xi(t)| ≤ Ti,

ǎi j, |xi(t)| > Ti,

bi j(xi(t)) =

{
b̂i j, |xi(t)| ≤ Ti,

b̌i j, |xi(t)| > Ti,

(2.2)

where the switching jump Ti > 0, âi j, ǎi j, b̂i j, b̌i j are known constants.

Remark 1. From the characteristic of memristors, the connection weights ai j(xi(t)), bi j(xi(t)) are state-
dependent switched according to the state xi(t). Obviously, the righthand of Eq (2.1) is discontinuous.
Hence, the solution is in the sense of Filippov.
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Definition 1. ( [24]) Suppose E ⊆ Rn, then x 7→ F(x) is called a set-valued map from E 7→ Rn, if for
each point x ∈ E, there exists a nonempty set F(x) ⊆ Rn. A set-valued map F with nonempty values
is said to be upper semicontinuous at x0 ∈ E, if for any open set N containing F(x0), there exists a
neighbourhood M of x0 such that F(M) ⊆ N. The map F(x) is said to have a closed image if for each
x ∈ E, F(x) is closed.

Definition 2. ( [24]) For the system dx/dt = f (t, x), x ∈ Rn, with discontinuous right-hand sides, a
set-valued map is defined as

F(t, x) = ∩δ>0 ∩µ(N)=0 co[ f (B(x, δ)\N)],

where co[E] is the closure of the convex hull of set E, B(x, δ) = {y : ‖y − x‖ ≤ δ}, and µ(N) is the
Lebesgue measure of set N. A solution in Filippov’s sense of the Cauchy problem for this system with
initial condition x(0) = x0 is an absolutely continuous function x(t), t ∈ [0,T ], which satisfies the
differential inclusion

dx
dt
∈ F(t, x), t ∈ [0,T ].

Definition 3. [29] If there exists positive constant T ∗ that depends (or not depend) on initial condition
of system (2.1), such that

lim
t→T ∗
‖x(t)‖ = 0, and ‖x(t)‖ = 0,∀t ≥ T ∗

Then, the system (2.1) is said to achieve finite-time (or fixed-time) stabilization under control input
ui(t).

Lemma 1. [29] Assume that the function V(t) is continuous and nonnegative, if there is positive
constant q1 such that

V̇(t) ≤ −q1Vα(t) for t ∈ [t0,+∞) (2.3)

for some 0 < α < 1. Then, V(t) = 0 for all t ≥ T0, and the settling time is

T0 =
V1−α(t0)

q1(1 − α)

Lemma 2. [36] Assume that function V(t) is continuous and nonnegative, if there are positive
constants q1 and q2 such that

V̇(t) ≤ −q1Vα(t) − q2Vβ(t) for t ∈ [t0,+∞) (2.4)

for some 0 < α < 1, β > 1. Then, V(t) = 0 for all t ≥ Tmax, and the settling time is

Tmax =
1

q1(1 − α)
+

1
q2(β − 1)

Lemma 3. For constants x1, · · · , xn ≥ 0, 0 < p < 1, q > 1, the following conditions hold.

n∑
i=1

xp
i ≥ (

n∑
i=1

xi)p,

n∑
i=1

xq
i ≥ n1−q(

n∑
i=1

xi)q. (2.5)
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3. Main results

Assumption 1. Suppose there exists positive constants li, hi such that for any x, y ∈ R

| fi(x) − fi(y)| ≤ li|x − y|,

|gi(x) − gi(y)| ≤ hi|x − y|

Assumption 2. Suppose there exists constants 0 < ci ≤ c̄i and 0 < ki ≤ k̄i such that for any x ∈ R,

ci ≤ ci(x) ≤ c̄i, ki ≤ k̇i(x) ≤ k̄i

Remark 2. For convenience of discussion, we denote that: b̃i j = max{|b̂i j|, |b̌i j|}, ãi j = max{|âi j|, |ǎi j|}.

To achieve the finite-time(or fixed-time) stabilization of system (2.1), the following feedback
controller is designed.

ui(t) = − ξisgn(ẋi(t))|xi(t)| − ηi ẋi(t)
− k1isgn(ẋi(t))|xi(t)|α − k2isgn(ẋi(t))|xi(t)|β

− k3isgn(ẋi(t))|ẋi(t)|α − k4isgn(ẋi(t))|ẋi(t)|β

− k5isgn(ẋi(t))
n∑

j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)α

− k6isgn(ẋi(t))
n∑

j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β (3.1)

where α, β, ξi, ηi, k1i, k2i, k3i, k4i, k5i, k6i are positive constants.

Theorem 1. Under Assumption 1 and 2, if the following conditions hold:

ηi ≥ 1 − di

ξi ≥ c̄ik̄i +

n∑
j=1

c̄ jã jili +
1

1 − ρ

n∑
j=1

c̄ jb̃ jihi (3.2)

Then,
(1) When 0 < α < 1 and 0 < β < 1, the system (2.1) can reach finite-time stabilization under controller
(3.1), the settling time T1 is

T1 ≤ min{
V1−α(0)

q̃1(1 − α)
,

V1−β(0)
q̃2(1 − β)

} (3.3)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i}, q̃2 = mini∈{1,··· ,n}{k2i, k4i, k6i}.
(2) When 0 < α < 1 and β > 1, the system (2.1) can reach fixed-time stabilization under controller
(3.1), the settling time T2 is estimated as

T2 ≤
1

q̃1(1 − α)
+

1
q̃′2(β − 1)

(3.4)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i}, q̃
′

2 = (2n + n2)1−β mini∈{1,··· ,n}{k2i, k4i, k6i}.
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Proof. Constructing the Lyapunov functional

V(t) =

n∑
i=1

|xi(t)| +
n∑

i=1

|ẋi(t)| +
1

1 − ρ

n∑
i=1

n∑
j=1

c̄ib̃i jh j

∫ t

t−τ(t)
|x j(s)|ds (3.5)

Calculating the derivative along trajectory (2.1), we have

dV(t)
dt

=

n∑
i=1

sgn(xi(t))ẋi(t) +

n∑
i=1

sgn(ẋi(t))ẍi(t)

+
1

1 − ρ

n∑
i=1

n∑
j=1

c̄ib̃i jh j|x j(t)| −
n∑

i=1

n∑
j=1

c̄ib̃i jh j|x j(t − τ(t))|

≤

n∑
i=1

|ẋi(t)| +
n∑

i=1

sgn(ẋi(t))
{
− di ẋi(t) − ci(xi(t)) · [ki(xi(t))

−

n∑
i=1

ai j(xi(t)) f j(x j(t)) −
n∑

j=1

bi j(xi(t))g j(x j(t − τ(t)))]

− ξisgn(ẋi(t))|xi(t)| − ηi ẋi(t)
− k1isgn(ẋi(t))|xi(t)|α − k2isgn(ẋi(t))|xi(t)|β

− k3isgn(ẋi(t))|ẋi(t)|α − k4isgn(ẋi(t))|ẋi(t)|β

− k5isgn(ẋi(t))
n∑

j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)α

− k6isgn(ẋi(t))
n∑

j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β}

+
1

1 − ρ

n∑
i=1

n∑
j=1

c̄ib̃i jh j|x j(t)| −
n∑

i=1

n∑
j=1

c̄ib̃i jh j|x j(t − τ(t))| (3.6)

Then, it follows that

dV(t)
dt
≤

n∑
i=1

|ẋi(t)| +
n∑

i=1

{−di|ẋi(t)| + c̄ik̄i|xi(t)|

+

n∑
j=1

c̄iãi jl j|x j(t)| +
n∑

j=1

c̄ib̃i jh j|x j(t − τ(t))|

− ξi|xi(t)| − ηi|ẋi(t)| − k1i|xi(t)|α − k2i|xi(t)|β − k3i|ẋi(t)|α − k4i|ẋi(t)|β

− k5i

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)α − k6i

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β}

+
1

1 − ρ

n∑
i=1

n∑
j=1

c̄ib̃i jh j|x j(t)| −
n∑

i=1

n∑
j=1

c̄ib̃i jh j|x j(t − τ(t))| (3.7)
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After calculation, we have

dV(t)
dt
≤

n∑
i=1

{1 − di − ηi}|ẋi(t)| +
n∑

i=1

{c̄ik̄i − ξi +

n∑
j=1

c̄ jã jili +
1

1 − ρ

n∑
j=1

c̄ jb̃ jihi}|xi(t)|

+

n∑
i=1

{−k1i|xi(t)|α − k3i|ẋi(t)|α − k5i

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)α − k2i|xi(t)|β

− k4i|ẋi(t)|β − k6i

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β} (3.8)

Thus, it can be derived that

dV(t)
dt
≤ −

n∑
i=1

{k1i|xi(t)|α + k3i|ẋi(t)|α + k5i

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)α}

−

n∑
i=1

{k2i|xi(t)|β + k4i|ẋi(t)|β + k6i

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β} (3.9)

When 0 < α < 1, 0 < β < 1, According to Lemma 3, we have

−

n∑
i=1

{|xi(t)|α + |ẋi(t)|α +

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)α}

≤ −
{ n∑

i=1

{|xi(t)| + |ẋi(t)| +
n∑

j=1

c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds}

}α
= − Vα(t) (3.10)

−

n∑
i=1

{|xi(t)|β + |ẋi(t)|β +

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β}

≤ −
{ n∑

i=1

{|xi(t)| + |ẋi(t)| +
n∑

j=1

c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds}

}β
= − Vβ(t) (3.11)

Then, we have

dV(t)
dt
≤ − q̃1Vα(t) − q̃2Vβ(t) (3.12)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i}, q̃2 = mini∈{1,··· ,n}{k2i, k4i, k6i}. It can be achieved that V(t) = 0, t ≥
T1,T1 = min{ V1−α(0)

q̃1(1−α) ,
V1−β(0)
q̃2(1−β) }. Hence, system (2.1) is finite-time stabilized with settling time T1.

When 0 < α < 1, β > 1, according to Lemma 3, we have

−

n∑
i=1

{|xi(t)|β + |ẋi(t)|β +

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β}
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≤ − (2n + n2)1−β{

n∑
i=1

|xi(t)| +
n∑

i=1

|ẋi(t)| +
n∑

i=1

n∑
j=1

c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds}β

= − (2n + n2)1−βVβ(t) (3.13)

Then, we have

dV(t)
dt
≤ − q̃1Vα(t) − q̃

′

2Vβ(t) (3.14)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i}, q̃
′

2 = (2n + n2)1−β mini∈{1,··· ,n}{k2i, k4i, k6i}. Hence, we have V(t) =

0, t ≥ T2,T2 = 1
q̃1(1−α) + 1

q̃′2(β−1)
. Thus, the fixed-time stabilization of system (2.1) can be obtained under

feedback controller (3.1). The proof is finished.

Remark 3. The finite-time or fixed-time stabilization of second-order system has been investigated by
reduced-order method in some previous papers [32–34,37,38]. For example, in [32–34], the finite-time
synchronization of delayed inertial neural networks is investigated by integral inequality method and
maximum value approach. However, the above results are achieved by reduced order method, there
are still no results on finite-time (fixed-time) stabilization by non-reduced order method yet. Thus, the
research gap is filled in this work.

Next, we consider the inertial memristive Cohen-Grossberg NNs with mixed time delays:

ẍi(t) = − di ẋi(t) − ci(xi(t))[ki(xi(t)) −
n∑

j=1

ai j(xi(t)) f j(x j(t))

−

n∑
j=1

bi j(xi(t))g j(x j(t − τ(t)))

−

n∑
j=1

di j(xi(t))
∫ t

t−σ(t)
g j(x j(s))ds] + ui(t) (3.15)

the memristive weights are defined as:

ai j(xi(t)) =

{
âi j, |xi(t)| ≤ Ti,

ǎi j, |xi(t)| > Ti,

bi j(xi(t)) =

{
b̂i j, |xi(t)| ≤ Ti,

b̌i j, |xi(t)| > Ti,

di j(xi(t)) =

{
d̂i j, |xi(t)| ≤ Ti,

ďi j, |xi(t)| > Ti,

(3.16)

where the switching jump Ti > 0, âi j, ǎi j, b̂i j, b̌i j, d̂i j, ďi j are known constants. The initial condition of
system (3.15) is taken as xi(s) = φi(s),−τ ≤ s ≤ 0.

Assumption 3. Suppose there exists positive constants σ, σ̄ such that

σ(t) ≤ σ̄, σ̇(t) ≤ σ
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To achieve our control goal, the following feedback controller is proposed:

ui(t) = − αisgn(ẋi(t))|xi(t)| − βi ẋi(t)

− sgn(ẋi(t))
n∑

j=1

c̄ibi jh j|x j(t − τ(t))|

− k1isgn(ẋi(t))|xi(t)|α − k2isgn(ẋi(t))|xi(t)|β

− k3isgn(ẋi(t))|ẋi(t)|α − k4isgn(ẋi(t))|ẋi(t)|β

− k5isgn(ẋi(t))
n∑

j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)α

− k6isgn(ẋi(t))
n∑

j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β

− k7isgn(ẋi(t))
n∑

j=1

(
c̄id̃i jh j

1 − σ

∫ 0

−σ(t)

∫ t

t+θ
|x j(s)|ds)α

− k8isgn(ẋi(t))
n∑

j=1

(
c̄id̃i jh j

1 − σ

∫ 0

−σ(t)

∫ t

t+θ
|x j(s)|ds)β (3.17)

where ãi j = max{|âi j|, |ǎi j|}, b̃i j = max{|b̂i j|, |b̌i j|}, d̃i j = max{|d̂i j|, |ďi j|}.

Theorem 2. Under Assumption 1, 2 and 3, if the following conditions hold:

ηi ≥ 1 − di,

ξi ≥ c̄ik̄i +

n∑
j=1

c̄ jã jili +

n∑
j=1

c̄ jb̃ jihi

1 − ρ
+

n∑
j=1

c̄ jd̃ jihiσ̄

1 − σ
(3.18)

Then,
(1) When 0 < α < 1 and 0 < β < 1, the system (2.1) can reach finite-time stabilization under controller
(3.17), the settling time T1 is estimated as

T1 ≤ min{
V1−α(0)

q̃1(1 − α)
,

V1−β(0)
q̃2(1 − β)

} (3.19)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i, k7i}, q̃2 = mini∈{1,··· ,n}{k2i, k4i, k6i, k8i}.
(2) When 0 < α < 1 and β > 1, the system (2.1) can reach fixed-time stabilization under controller
(3.17), the settling time T2 is estimated as

T2 ≤
1

q̃1(1 − α)
+

1
q̃′2(β − 1)

(3.20)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i, k7i}, q̃
′

2 = (2n + 2n2)1−β mini∈{1,··· ,n}{k2i, k4i, k6i, k8i}.

Proof. Constructing the Lyapunov functional

V(t) =

n∑
i=1

|xi(t)| +
n∑

i=1

|ẋi(t)|
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+
1

1 − ρ

n∑
i=1

n∑
j=1

c̄ib̃i jh j

∫ t

t−τ(t)
|x j(s)|ds

+
1

1 − σ

n∑
i=1

n∑
j=1

c̄id̃i jh j

∫ 0

−σ(t)

∫ t

t+θ
|x j(s)|dsdθ (3.21)

Computing the derivative along trajectories (3.15), we have

V̇(t) =

n∑
i=1

sgn(xi(t))ẋi(t) +

n∑
i=1

sgn(ẋi(t))ẍi(t)

+
1

1 − ρ

n∑
i=1

n∑
j=1

c̄ib̃i jh j|x j(t)| −
n∑

i=1

n∑
j=1

c̄ib̃i jh j|x j(t − τ(t))|

+

n∑
i=1

n∑
j=1

c̄id̃i jh jσ̇(t)
1 − σ

∫ t

t−σ(t)
|x j(s)|ds +

n∑
i=1

n∑
j=1

c̄id̃i jh jσ(t)
1 − σ

|x j(t)|

−

n∑
i=1

n∑
j=1

c̄id̃i jh j

1 − σ

∫ 0

−σ(t)
|x j(t + θ)|dθ (3.22)

It is obvious that

n∑
i=1

n∑
j=1

c̄id̃i jh jσ̇(t)
1 − σ

∫ t

t−σ(t)
|x j(s)|ds −

n∑
i=1

n∑
j=1

c̄id̃i jh j

1 − σ

∫ 0

−σ(t)
|x j(t + θ)|dθ

= −

n∑
i=1

n∑
j=1

c̄id̃i jh j(1 − σ̇(t))
1 − σ

∫ t

t−σ(t)
|x j(s)|ds

≤ −

n∑
i=1

n∑
j=1

c̄id̃i jh j

∫ t

t−σ(t)
|x j(s)|ds (3.23)

Then, we have

V̇(t) ≤
n∑

i=1

{1 − di − ηi}|ẋi(t)| +
n∑

i=1

{c̄ik̄i − ξi

+

n∑
j=1

c̄ jã jili +

n∑
j=1

c̄ jb̃ jihi

1 − ρ
+

n∑
j=1

c̄ jd̃ jihiσ̄

1 − σ
}|xi(t)|

+

n∑
i=1

{−k1i|xi(t)|α − k3i|ẋi(t)|α

− k5i

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)α − k2i|xi(t)|β

− k4i|ẋi(t)|β − k6i

n∑
j=1

(
c̄ib̃i jh j

1 − ρ

∫ t

t−τ(t)
|x j(s)|ds)β}
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− k7i

n∑
j=1

(
c̄id̃i jh j

1 − σ

∫ 0

−σ(t)

∫ t

t+θ
|x j(s)|ds)α

− k8i

n∑
j=1

(
c̄id̃i jh j

1 − σ

∫ 0

−σ(t)

∫ t

t+θ
|x j(s)|ds)β (3.24)

Case 1: When 0 < α < 1 and 0 < β < 1,

V̇(t) ≤ − q̃1Vα(t) − q̃2Vβ(t) (3.25)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i, k7i}, q̃2 = mini∈{1,··· ,n}{k2i, k4i, k6i, k8i}.
Case 2: When 0 < α < 1 and β > 1,

V̇(t) ≤ − q̃1Vα(t) − q̃
′

2Vβ(t) (3.26)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i, k7i}, q̃
′

2 = (2n+2n2)1−β mini∈{1,··· ,n}{k2i, k4i, k6i, k8i}. Following the same
discussion in Theorem 1, the conclusion can be derived.

Remark 4. In this work, two types of time delays are considered. It is known that, mixed time delays
may cause oscillation and instability of NNs. This may arouse more complex dynamical behavior in
this network model. Moreover, the memristive connections is taken into our network, which gives a
better application prospect. Compared with the previous literature [12], the model is more general
and the results can be applied to wider application.

4. Numerical examples

To verify the validity of the theoretical results, some simulations are provided in this part. First, we
give the numerical example of Theorem 1.

Example 1. Consider the inertial memristive Cohen-Grossberg neural networks with 2 neurons as
below

ẍi(t) = − di ẋi(t) − ci(xi(t))[ki(xi(t)) −
n∑

j=1

ai j(xi(t)) f j(x j(t))

−

n∑
j=1

bi j(xi(t))g j(x j(t − τ(t)))] + ui(t), i = 1, 2, (4.1)

where d1 = d2 = 0.5, f1(v) = f2(v) = v, g1(v) = g2(v) = tanh(v), c1(v) = 0.8 + 0.4
v2+1 , c2(v) = 1.2 − 0.3

v2+1 ,
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k1(v) = 1.5v, k2(v) = 2v, τ(t) = 0.5 + 0.5sin(t). The memristive connections are as below:

a11(x1(t)) =

{
0.6, |x1(t)| ≤ 1,
0.4, |x1(t)| > 1,

a12(x1(t)) =

{
0.8, |x1(t)| ≤ 1,
0.6, |x1(t)| > 1,

a21(x2(t)) =

{
0.5, |x2(t)| ≤ 1,
0.4, |x2(t)| > 1,

a22(x2(t)) =

{
0.4, |x2(t)| ≤ 1,
0.5, |x2(t)| > 1,

b11(x1(t)) =

{
0.5, |x1(t)| ≤ 1,
0.2, |x1(t)| > 1,

b12(x1(t)) =

{
0.8, |x1(t)| ≤ 1,
0.5, |x1(t)| > 1,

b21(x2(t)) =

{
0.5, |x2(t)| ≤ 1,
0.2, |x2(t)| > 1,

b22(x2(t)) =

{
0.2, |x2(t)| ≤ 1,
0.1, |x2(t)| > 1,

(4.2)

It is not difficult to check that c1 = 0.8, c1 = 1.2, c2 = 0.9, c2 = 1.2. k1 = 1.5, k1 = 1.5, k2 = 2, k2 = 2,
l1 = l2 = 1, h1 = h2 = 1. Thus, the conditions in Assumption 1 and 2 are satisfied. Choose the
feedback control gains as ξ1 = 6, ξ2 = 6, ηi = 1, k1i = k2i = k3i = k4i = k5i = k6i = 1. Thus, the
condition in Theorem 1 is satisfied.

ηi ≥ 1 − di

ξi ≥ c̄ik̄i +

n∑
j=1

c̄ jã jili +
1

1 − ρ

n∑
j=1

c̄ jb̃ jihi (4.3)

Case 1: Let α = 0.5, β = 0.5. By case 1 of Theorem 1, the system (4.1) can reach finite-time
stabilization under control. The settling time is estimated as:

T1 ≤ min{
V1−α(0)

q̃1(1 − α)
,

V1−β(0)
q̃2(1 − β)

} (4.4)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i} = 1, q̃2 = mini∈{1,··· ,n}{k2i, k4i, k6i} = 1. Choose 5 random initial
values in interval [−0.8, 0.8], the state trajectories of system (4.1) is plotted in Figure 1. It is obvious
that the state trajectories converge to origin point in a finite time.
Case 2: Let α = 0.5, β = 1.5. By case 2 of Theorem 1, the system (4.1) can reach fixed-time stabilization
under control. The settling time is estimated as:

T2 ≤
1

q̃1(1 − α)
+

1
q̃′2(β − 1)

= 7.7 (4.5)

AIMS Mathematics Volume 6, Issue 7, 6915–6932.



6927

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i} = 1, q̃
′

2 = (2n + n2)1−β mini∈{1,··· ,n}{k2i, k4i, k6i} = 0.35. Choose 5
random initial values in interval [−0.8, 0.8], the state trajectories of system (4.1) is plotted in Figure 2.
Therefore, the validity of Theorem 1 is demonstrated.
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Figure 1. Stabilization of system (4.1) under finite-time controller.
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Figure 2. Stabilization of system (4.1) under fixed-time controller.

Secondly, we consider the case of Theorem 2.

Example 2. Consider the inertial memristive Cohen-Grossberg NNs with mixed time delays as below

ẍi(t) = − di ẋi(t) − ci(xi(t))[ki(xi(t)) −
n∑

j=1

ai j(xi(t)) f j(x j(t)) −
n∑

j=1

bi j(xi(t))g j(x j(t − τ(t)))

−

n∑
j=1

di j(xi(t))
∫ t

t−σ(t)
g j(x j(s))ds] + ui(t), i = 1, 2, (4.6)

where d1 = d2 = 0.5, f1(v) = f2(v) = v, g1(v) = g2(v) = tanh(v), c1(v) = 0.8 + 0.4
v2+1 , c2(v) = 1.2 − 0.3

v2+1 ,
k1(v) = 1.5v, k2(v) = 2v, τ(t) = 0.3 + 0.4sin(t), σ(t) = 0.6 + 0.4 cos(t), thus τ = 0.7, τ̇(t) ≤ ρ = 0.4 ≤

AIMS Mathematics Volume 6, Issue 7, 6915–6932.



6928

1, σ̄ = 1, σ = 0.4. The memristive connections are as below:

a11(x1(t)) =

{
0.6, |x1(t)| ≤ 1,
0.4, |x1(t)| > 1,

a12(x1(t)) =

{
0.8, |x1(t)| ≤ 1,
0.6, |x1(t)| > 1,

a21(x2(t)) =

{
0.5, |x2(t)| ≤ 1,
0.4, |x2(t)| > 1,

a22(x2(t)) =

{
0.4, |x2(t)| ≤ 1,
0.5, |x2(t)| > 1,

b11(x1(t)) =

{
0.5, |x1(t)| ≤ 1,
0.2, |x1(t)| > 1,

b12(x1(t)) =

{
0.8, |x1(t)| ≤ 1,
0.5, |x1(t)| > 1,

b21(x2(t)) =

{
0.5, |x2(t)| ≤ 1,
0.2, |x2(t)| > 1,

b22(x2(t)) =

{
0.2, |x2(t)| ≤ 1,
0.1, |x2(t)| > 1,

(4.7)

d11(x1(t)) =

{
0.7, |x1(t)| ≤ 1,
0.5, |x1(t)| > 1,

d12(x1(t)) =

{
0.8, |x1(t)| ≤ 1,
0.5, |x1(t)| > 1,

d21(x2(t)) =

{
0.6, |x2(t)| ≤ 1,
0.2, |x2(t)| > 1,

d22(x2(t)) =

{
0.2, |x2(t)| ≤ 1,
0.4, |x2(t)| > 1,

(4.8)

Choose the feedback control gains as ξ1 = ξ2 = 8.8, ηi = 1, k1i = k2i = k3i = k4i = k5i = k6i = k7i =

k8i = 1. Thus, the conditions in Theorem 2 are satisfied.

ηi ≥ 1 − di,

ξi ≥ c̄ik̄i +

n∑
j=1

c̄ jã jili +

n∑
j=1

c̄ jb̃ jihi

1 − ρ
+

n∑
j=1

c̄ jd̃ jihiσ̄

1 − σ
(4.9)

Case 1: Let α = 0.5, β = 0.5. By case 1 of Theorem 2, the system (4.6) can reach finite-time
stabilization. The settling time is estimated as:

T1 ≤ min{
V1−α(0)

q̃1(1 − α)
,

V1−β(0)
q̃2(1 − β)

} (4.10)

where q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i, k7i} = 1, q̃2 = mini∈{1,··· ,n}{k2i, k4i, k6i, k8i} = 1. Choose 5 random
initial values in interval [−0.6, 0.6], the state trajectories of system (4.6) is plotted in Figure 3.
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Case 2: Let α = 0.5, β = 1.5. By case 2 of Theorem 2, the system (4.6) can reach fixed-time
stabilization. The settling time is estimated as:

T2 ≤
1

q̃1(1 − α)
+

1
q̃′2(β − 1)

= 8.89 (4.11)

q̃1 = mini∈{1,··· ,n}{k1i, k3i, k5i, k7i} = 1, q̃
′

2 = (2n + 2n2)1−β mini∈{1,··· ,n}{k2i, k4i, k6i, k8i} = 0.29. Choose 5
random initial values in interval [−0.6, 0.6], the state trajectories of system (4.6) is plotted in Figure 4.
Thus, the validity of Theorem 2 is demonstrated.
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Figure 3. Stabilization of system (4.6) under finite-time controller.
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Figure 4. Stabilization of system (4.6) under fixed-time controller.

5. Conclusion

By designing novel control scheme and constructing Lyapunov functional, this work proposed a
non-reduced order method to deal with the finite-time (fixed-time) stabilization problem of second-
order memristive Cohen-Grossberg neural networks. Compared with the traditional reduced-order
approach, the method adopted in this paper can simplify the analysis process and solve the control
problem of second-order system directly. Two kinds of time delays: time-varying delays and mixed
time delays are taken into consideration. Then, two criteria are derived to ensure the finite-time (fixed-
time) stabilization of inertial Cohen-Grossberg NNs. Lastly, simulations are presented to verify the
validity of our results.

AIMS Mathematics Volume 6, Issue 7, 6915–6932.



6930

In our future study, we will try to extend our results to complex-valued and quaternion-valued field.
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