
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(7): 6898–6914.
DOI: 10.3934/math.2021404
Received: 13 December 2020
Accepted: 15 April 2021
Published: 22 April 2021

Research article

Global existence and blow-up of solutions for logarithmic Klein-Gordon
equation

Yaojun Ye
∗

and Lanlan Li

Department of Mathematics and Information Science, Zhejiang University of Science and
Technology, Hangzhou 310023, China

* Correspondence: Email: yjye2013@163.com; Tel: +86057185070711; Fax: +86057185070707.

Abstract: This arcitle concerns the initial-boundary value problem for a class of Klein-Gordon
equation with logarithmic nonlinearity. By using Galerkin method and compactness criterion, we
prove the existence of global solutions to this problem. Meanwhile, the blow-up of solutions in the
unstable set is also obtained.

Keywords: Klein-Gordon equation; logarithmic nonlinearity; initial-boundary value problem; global
solutions; blow-up
Mathematics Subject Classification: 35L05, 35L10, 35B40

1. Introduction

In this paper, we consider the following problem

utt − ∆u + u = u log |u|, (x, t) ∈ Ω × R+, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω × R+, (1.3)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω.
The model equation (1.1) arises in logarithmic quantum mechanics and is applied to nuclear physics,

optics and geophysics [1–5]. P. Gorka [6] dealt with the equation

utt − uxx = −u + εu log |u|2, (x, t) ∈ O × (0,T ) (1.4)

with initial datum
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ O (1.5)
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and boundary value condition
u(x, t) = 0, (x, t) ∈ ∂O × (0,T ), (1.6)

where O = [a, b] ⊂ R1, ε ∈ [0, 1]. By applying the Galerkin method, logarithmic Sobolev inequality
and compactness theorem, he established the global weak solutions of the problem (1.4)–(1.6). K.
Bartkowski and P. Korka [7] showed the classical solutions and weak solutions to the Cauchy problem
of Eq (1.4) for O = R1. In [8], T. Cazenave and A. Haraux investigated the local and global solutions
for the Cauchy problem of the logarithmic wave equation utt − ∆u = u log |u|.

For the following nonlinear Klein-Gordon equation

utt − ∆u + m2u = |u|p−2u, x ∈ Ω, t > 0, (1.7)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.8)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (1.9)

For n ≥ 3, P. Brenner [9] studied Lp−decay and scattering properties for the Cauchy problem of the
Eq (1.7). As n = 1 and 2, K. Nakanishi [10] showed that the scattering operators for Eq (1.7) are
well-defined in whole energy space in R1+n with p > 1 + 4

n . Under the condition of small energy data,
such results were known for n ≥ 3 [11–13].

As m = 0, for sufficiently large initial data, the blow-up results of the problem (1.7)–(1.9) in finite
time was proved by H. A. Levine [14] and J. Ball [15]. Furthermore, Y. C. Liu [16], L. E. Payne
and D. H. Sattinger [17] and D. H. Sattinger [18] obtained the results of the global existence and
nonexistence of weak solutions for the problem (1.7)–(1.9) by establishing the method of potential
wells. Also in [16, 19], the authors gave a threshold result of solutions and obtained the vacuum
isolating of solutions.

At last we should mention that the logarithmic heat equation was studied by H. Chen and S. Y.
Tian [20] and H. Chen, P. Luo and G. W. Liu [21]. Moreover, there were also many researches on the
logarithmic Schrödinger equation [22–25].

In this paper, by applying Galerkin method and compactness criterion, we prove the global existence
of the problem (1.1)–(1.3). Furthermore, in the sense of L2 norm, the blow-up result for this problem
is obtained by the concavity method.

2. Preliminaries

2.1. Some lemmas

For the applications through this paper, we list up some known lemmas.

Definition 2.1 If

u ∈ C([0,T ],H1
0(Ω)) , ut ∈ C([0,T ], L2(Ω)) , utt ∈ C([0,T ],H−1(Ω))

satisfies ∫
Ω

uttϕdx +

∫
Ω

∇u∇ϕdx +

∫
Ω

uϕdx =

∫
Ω

u log |u|ϕdx, ϕ ∈ H1
0(Ω).

Then the function u is called a weak solution of (1.1)–(1.3) on [0,T ].
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Lemma 2.1 Assume that 2 ≤ r < +∞, n ≤ 2 and 2 ≤ r ≤ 2n
n−2 , n > 2. Then

‖u‖r ≤ C‖∇u‖, ∀u ∈ H1
0(Ω),

where C > 0 is a constant depending on Ω and r.
Lemma 2.2 ( [20, 21, 26]) If u ∈ H1

0(Ω), then for each a > 0, one has the inequality∫
Ω

|u|2 log |u|dx ≤ ‖u‖2 log ‖u‖ +
a2

2π
‖∇u‖2 −

n
2

(1 + log a)‖u‖2.

Lemma 2.3 Let u(t) be a solution of the problem (1.1)–(1.3), then the energy E(t) is conservation.
Namely, E(t) = E(0), ∀t > 0, where

E(t) =
1
2

(‖ut‖
2 + ‖∇u‖2 −

∫
Ω

u2 log |u|dx) +
3
4
‖u‖2, (2.1)

for u ∈ H1
0(Ω), t ≥ 0 and

E(0) =
1
2

(‖u1‖
2 + ‖∇u0‖

2 −

∫
Ω

u2
0 log |u0|dx) +

3
4
‖u0‖

2 (2.2)

is the initial total energy.
Lemma 2.4[27] Let X be a Banach space, if f ∈ Lp(0,T ; X), ∂ f

∂t ∈ Lp(0,T ; X), then f is a continuous
injection from [0,T ] on to X when the value is transformed in the set of measure zero in [0,T ].

Lemma 2.5[28] Let un(x) be a bounded sequence in Lp(Ω), 1 ≤ p < +∞ such that un almost
everywhere converges to u. Then u ∈ Lp(Ω) and un weakly converges in Lp(Ω) to u, where Ω ⊂ Rn is a
bounded domain.

The local existence result of the problem (1.1)–(1.3) is described as follows. For its detailed proof
process, see references [31–33].

Theorem 2.1 (Local existence) Let u0 ∈ H1
0(Ω), u1 ∈ L2(Ω). Then there exists T > 0 such that the

problem (1.1)–(1.3) has a unique local solution u(t) satisfying

u ∈ C([0,T ); H1
0(Ω)), ut ∈ C([0,T ); L2(Ω)).

2.2. Potential wells

At first, we introduce some useful functionals

J(u) =
1
2

(‖∇u‖2 −
∫

Ω

u2 log |u|dx) +
3
4
‖u‖2, (2.3)

K(u) = ‖∇u‖2 + ‖u‖2 −
∫

Ω

u2 log |u|dx. (2.4)

By (2.1), (2.3) and (2.4), we have

J(u) =
1
2
K(u) +

1
4
‖u‖2, E(t) =

1
2
‖ut‖

2 +J(u), (2.5)

for u ∈ H1
0(Ω).
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As in [17], the potential well depth is defined as

d = inf{sup
λ≥0
J(λu) : u ∈ H1

0(Ω)/{0}}. (2.6)

Now, we define the Nehari manifold ( [29, 30]) by

N = {u ∈ H1
0(Ω)/{0}; K(u) = 0}.

The stable setW and the unstable setU can be defined respectively by

W = {u ∈ H1
0(Ω) : K(u) > 0, J(u) < d} ∩ {0},

and
U = {u ∈ H1

0(Ω) : K(u) < 0, J(u) < d}.

It is to see that the potential well depth d may also be described as

d = inf
u∈N
J(u). (2.7)

Lemma 2.6 Let u ∈ H1
0(Ω) and ‖u‖ , 0, then we have

(i) lim
λ→0+
J(λu) = 0, lim

λ→+∞
J(λu) = −∞;

(ii) K(λu) = λ
d

dλ
J(λu)


> 0, 0 < λ < λ∗,

= 0, λ = λ∗,

< 0, λ∗ < λ < +∞,

(2.8)

where

λ∗ = exp
(‖∇u‖2 + ‖u‖2 −

∫
Ω

u2 log |u|dx

‖u‖2

)
.

Proof. (i) By lim
λ→0+

λ2 log λ = 0, lim
λ→+∞

log λ = +∞ and

J(λu) =
λ2

2
‖∇u‖2 +

3
4
λ2‖u‖2 −

1
2

(λ2 log λ)‖u‖2 −
1
2
λ2

∫
Ω

u2 log |u|dx,

we get
lim
λ→0+
J(λu) = 0, lim

λ→+∞
J(λu) = −∞.

(ii) By direct calculations, we obtain

d
dλ
J(λu) = λ

[
‖∇u‖2 + ‖u‖2 −

∫
Ω

u2 log |u|dx
]
− (λ log λ)‖u‖2. (2.9)

Let
d

dλ
J(λu) = 0, then we deduce that

λ∗ = exp
(‖∇u‖2 + ‖u‖2 −

∫
Ω

u2 log |u|dx

‖u‖2

)
.
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From (3.2), we have

K(λu) = λ2[‖∇u‖2 + ‖u‖2 −
∫

Ω

u2 log |u|dx] − (λ2 log λ)‖u‖2. (2.10)

By (2.9) and (2.10), the equality (2.8) is valid. �

Lemma 2.7 If u ∈ H1
0(Ω), then

d =
1
4

(
√

2π)nen+2. (2.11)

Proof. By Lemma 2.2, we have

K(u) = ‖∇u‖2 −
∫

Ω

u2 log |u|dx + ‖u‖2

≥

(
1 −

a2

2π

)
‖∇u‖2 + [1 +

n
2

(1 + log a) − log ‖u‖] · ‖u‖2.
(2.12)

By taking a =
√

2π, we obtain from (2.12) that

K(u) ≥ [1 +
n
2

(1 + log a) − log ‖u‖] · ‖u‖2. (2.13)

Combining Lemma 2.6 and (2.5) yields that

sup
λ≥0
J(λu) = J(λ∗u) =

1
2
K(λ∗u) +

1
4
‖λ∗u‖2. (2.14)

We receive from (2.13) and Lemma 2.6 that

0 = K(λ∗u) ≥ [1 +
n
2

(1 + log a) − log ‖λ∗u‖] · ‖λ∗u‖2,

then
‖λ∗u‖2 ≥ anen+2. (2.15)

It follows from(2.14) and (2.15) that

sup
λ≥0
J(λu) ≥

1
4

anen+2. (2.16)

By (2.6) and (3.16), we have that d = 1
4 (
√

2π)nen+2. �

In order to further study the problem (1.1)–(1.3), for 0 < ε < 1 and u ∈ H1
0(Ω), we define some

functionals as follows
Jε(u) =

ε

2
‖∇u‖2 −

1
2

∫
Ω

u2 log |u|dx +
3
4
‖u‖2, (2.17)

Kε(u) = ε‖∇u‖2 + ‖u‖2 −
∫

Ω

u2 log |u|dx. (2.18)

Let
Nε(u) = {u ∈ H1

0(Ω); Jε(u) = 0, ‖∇u‖ , 0}, (2.19)
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then we define d(ε) as
d(ε) = inf

u∈Nε(u)
J(u). (2.20)

Proposition 2.1 If d(ε) is defined by (2.20), then

d(ε) = 2λ1de(1 − ε)ε
n
2 , (2.21)

where λ1 is the first eigenvalue of the following boundary value problem
−∆u = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2.22)

Proof. By u ∈ Nε(u), we get

J(u) =
1 − ε

2
‖∇u‖2 +Jε(u) =

1 − ε
2
‖∇u‖2. (2.23)

From (2.17) and Lemma 2.2 that

ε‖∇u‖2 =

∫
Ω

u2 log |u|dx −
3
2
‖u‖2

≤
a2

2π
‖∇u‖2 + ‖u‖2 log ‖u‖ −

n
2

(1 + log a)‖u‖2 −
3
2
‖u‖2.

(2.24)

By taking a2 = 2πε in (2.24), we obtain

[log ‖u‖2 − n(1 + log a) − 3]‖u‖2 ≥ 0,

which implies that
‖u‖2 ≥ anen+3.

Since the eigenvalue λ1 satisfies the problem (2.22), so we gain

‖∇u‖2 ≥ λ1anen+3 = 4λ1deε
n
2 . (2.25)

It follows from (2.23) and (2.25) that

J(u) ≥ 2λ1de(1 − ε)ε
n
2 .

Thus, by (2.20), we have
d(ε) = 2λ1de(1 − ε)ε

n
2 .

�

Proposition 2.2 As a function of ε, d(ε) have the following properties for ε ∈ [0, 1]:
(a) d(0) = d(1) = 0.
(b) d(ε) is increasing on [0, ε0] and decreasing on [ε0, 1]. Thus, d(ε) gets the maximum at ε0 = n

n+2 ,
and d(ε0) = 4λ1de

n+2 ( n
n+2 )

n
2 .

(c) For ∀h ∈ (0, d(ε0)), the equation d(ε) = h has two roots ε1 and ε2 in the interval (0, ε0) and
(ε0, 1), respectively.
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Proof. (a) is easy to be proved. Here we omit the proof of it.
(b) By calculation, we have

d′(ε) = 2λ1de
[
− ε

n
2 +

n
2

(1 − ε)ε
n
2−1

]
= λ1deε

n
2−1[n − (n + 2)ε]. (2.26)

From d′(ε) = 0, we conclude that ε0 = n
n+2 . In addition, by (2.26), we get d′(ε) > 0 on (0, ε0) and

d′(ε) < 0 on (ε0, 1). Therefore, d(ε) takes the maximum value at ε0 = n
n+2 , and

d(ε0) = 2λ1de(1 − ε0)ε
n
2
0 =

4λ1de
n + 2

(
n

n + 2
)

n
2 .

(c) Let f (ε) = d(ε) − h, then f (0) = −h < 0, f (ε0) = d(ε0) − h > 0, f (1) = −h < 0. According
to the continuity of function f (ε) on interval [0, 1], the equation f (ε) = 0 i.e. d(ε) = h has two roots
ε1 ∈ (0, δ0) and ε2 ∈ (δ0, 1). �

Proposition 2.3 Let r(ε) = 4λ1deε
n
2 , then

(1) If J(u) ≤ d(ε), then 0 < ‖∇u‖2 ≤ r(ε) if only and if Jε(u) ≥ 0.
(2) If Jε(u) < 0, then ‖∇u‖2 > r(ε).

Proof. (1) For a2 = 2πε, we have

Jε(u) =
ε

2
‖∇u‖2 −

1
2

∫
Ω

u2 log |u|dx +
3
4
‖u‖2

≥

(
ε

2
−

a2

4π

)
‖∇u‖2 −

1
2
‖u‖2 log ‖u‖ +

n
4

(1 + log a)‖u‖2 +
3
4
‖u‖2

=
1
4
‖u‖2[−2 log ‖u‖ + n(1 + log a) + 3]

=
1
4
‖u‖2 log

λ1anen+3

‖∇u‖2
=

1
4
‖u‖2 log

4λ1deε
n
2

‖∇u‖2
.

(2.27)

By 0 < ‖∇u‖2 ≤ r(ε), we see that log 4λ1deε
n
2

‖∇u‖2 ≥ 0. Therefore, we conclude from (2.27) that Jε(u) ≥ 0.
If Jε(u) ≥ 0, then from (2.20) and

J(u) =
1 − ε

2
‖∇u‖2 +Jε(u) ≤ d(ε), (2.28)

we have
1 − ε

2
‖∇u‖2 ≤ 2λ1de(1 − ε)ε

n
2 ,

which implies that ‖∇u‖2 ≤ r(ε).
(b) By (2.24) and Jε(u) < 0, we have log 4λ1deε

n
2

‖∇u‖2 < 0, which implies that ‖∇u‖2 > r(ε). �

On the basis of Proposition 2.1 and Proposition 2.2, we define a family of potential wells by

Wε = {u ∈ H1
0(Ω) : Jε(u) > 0, J(u) < d(ε)} ∩ {0},

and
Uε = {u ∈ H1

0(Ω) : Jε(u) < 0, J(u) < d(ε)},
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for ε ∈ (0, 1).
Remark From Jε(u) > 0 and

J(u) =
1 − ε

2
‖∇u‖2 +Jε(u),

we have J(u) > 0.

3. Global existence of solutions

In this section, by applying Galerkin method and the compactness principle, we study the global
solutions of the problem (1.1)–(1.3).

Theorem 3.1 If u0 ∈ W, u1 ∈ L2(Ω) satisfy 0 < E(0) < d, then the problem (1.1)–(1.3) admits a
global solution u(x, t) such that u(x, t) ∈ L∞([0,+∞); H1

0(Ω)), ut(x, t) ∈ L∞([0,+∞); L2(Ω)).

Proof. Let {ω j}
∞
j=1 be a basis for H1

0(Ω). We are going to find out the approximate solution um(t) in

the form um(t) =

m∑
j=1

g jm(t)ω j with g jm(t) ∈ C2[0,T ], ∀T > 0, where the unknown functions g jm(t) are

determined by the following ordinary differential equation

(umtt(t), ω j) + (∇um(t),∇ω j) + (um(t), ω j) = (um(t) log |um(t)|, ω j), j = 1, 2, · · · ,m (3.1)

with initial data
um(0) = u0m, umt(0) = u1m. (3.2)

By the density of H1
0(Ω) in L2(Ω), there exist α jm and β jm, j = 1, 2, · · · ,m such that

u0m =

m∑
j=1

α jmω j → u0(x) strongly in H1
0(Ω), m→ ∞, (3.3)

u1m =

m∑
j=1

β jmω j → u1(x) strongly in L2(Ω), m→ ∞. (3.4)

By a Picard’s iteration method, there exists solution g jm(t) of the problem (3.1) and (3.2) in interval
[0, t1

m) for some t1
m ≤ T . From the uniformly boundedness of function g jm(t) and the extension theorem,

we can extend this solution to the whole interval [0,T ] for any given T > 0 by making use of the a
priori estimates below.

Multiplying both sides of (3.1) by g′jm(t) and summing with respect to j from 1 to m, and integrating
over [0, t], we have from (2.1) and (2.3) that

Em(t) =
1
2
‖umt(t)‖2 +J(um(t)) =

1
2
‖umt(0)‖2 +J(um(0)) = Em(0) < d. (3.5)

By (3.5), we can verify
um(t) ∈ W, ∀t ∈ [0,T ]. (3.6)

In fact, suppose that (3.6) is false and let τ be the smallest time for that um(τ) <W. Then in virtue of
the continuity of um(t), we see um(τ) ∈ ∂W. From the continuity J(u(t)) and K(u(t)) with respect to t,
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we have either J(um(τ)) = d or K(um(τ)) = 0. By (3.5), we get J(um(τ)) < d. So, the former case is
impossible. Assume that K(um(τ)) = 0 is valid, then um(τ) ∈ N . From (2.7), we obtain J(um(τ)) ≥ d
which is contradictive with (3.5). Therefore, the latter case is impossible as well.

We deduce from (2.5), (3.5) and (3.6) that

d > J(um(t)) =
1
4
‖um(t)‖2 +

1
2

K(um(t)) >
1
4
‖um(t)‖2, (3.7)

which implies that
‖um(t)‖2 < 4d. (3.8)

From (2.1), (3.5) and Lemma 2.2, we obtain

‖umt(t)‖2 + ‖∇um(t)‖2 +
3
2
‖um(t)‖2 ≤ 2d +

∫
Ω

u2
m(t) log |um(t)|dx

≤ 2d + ‖um‖
2 log ‖um(t)‖ +

a2

2π
‖∇um(t)‖2 −

n
2

(1 + log a)‖um(t)‖2.
(3.9)

Let a =
√
π, then we have from (3.8) and (3.9)

2‖umt(t)‖2 + ‖∇um(t)‖2 ≤ 4d + (log ‖um(t)‖2 − log(
√
πe)n − 3)‖um(t)‖2

≤ 4d[1 + log 4d − log(
√
π)nen+3] = 2nd log 2,

(3.10)

which implies
‖umt(t)‖ <

√
nd log 2, ‖∇um(t)‖ ≤

√
2nd log 2. (3.11)

We know that umtt(t) is uniformly bounded in L∞(0,T ; H−1(Ω)) by a standard discussion. Then, there
exists a function u(t) and a convergent subsequence of {uµ}, still denoted by {um}. As m → ∞, we
obtain

um → u weakly star in L∞(0,T ; H1
0(Ω)), (3.12)

umt → ut weakly star in L∞(0,T ; L2(Ω)), (3.13)

umtt → utt weakly star in L∞(0,T ; H−1(Ω)). (3.14)

From (3.12)–(3.14) and Aubin-Lions lemma, we have

um → u strongly in L2(0,T ; L2(Ω)), (3.15)

which implies
um → u a.e. in (0,T ) ×Ω. (3.16)

By (3.16), we can infer that

um log |um| → u log |u| a.e. in (0,T ) ×Ω. (3.17)
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Let Ω1 = {x ∈ Ω; |um(x)| ≤ 1} and Ω2 = {x ∈ Ω; |um(x)| > 1}, then by direct calculation, we get
from (3.11) ∫

Ω

|um(t) log |um(t)||2dx =

∫
Ω1

|um(t)|2(log |um(t)|)2dx

+

∫
Ω2

|um(t)|2(log |um(t)|)2dx

≤ e−2|Ω| +

(n − 2
2

)2 ∫
Ω2

|um(t)|
2n

n−2 dx

≤ e−2|Ω| +

(n − 2
2

)2

C
2n

n−2 ‖∇um(t)‖
2n

n−2

≤ e−2|Ω| +

(n − 2
2

)2

(2ndC2 log 2)
n

n−2 .

(3.18)

The estimate (3.18) indicates that um log |um| is uniformly bounded in L∞(0,T ; L2(Ω)). Thus there exists
a function χ such that

um log |um| → χ weakly star in L∞(0,T ; L2(Ω)). (3.19)

From (3.17), (3.18) and Lemma 2.5, we have

um log |um| → u log |u| weakly in L∞(0,T ; L2(Ω)). (3.20)

It follows from (3.19) and (3.20) that
χ = u log |u|. (3.21)

Let m→ ∞ in (3.1), by using (3.12), (3.14), (3.19) and (3.20), we obtain

(utt, ω j) + (∇u,∇ω j) + (u, ω j) = (u log |u|, ω j), ∀ j.

By the density of the system {ω j}
∞
j=1 in H1

0(Ω), we deduce that

(utt, ϕ) − (∆u, ϕ) + (u, v) = (u log |u|, ϕ)

for ∀ϕ ∈ H1
0(Ω). That is to say u satisfies the Eq (1.1) in the weak sense.

Next, we prove that u(0) = u0, ut(0) = u1 are held. It follows from (3.12), (3.13) and Lemma 2.4
that u(t) : [0,T ]→ L2(Ω) is continuous. Hence, we gain that u(0) is valid and um(0)→ u(0) weakly in
L2(Ω). By (3.3), we obtain u(0) = u0.

To prove ut(0) = u1, we note that∫ T

0
(umtt, ξω j)dt = −

∫ T

0
(umt, ξtω j)dt − (umt(0), ω j),

where ξ(t) is a smooth function with ξ(0) = 1, ξ(T ) = 0.
For given j, as m→ ∞, in the distribution sense, we have∫ T

0
(utt, ξω j)dt = −

∫ T

0
(ut, ξtω j)dt − (ut(0), ω j) (3.22)
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inD′([0,T ]). On the other hand, by (3.1), we get∫ T

0
(umtt, ξω j)dt =

∫ T

0
[(∆um, ξω j) − (um, ξω j) + (um log |um|, ξω j)]dt. (3.23)

Taking the limitation on both sides of (3.23) as m→ ∞, we obtain∫ T

0
(utt, ξω j)dt =

∫ T

0
[(∆u, ξω j) − (u, ξω j) + (u log |u|, ξω j)]dt.

Therefore, ∫ T

0
(utt, ξω j)dt = −

∫ T

0
(ut, ξtω j)dt − (u1, ω j). (3.24)

It follows from (3.22) and (3.24) that (ut(0), ω j) = (u1, ω j). By the density of {ω j}
m
j=1 in L2(Ω), we get

ut(0) = u1.
The proof of Theorem 3.1 is completed. �

For the caseK(u0) ≥ 0 and E(0) = d, the global existence result of the problem (1.1)–(1.3) reads as
follows:

Theorem 3.2 Given that u0 ∈ H1
0(Ω), u1 ∈ L2(Ω). If E(0) = d and K(u0) ≥ 0, then

there exists a global weak solution u(x, t) for the problem (1.1)–(1.3) such that
u(x, t) ∈ L∞([0,+∞); H1

0(Ω)), ut(x, t) ∈ L∞([0,+∞); L2(Ω)).

Proof. Let ρk = 1 − 1
k and u0k = ρku0 for k ≥ 2. We consider the following problem

utt + ∆u + u = u log |u|, (x, t) ∈ Ω × R+,

u(x, 0) = u0k(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × R+.

(3.25)

By K(u0) ≥ 0 and Lemma 2.6, we have λ∗ = λ∗(u0) ≥ 1. Therefore, we conclude that K(u0k) > 0.
Thus, we have

J(u0k) =
1
4
‖u0k‖

2 +
1
2
K(u0k) > 0

and J(u0k) = J(µku0) < J(u0). Therefore,

0 < Ek(0) =
1
2
‖u1‖

2 + J(u0k) <
1
2
‖u1‖

2 +J(u0) = E(0) = d.

So, we obtain u0k ∈ W. For each k, by Theorem 3.1, the problem (3.25) admits a global weak solution
uk(t) which satisfies that uk(t) ∈ L∞([0,+∞); H1

0(Ω)), ukt(t) ∈ L∞([0,+∞); L2(Ω)) and

(ukt, ϕ) +

∫ t

0
[(∆uk, ϕ) + (uk, ϕ)]ds = (u1, ϕ) +

∫ t

0
(uk log |uk|, ϕ)ds (3.26)

for any ϕ ∈ H1
0(Ω). In addition,

Ek(t) =
1
2
‖ukt‖

2 +J(uk) =
1
2
‖u1‖

2 +J(u0k) = Ek(0) < d. (3.27)

By using the formula (3.27) and the same argument as (3.6), we may verify uk(t) ∈ W.

The remainder proof for Theorem 3.2 is the same process as Theorem 3.1. Here, we omit it. �
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Next, we study the global existence of solution to the problem (1.1)–(1.3) in a family of potential
wellsWε. For this purpose, we need the following lemmas

Lemma 3.1 Suppose that u0 ∈ H1
0(Ω), u1 ∈ L2(Ω) and 0 < E(0) < d(ε0). ε1, ε2 are the two roots of

the equation d(ε) = E(0), u(x, t) is a solution of the problem (1.1)–(1.3). Then
(i) If Jε0(u0) > 0, then u(t) ∈ Wε for ∀ε ∈ (ε1, ε2).
(ii) If Jε0(u0) < 0, then u(t) ∈ Uε for ∀ε ∈ (ε1, ε2).

Proof. Firstly, under the conditions in Lemma 4.1, we prove the sign of Jε(u) is invariant on the
interval (ε1, ε2).

Multiplying both sides of the Eq (1.1) by ut, then we get from integrating over Ω × [0, t] that

E(t) =
1
2
‖ut‖

2 +J(u) =
1
2
‖u1‖

2 +J(u0) = E(0) = d(ε). (3.28)

By (3.28) and 0 < E(0) < d(ε0), it is easy to see that 0 < J(u) < d(ε0). Namely, ‖∇u‖ , 0.
By contradiction, we suppose that the sign of Jε(u) is variable on (ε1, ε2), then there exists ε′ ∈

(ε1, ε2) such that Jε′(u) = 0. From (3.28), (2.20) and Proposition 2.2, we gain that E(0) ≥ J(u) ≥
d(ε′) > d(ε1) = d(ε2), which is contradictive with E(0) = d(ε1) = d(ε2).

(i) Because Jε0(u0) > 0 and the sign of Jε(u) is not changed for (ε1, ε2), we have ‖∇u0‖ , 0 and
Jε(u0) > 0, ∀ε ∈ (ε1, ε2). From (3.28), we get J(u0) ≤ E(0) < d(ε). Thus, we obtain u0 ∈ Wε,∀ε ∈

(ε1, ε2).
Next we prove u(t) ∈ Wε for ∀ε ∈ (ε1, ε2) and 0 < t < T , where T is the existence time of u(t).

Assume that there exists a number t1 ∈ (0,T ) such that u(t1) <Wε. Then, in virtue of the continuity of
u(t), we see u(t1) ∈ ∂Wε,∀ε ∈ (ε1, ε2). From the definition ofWε and the continuity of J(u(t)) and
Jε(u(t)) with respect to t, we have

Jε(u(t1)) = 0, ‖∇u(t1)‖ , 0, (3.29)

or
J(u(t1)) = d(ε). (3.30)

It follows from (3.28) that
J(u(t)) < E(0) = d(ε), t ∈ (0,T ). (3.31)

Thus, the case (3.30) is impossible. If (3.29) holds, then, by (3.17), we have J(u(t1)) ≥ d(ε) which
is contradictive with (3.31). Consequently, the case (3.29) is also impossible. Thus, we conclude that
u(t) ∈ Wε, ∀ε ∈ (ε1, ε2).

(ii) Since the sign of Jε(u) is not changed for (ε1, ε2), by Jε0(u0) < 0, we get Jε(u0) < 0 for
∀ε ∈ (ε1, ε2). Thus, we have u0 ∈ Uε from J(u0) < E(0) = d(ε). Now we prove u(t) ∈ Uε for
∀ε ∈ (ε1, ε2), 0 < t < T . If it is not right, then there exists t2 ∈ (0,T ) with u(t2) ∈ ∂Uε for ∀ε ∈ (ε1, ε2),
i.e. either Jε(u(t2)) = 0 or J(u(t2)) = d(ε). By (3.31), J(u(t2)) = d(ε) is impossible. Moreover, let
t2 be the first time such that Jε(u(t2) = 0, then Jε(u(t)) < 0 for 0 ≤ t < t2. Combining (3.28) and
Proposition 2.3, we get ‖∇u(t)‖ > r(ε) for t ∈ [0, t2). Hence, we obtain ‖∇u(t2)‖ ≥ r(ε). From (3.17), it
follows that J(u(t2)) ≥ d(ε) which is contradictive with (3.31). This implies that Jε(u(t2)) = 0 is also
impossible. Therefore, we have u(t) ∈ Uε, ∀ε ∈ (ε1, ε2). �
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Lemma 3.2 Assume that u0 ∈ H1
0(Ω), u1 ∈ L2(Ω) and 0 < E(0) ≤ h < d(ε0). ε1, ε2 are the two

roots of the equation d(ε) = h, u(x, t) are solutions of the problem (1.1)–(1.3). Then
(i) If Jε0(u0) > 0, then u(t) ∈ Wε for ∀ε ∈ (ε1, ε2).
(ii) If Jε0(u0) < 0, then u(t) ∈ Uε for ∀ε ∈ (ε1, ε2).
We can prove Lemma 3.2 by means of the similar method shown in the proof of Lemma 3.1. Here,

we omit it.
Theorem 3.3 Suppose that ε1, ε2 are the two roots of the equation d(ε) = E(0) and Jε2(u0) > 0.

If (u0, u1) ∈ H1
0(Ω) × L2(Ω) and 0 < E(0) < d(ε), then the problem (1.1)–(1.3) admits a global weak

solution u(x, t) such that

u(x, t) ∈ L∞(0,T ; H1
0(Ω)), ut(x, t) ∈ L∞(0,T ; L2(Ω)),

for any T > 0.

Proof. By using the similar argument as Theorem 3.1, we are going to prove Theorem 3.3. Under
the conditions in Theorem 3.3, by Lemma 3.1, we have u0 ∈ Wε for ε ∈ (ε1, ε2). For any given
ε1 < ε < ε2, we derive Jε(um(0)) > 0 and Em(0) < d(ε), which implies that um(0) ∈ Wε. Once again,
we get um(t) ∈ Wε by Lemma 3.1. Here, the approximate solutions um(t) are given in the proof of
Theorem 3.1.

Multiplying both sides of (3.1) by g′jm(t), summing over j from 1 to m and integrating with respect
to t, we obtain

Em(t) =
1
2
‖umt(t)‖2 +J(um(t)) =

1
2
‖umt(0)‖2 +J(um(0)) = Em(0) < d(ε). (3.32)

From (2.3) and (2.17), we deduce

J(um(t)) =
1 − ε

2
‖∇um(t)‖2 +Jε(um(t)). (3.33)

Combining (2.21), (3.32), (3.33), by um(t) ∈ Wε, we get J(um(t)) > 0 and the following estimates

‖∇um(t)‖ < 2
√
λ1de ε

n
4 . (3.34)

From (2.21) and (3.32), we find that

‖umt(t)‖ < 2
√
λ1de(1 − ε) ε

n
4 . (3.35)

By means of the same procedure as the estimates (3.18), we obtain∫
Ω

|um(t) log |um(t)||2dx ≤ e−2|Ω| +

(n − 2
2

)2

(4λ1deC2ε
n
2 )

n
n−2 . (3.36)

The remainder of the proof for Theorem 3.3 is the same as those of Theorem 3.1. Here, we omit
them. �
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4. Blow-up of solution

In this section, we establish the blow-up property of solution for the problem (1.1)–(1.3).

Lemma 4.1 Let u(t) be a solution of (1.1)–(1.3). If u0 ∈ U and E(0) < d, then u(t) ∈ U and
E(t) < d, for all t ≥ 0.

Proof. It follows from Lemma 2.3 that

E(t) = E(0) < d, ∀t ≥ 0.

By (2.5), we obtain
J(u) ≤ E(t) < d, ∀t ≥ 0. (4.1)

By contradiction, we assume that there exists t∗ ∈ [0,+∞) such that u(t∗) < U, then, from the continuity
ofK(u(t)) on t, we haveK(u(t∗)) = 0. This implies that u(t∗) ∈ N . We get from (2.7) thatJ(u(t∗)) ≥ d,
which is contradiction with (4.1). Consequently, Lemma 4.1 is valid. �

Lemma 4.2 Suppose that u ∈ U, then K(u(t)) < 2[J(u(t)) − d].

Proof. If u ∈ U, then it follows from Lemma 2.6 that there exists a λ∗ such that 0 < λ∗ < 1 and
K(λ∗u) = 0. By the definition of d in (2.6), we get

d < J(λ∗u) =
1
2
K(λ∗u) +

1
4
‖λ∗u‖2 =

1
4
‖λ∗u‖2 <

1
4
‖u‖2.

We have from (2.5) that d < J(u(t)) − 1
2K(u(t)), which implies that K(u(t)) < 2[J(u(t)) − d]. �

Theorem 4.1 If the initial datum u0 ∈ U, u1 ∈ L2(Ω) satisfy that E(0) < d and
∫

Ω

u0u1dx > 0, then

the solution u(t) in Theorem 2.1 of the problem (1.1)–(1.3) blows up as time t goes to infinity, which
means that

lim
t→+∞

‖u(t)‖2 = +∞.

Proof. Let P(t) = ‖u(t)‖2, then P(t) > 0, t ≥ 0. Direct computations show that

P′(t) = 2(u, ut). (4.2)

From (1.1) and (2.4), we get

P′′(t) = 2‖ut‖
2 + 2

∫
Ω

uuttdx

= 2‖ut‖
2 − 2

(
‖∇u‖2 + ‖u‖2 −

∫
Ω

u2 log |u|dx
)

= 2‖ut‖
2 − 2K(u).

(4.3)

It follows from Cauchy-Schwarz inequality and (4.2) that

|P′(t)|2 ≤ 4P(t)‖ut‖
2, t ≥ 0. (4.4)
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Then we have from (2.5) and Lemma 2.3 that

P′′(t)P(t) − [P′(t)]2 ≥ 2P(t)[‖ut‖
2 − K(u(t))] − 4P(t)‖ut‖

2

= −2P(t)[‖ut‖
2 +K(u(t))]

≥ −2P(t)[2E(t) − 2J(u(t)) +K(u(t))].

(4.5)

From u0 ∈ U, E(0) < d and Lemma 4.1, we have u ∈ U, E(t) < d. Hence by Lemma 4.2, we
obtain that

2E(t) − 2J(u(t)) +K(u(t)) < 2d − 2J(u(t)) + 2(J(u(t)) − d) = 0. (4.6)

We conclude from (4.5) and (4.6) that

P′′(t)P(t) − [P′(t)]2 > 0. (4.7)

Furthermore, by direct calculation, it is easy to see that

(log |P(t)|)′ =
P′(t)
P(t)

. (4.8)

(log |P(t)|)′′ =

(
P′(t)
P(t)

)′
=
P′′(t)P(t) − [P′(t)]2

P2(t)
> 0. (4.9)

We know from (4.9) that the function (log |P(t)|)′ =
P′(t)
P(t) is increasing on time t. By integrating both

sides of (4.8) from 0 to t, we get

log |P(t)| − log |P(0)| =
∫ t

0
(log |P(s)|)′ds =

∫ t

0

P′(s)
P(s)

ds ≥
P′(0)
P(0)

t,

for t > 0. Therefore,

P(t) ≥ P(t0) exp
(
P′(t0)
P(t0)

(t − t0)
)
. (4.10)

From the definition of P(t), (4.10) means that

lim
t→+∞

‖u(t)‖2 = +∞.

This finishes the proof of Theorem 4.1. �

5. Conclusions

By applying logarithmic Sobolev inequality, the Galerkin method and compactness theorem, we
prove the global existence results of the problem (1.1)–(1.3) under the conditions that the initial values
u0 ∈ W, u1 ∈ L2(Ω) satisfy (i) 0 < E(0) < d or (ii) K(u0) ≥ 0 and E(0) = d. Meanwhile, under
the condition of positive initial energy, by using the concavity analysis method, we establish the finite
time blow-up result of solutions in the sense of L2 norm. On the other hand, the global existence of
solution for this problem is also obtained in a family of potential wellsWε. Our result implies that the
polynomial nonlinearity is important for the solutions of such kinds of Klein-Gordon equation to be
blow-up in finite time.
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