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1. Introduction

In this paper, we study the existence and multiplicity of solutions for the following Schrödinger-
Kirchhoff equation

− (1 + b
∫
RN
|∇u|2dx)∆u + V(x)u = f (x, u), in RN , (1.1)

where b > 0 is a parameter. Eq (1.1) arises in an interesting physical context. When V ≡ 0 and RN is
replaced by a bounded domain Ω ⊂ RN , Eq (1.1) reduces to the following Dirichlet problem:

− (1 + b
∫
RN
|∇u|2dx)∆u = f (x, u), in Ω, u = 0 on Ω, (1.2)

which is related to the stationary analogue of the equation

ρ
∂2u
∂t2 − (

P0

h
+

E
2L

∫ L

0
|
∂u
∂x
|2dx)

∂2u
∂x2 = 0,
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proposed by Kirchhoff [9] as an extension of classical D’Alembert’s wave equation for free vibrations
of elastic strings. Kirchhoff’s model takes into account the changes in length of the string produced
by transverse vibrations. There is a large literature on existence and multiplicity results. In 1978,
Lions [13] proposed an abstract framework for the Eq (1.2). Since then, Eq (1.2) have been investigated
by many authors, see for instance [5, 6, 10, 17–19, 22, 26, 27] and the reference therein. Recently, a lot
of attentions have been focused on the study of solutions of (1.1) on the whole space RN (see [7, 8, 11,
12, 15, 25, 28] and references therein).

Motivated by [7, 8, 11, 12, 15, 25, 28], we consider the asymptotical linear Kirchhoff type Eq (1.1)
on the whole space RN and assume the potential V satisfies the following condition:

(V1) V ∈ Lq
loc(R

N) is real-valued, and V− := min{V, 0} ∈ L∞(RN) + Lq(RN) for some q ∈ [2,+∞) ∩
( N

2 ,+∞).
It is known that the assumption (V1) ensures that the reduced schrödinger operator A = −∆ +

V is self-adjoint and semi-bounded on L2(RN) (see Theorem A.2.7 in Simon [23]). We denote by
σ(A) σd(A) and σess(A) the spectrum, the discrete spectrum (eigenvalue with finite multiplicities), the
essential spectrum of A, respectively.

In this paper, we assume the following general spectrum assumption
(V2) a := inf σ(A), M := inf σess(A), −∞ < a < M, M > 0.
Condition (V2) implies that the potential V is not periodic.

Remark 1.1. The following potentials satisfy (V2):
Ex 1. Vλ = λg(x) + 1, for some g ∈ C(RN ,R), g ≥ 0, where Ω := int(g−1(0)) is not empty and is a

bounded domain (see [2]).
Ex 2. V ∈ C(RN) is bounded from below and there exists M > 0 such that Λ = {x ∈ RN |V(x) ≤

M} has finite Lebesgue measure.

Due to the presence of essential spectrum, the Sobolev embedding H1(RN) ↪→ L2(RN) is not
compact and the problem becomes more difficult. To overcome the loss of compactness, we need to
control the interplay between the nonlinear term f and the essential spectrum part σess(A). Inspired by
Liu, Su, and Weth [14], we assume

( f1) f ∈ C(RN × R,R), f (x,u)
u is bounded on RN × (R \ {0}).

( f2) f ∗ = lim sup|x|→∞ supu,0
f (x,u)

u < M.
Condition ( f2) allows that the nonlinearity f locally intersects with the essential spectrum.

Motivated by ( f2), we define

Υ = {B|B is a bounded, continuous real-valued function with lim sup
|x|→∞

B(x) < M}.

The nonlinear function f is assumed to be asymptotically linear at infinity and at origin in the
following sense: There exist B0(x), B∞(x) ∈ Υ, such that

( f0) f (x, u) = B0(x)u + o(|u|) as |u| → 0, uniformly in x ∈ RN ,
( f∞) f (x, u) = B∞(x)u + o(|u|) as |u| → ∞, uniformly in x ∈ RN .
A quantitative way to measure the twisting between ( f0) and ( f∞) is the index theory which were

widely used to investigate the periodic solutions of Hamiltonian systems (see Ekland [4], Long [16] and
the references therein). However, the index theories constructed in [4,16] depends on the compactness
of Sobolev embedding or equivalently the spectral property σ(A) = σd(A). Thus, the classical index
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theories can not work here. We will introduce a classification theory for the reduced linear Schrödinger
equation with (V2) (see [21]). More precisely, for B ∈ Υ we classify the following reduced linear
Schrödinger equation

−∆u + V(x)u − B(x)u = 0.

This classification gives a pair of numbers (i(B), ν(B)), where i(B) is the number of the negative
eigenvalues of A − B and ν(B) =dim ker(A − B). We will briefly recall the definitions and some useful
properties of the Morse index function in Section 2. Our main result is the following: Assume that
F(x, u) =

∫ u

0
f (x, s)ds.

Theorem 1.1. Let (V1), (V2), ( f1) and ( f2) be satisfied. Moreover, F(x, u) ≤ 0, ( f0) and ( f∞) hold with
i(B0) > i(B∞) + ν(B∞). Then (1.1) has at least i(B0)− i(B∞)− ν(B∞) pairs of solutions provided f (x, u)
is odd in u.

The aim of this paper is to extend the index theory to the study of Schrödinger-Kirchhoff equations.
By using the Morse index of the reduced linear Schrödinger equation, we show how the behavior of
the nonlinearity at the origin and at the infinity affects the number of solutions. In our setting, the main
obstacle is the lack of compactness due to the presence of essential spectrum and the nonlocal part.
Benefitting from some of the techniques used in [12, 14, 15, 28], we regain the compactness.

Remark 1.2. (1) Inspired by works of Ding and L. Jeanjean [3], we add the sign condition F ≤ 0 in
order to control the compactness.

(2) Usually, if ν(B∞) = 0, we write f is non-resonance at infinity. When b = 0, non-resonance
condition plays a very important role in the verification of Palais-Smale condition, Fortunately, because
of the nonlocal part of the system (1.1), in this paper, we can consider system (1.1) without the non-
resonance condition.

(3) Let the eigenvalues of A be denoted by λ1 ≤ λ2 ≤ · · · ≤ λk ≤ inf σess(A), counting their
multiplicities. Assume that all the assumptions of Theorem 1.1 hold. If we assume that

λk < B0(x) < λk+1, λl < B∞(x) ≤ λl+1, ∀x ∈ RN ,

then we have i(B0) = k, i(B∞) = l and (1.1) has at least k − l pairs of solutions; if we assume

λk < B0(x) < λk+1, B∞(x) ≤ λ1, ∀x ∈ RN ,

then we have i(B0) = k, i(B∞) = 0 and (1.1) has at least k pairs of solutions.

This paper is organized as follows. In Section 2, we first present variational framework to deal with
problem (1.1). We also recall some propositions and lemmas about the classification of the reduced
linear Schrödinger equation which will be used to prove our main results. In Section 3, we give the
proof of the main results.

We use the following notations:

• inf denotes the infimum of a set or a function in given domain.
• sup denotes the supremum of a set or a function in given domain.
• int denotes the interior of a set.
• dim denotes the dimension of a subspace.
• codim denotes the codimension of a subspace.
• 2∗ = 2N

N−2 if N ≥ 3 and 2∗ = ∞ for N = 1 and N = 2.
• D1,2(RN) = {u ∈ L2∗ : ∇u ∈ L2(RN)}.
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2. Preliminaries

2.1. Variational settings

In what follows by |·|q we denote the usual Lq−norm, and by (·, ·)2 the usual L2-inner product. Define
A = −∆ + V . By (V1), A is self-adjoint and semi-bounded on L2(RN) with domain D(A) ⊆ H2(RN).
Note that 0 is at most an eigenvalue of finite multiplicites of A. Without loss of generality, throughout
this paper, we assume 0 < σ(A). Thus, condition (V2) introduces an orthogonal decomposition

L2 = L+ ⊕ L−, u = u+ + u−,

corresponding to the spectrum of A such that A is negative definite on L− and positive definite on L+.
Denoting the absolute value of A by |A|, let E = D(|A|

1
2 ) be the Hilbert space with the inner product

(u, v) = (|A|
1
2 u, |A|

1
2 v)2,

and norm ‖u‖ = (u, u)
1
2 . We have a decomposition

E = E+ ⊕ E−, where E± = E ∩ L±,

which are orthogonal to each other with respect to the inner product (·, ·) and (·, ·)2.

Lemma 2.1. The space E embeds continuously into H1(RN), and hence, E embeds continuously into
Lp(RN) for p ∈ [2, 2∗] and compactly into Lp

loc(R
N) for p ∈ [2, 2∗).

Let us define the functional Ib(u) : E → R by

Ib(u) = ‖u+‖2 − ‖u−‖2 +
b
4

(
∫
RN
|∇u|2dx)2 −

∫
RN

F(x, u)dx. (2.1)

Our hypotheses on f imply that Ib(u) ∈ C1(E,R) and the critical points of Ib are the weak solutions for
problem (1.1).

2.2. Classification for reduced linear Schrödinger equation

Recall that we define

Υ = {B|B is a bounded, continuous real-valued function with lim sup
|x|→∞

B(x) < b}.

For any B(x) ∈ Υ, we also denote B as the operator multiplication by B(x) in L2(RN) without causing
any confusing. By Lemma 2.1 of [21],

Lemma 2.2. For any B ∈ Υ, the essential spectrum σess(A − B) of A − B is contained in (0,+∞).

Let us recall the standard definitions and results on Rayleigh-Ritz quotients (see e.g. [20] ). Let
T be a self-adjoint operator in a Hilbert space X, with domain D(T ) and form-domain F(T ). If T is
bounded from below, we may define a sequence of min-max levels

λk(T ) = inf
Y subspace of F(T ), dimY=k

sup
x∈Y\{θ}

(x,T x)
‖x‖2X

.

AIMS Mathematics Volume 6, Issue 6, 6160–6170.



6164

To each k we also associate the (possible infinite) multiplicity number

mk(T ) = card{k′ ≥ 1, λk′(T ) = λk(T )} ≥ 1.

Then λk(T ) ≤ inf σess(T ). In the case λk(T ) < inf σess(T ), λk is an eigenvalue of T with multiplicity
mk(T ).

Definition 2.1. For any B ∈ Υ, we define i(B) = ]{i|λi(A − B) < 0}, ν(B) = ]{i|λi(A − B) = 0}.

We define the following quadratic form:

qB(u, v) =
1
2

(u+, v+) −
1
2

(u−, v−) −
1
2

(Bu, v)2, ∀u, v ∈ E. (2.2)

The following proposition lists some properties concerning the index function (i(B), ν(B)) and the
bilinear form qB. For the details of the proofs, we refer to [21].

Proposition 2.1. (i) The E can be divided into three subspaces

E = E+(B) ⊕ E0(B) ⊕ E−(B),

such that qB is positive definite, zero and negative definite on E+(B), E0(B) and E−(B), respectively.
Furthermore, E0(B) and E−(B) are finite dimensional subspaces. Moreover, i(B) =dim E−(B),
ν(B) =dim E0(B).

(ii) i(B) = Σλ<0ν(B + λ) and i(B) is the Morse index of qB on E; ν(B) =dim ker(A − B).
(iii) For any B1, B2 ∈ Υ with B1 < B2, we have

i(B2) − i(B1) =
∑
λ∈[0,1)

ν(B1 + λ(B2 − B1)).

(iv) There exists ε0 > 0 such that for any ε ∈ (0, ε0], we have

ν(B + ε) = 0 = ν(B − ε),
i(B − ε) = i(B),
i(B + ε) = i(B) + ν(B).

(v) (−qB(u, u))
1
2 is an equivalent norm on E−(B) and there exists c > 0 such that (qB(u, u))

1
2 ≥ c‖u‖2,

∀u ∈ E+(B).

3. Proof of main result

In order to prove Theorem 1.1, we use the symmetric Mountain-Pass Theorem (see [1, 24]). Recall
that (un) ∈ E is a Palais-Smale ((PS) for short) sequence of Φ if Φ(un) is bounded and Φ′(un) → 0. Φ

is said to satisfy the (PS)-condition if any such sequence contains a convergent subsequence.

Theorem 3.1. Let Φ ∈ C1(E,R) be an even functional on a Banach space E. Assume Φ(0) = 0 and Φ

satisfies the (PS)-condition. Suppose that
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(Φ1) there exists E1 ⊂ X, dimE1 = k1 and ρ > 0 such that

sup
u∈E1∩S ρ

Φ(u) < 0;

(Φ2) there exists E2 ⊂ X, codimE2 = k2 < k1 such that

inf
u∈E2

Φ(u) > −∞.

Then Φ has at least k1 − k2 pairs of critical points with negative critical values.

Lemma 3.1. Any (PS)-sequence of the functional Ib defined as in (2.1) is bounded.

Proof. Let (un) ∈ E be such that Ib(un) → c and I′b(un) → 0. To prove {un} is bounded, we develop a
contradiction argument. We assume that, up to a subsequence, ‖un‖ → ∞, and set wn = un

‖un‖
. Assume

that

wn ⇀ w, in E, wn(x)→ w(x) a.e. in RN

w+
n ⇀ w+, in E+, w−n → w−, in E−.

We first claim that w , 0. Assume on the contrary that w = 0. It follows that

o(1) =
(I′b(un), un)
‖un‖

2

= ‖w+
n ‖

2 − ‖w−n ‖
2 −

∫
RN

f (x, un)
un

w2
ndx +

b(
∫
RN |∇un|

2dx)2

‖un‖
2

≥ o(1) + ‖w+
n ‖

2 −

∫
RN

f (x, un)
un

w2
ndx. (3.1)

Here we use the fact that (
∫
RN |∇u|2dx)2 ≥ 0. Let {Fλ} denote the spectral family of A. We define the

following projections:

P1 =

∫ +∞

M−ε
dFλ, P2 =

∫ M−ε

−∞

dFλ (3.2)

with ε < M − f ∗, where f ∗ is defined as in ( f2) and M is defined as in (V2). We have P1w+
n = P1wn and

P2E+ =
∫ M−ε

0
dFλE. In particular, P2E and P2E+ are finite dimensional subspaces, and

‖w+
n ‖ = ‖P1wn‖ + o(1), ‖P1wn‖

2
2 ≤

1
M − ε

‖P1wn‖
2. (3.3)

Thus, by (3.1) and (3.3),

o(1) ≥ o(1) + ‖P1wn‖
2 − f ∗

∫
RN

w2
ndx

≥ o(1) + (1 −
f ∗

M − ε
)‖P1wn‖

2.
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The above inequality implies that ‖P1wn‖ → 0 in E. Hence 1 = ‖wn‖
2 = ‖P1wn‖

2 + ‖P2wn‖
2 → 0,

which is a contradiction.
On the other hand, if w , 0,

o(1) =
(I′b(un), un)
‖un‖

4

=
‖u+

n ‖
2 − ‖u−n ‖

2

‖un‖
4 −

∫
RN

f (x,un)
un

w2
ndx

‖un‖
2 +

b(
∫
RN |∇wn|

2dx)2

‖un‖
2 .

Recall that f (x,z)
z is bounded for all x and z, one has∫

RN
f (x,un)

un
w2

ndx

‖un‖
2 = o(1).

Thus,

o(1) = b(
∫
RN
|∇wn|

2dx)2.

Set g(z) =
∫
RN |∇z|2dx. It is easy to see that g(z) is lower semi-continuous. Consequently,

lim infn→∞

∫
RN (|∇wn|

2dx)2 ≥ (
∫
RN |∇w|2dx)2, and o(1) ≥ (

∫
RN |∇w|2dx)2. Thus,∫

RN
|∇w|2dx = 0.

Since E embeds continuously into D1,2(RN), we have w ∈ D1,2(RN) and w = 0. This is a contradiction.
Hence, {un} is bounded. �

Lemma 3.2. Any (PS)-sequence has a convergent subsequence.

Proof. Assume that un ⇀ u in E and let vn = un − u. Then, up to a subsequence, vn ⇀ 0 in E. Then
v+

n ⇀ 0, v−n → 0 in E and

o(1) = (I′b(un), vn)

= (u+
n , v

+
n ) − (u−n , v

−
n ) −
∫
RN

f (x, un)vndx + b
∫
RN
|∇un|

2dx
∫
RN
∇un∇vndx

≥ o(1) + ‖v+
n ‖

2 − f ∗
∫
RN

v2
ndx + b

∫
RN
|∇un|

2dx
∫
RN
∇u∇vndx.

Since E embeds continuously into D1,2(RN), we have hu(v) =
∫
RN ∇u∇vdx is continuous on v ∈ E.

Moreover, since vn ⇀ 0, we have hu(vn)→ 0. Thus,

o(1) ≥ ‖v+
n ‖

2 − f ∗
∫
RN

v2
ndx.

Then the lemma follows from the procedure as in Lemma 3.1. More precisely, using the definitions
and properties of P1, P2 as in (3.2), we deduce that

o(1) ≥ o(1) + (1 −
f ∗

M − ε
)‖P1vn‖

2, (3.4)

which implies P1vn → 0 in E and vn = P1vn + P2vn → 0 in E. This completes the proof. �
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Set f (x, u) = B0(x)u + f1(x, u). By condition ( f0), we have f1(x, u) = o(u) as |u| → 0 uniformly in x.
Set F1(x, u) =

∫ 1

0
f1(x, θu)dθu. Fix any 2 < p < 2∗. For any ε > 0, there is a Cε > 0 such that

| f1(x, u)| ≤ ε |u| + Cε |u|p−1,

which implies that

|F1(x, u)| ≤
ε

2
|u|2 +

Cε

p
|u|p,

and therefore

|

∫
RN

F1(x, u)dx| ≤
ε

2
‖u‖22 +

Cε

p
‖u‖p

p.

By the continuity of the embedding E ↪→ Lp(RN), there exists a positive constant C∗ε which depends
on N and p, such that

|

∫
RN

F1(x, u)dx| ≤
ε

2
‖u‖22 + C∗ε‖u‖

p.

Lemma 3.3. For any b > 0, there exists a ρ > 0 and E1 with dimE1 = i(B0) such that

sup
u∈E1∩S ρ

Ib(u) < 0.

Proof. Since E embeds into D1,2(RN) continuously, there exists C1 > 0 such that ‖∇u‖22 ≤ C1‖u‖2 and

Ib(u) ≤
1
2

(‖u+‖2 − ‖u−‖2) −
1
2

(B0(x)u, u)2 +
ε

2
‖u‖22 + C∗ε‖u‖

p

+
b
4

(
∫
RN
|∇u|2dx)2

≤
1
2

(‖u+‖2 − ‖u−‖2) −
1
2

((B0 − ε)u, u)L2 + C∗ε‖u‖
p +

b
4

C2
1‖u‖

4

= qB0+ε(u, u) + C∗ε‖u‖
p +

b
4

C2
1‖u‖

4. (3.5)

Pick E1 = E−(B0 − ε). For any u ∈ E1,
√
−qB0−ε(u, u) is an equivalence norm on E1, and thus there

exists a constant c2 such that

qB0−ε(u, u) ≤ −c2‖u‖2, ∀u ∈ E1. (3.6)

Hence, we have

Ib(u) ≤ −c2‖u‖2 + C∗ε‖u‖
p +

b
4

C2
1‖u‖

4

= (−c2 + C∗ε‖u‖
p−2 +

b
4

C2
1‖u‖

2)‖u‖2.

Moreover, for ε small enough, we have dimE1 = i(B0 − ε) = i(B0). Thus, this lemma follows by
ρ < ( c2

C∗ε+ b
4 C2

1
)

1
max(p−2,2) . �
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Lemma 3.4. Assume E2 = E+(B∞). There exists a R > 0, such that for any b > 0,

inf
u∈E2, ‖u‖≥R

Ib(u) > 0.

Proof. It is sufficient to show that for any b, Ib(u) → ∞ as ‖u‖ → ∞. Arguing indirecting, we assume
that for some sequence (xn) ∈ E2, with ‖xn‖ → ∞, there is γ > 0 such that Ib(xn) ≤ γ for all b > 0.
Setting yn = xn

‖xn‖
, we have ‖yn‖ = 1, yn ⇀ y in E2, y+

n ⇀ y+ in E2, y−n → y− in E2, and

γ

‖xn‖
2 ≥

Ib(xn)
‖xn‖

2 = ‖y+
n ‖

2 − ‖y−n ‖
2 −

∫
RN

F(x, xn)
‖xn‖

2 dx

+
b(
∫
RN |∇xn|

2dx)2

‖xn‖
2

≥ ‖y+
n ‖

2 − ‖y−n ‖
2 −

∫
RN

F(x, xn)
‖xn‖

2 dx. (3.7)

Here we use the fact that (
∫
RN |∇xn|

2dx)2 ≥ 0.
We claim that y− , 0. In fact, if not we assume y− = 0. Since E− is a finite dimensional subspace, we

obtain ‖y−n ‖
2 = o(1). Since F ≤ 0, from (3.7), we deduce that y+

n → 0, and 1 = ‖yn‖
2 = ‖y+

n ‖
2+‖y−n ‖

2 → 0
in E. This is a contradiction and implies that y− , 0. Moreover, y , 0 and

qB∞(y, y) > 0.

There exists r > 0 such that

‖y+‖2 − ‖y−‖2 −
∫

Br(0)
B∞(x)y2dx > 0, (3.8)

where Br(0) = {x ∈ RN : |x| ≤ r}. Assume that f2(x, u) = f (x, u) − B∞(x)u. Then f2(x, u) = o(|u|) as
|u| → ∞ uniformly in x. Set F2(x, u) =

∫ 1

0
f2(x, θu)udθ. Note that yn → y in L2(Br(0)). It follows that

|

∫
Br(0)

F2(x, xn)
‖xn‖

2 dx| ≤

∫
Br(0)

|F2(x, xn)|
x2

n
y2

ndx

≤

∫
Br(0)

|F2(x, xn)|
x2

n
|yn − y|2dx +

∫
Br(0)

|F2(x, xn)|
x2

n
y2dx

= o(1). (3.9)

Thus, from (3.7)–(3.9),

o(1) ≥ lim
n→∞

(‖y+
n ‖

2 − ‖y−n ‖
2 −

∫
Br(0)

F(x, xn)
‖xn‖

2 dx)

≥ ‖y+‖2 − ‖y−‖2 −
∫

Br(0)
B∞(x)y2dx > 0.

This is a contradiction. We complete the proof. �

Proof of Theorem 1.1. Ib is even provided f (x, u) is odd in u. With E1 = E−(B0 − ε) and E2 =

E+(B∞) the condition (Φ1) of Theorem 3.1 holds by Lemma 3.3 and (Φ2) of Theorem 3.1 holds by
Lemma 3.4. Moreover, dimE1 = i(B0) and codimE2 = i(B∞) + ν(B∞). Lemma 3.1 and Lemma 3.2
imply Ib satisfies the (PS)-condition. Therefore, Ib has at least i(B0)− i(B∞)− ν(B∞) pairs of nontrivial
critical points by Theorem 3.1.
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4. Conclusions

This manuscript has employed the minimax method to study the existence and multiplicity of
solutions of Schrödinger-Kirchhoff equations with asymptotically linear nonlinearities. By using the
Morse index of the reduced linear Schrödinger equation, we show how the behavior of the
nonlinearity at origin and at infinity affects the number of solutions.
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