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Abstract: In this paper, we propose a predator-prey system with square root functional response, two
delays and prey harvesting, in which an algebraic equation stands for the economic interest of the yield
of the harvest effort. Firstly, the existence of the positive equilibrium is discussed. Then, by taking
two delays as bifurcation parameters, the local stability of the positive equilibrium and the existence
of Hopf bifurcation are obtained. Next, some explicit formulas determining the properties of Hopf
bifurcation are analyzed based on the normal form method and center manifold theory. Furthermore,
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is given. Finally, simulations are given to check the theoretical results.
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1. Introduction

The dynamic relationship between predator and prey has long been and will continue to be one of
the dominant themes in both biology and mathematical biology due to its universal existence. In the
description of the dynamics interactions, a crucial element of all models is the classic definition of
functional response. Many kinds of predator-prey models with Holling type [1–3], Leslie-Gower
type [4, 5], and Beddington-DeAngelis type [6, 7], etc. have been investigated extensively by scholars.
However, as argued by the authors in [8], it is more appropriate to model the response function of
prey which exhibits herd behavior in terms of the square root of the prey population in realistic world.
For example, this may be entirely fitting for herbivores on a large savanna and their large predators.
Since the prey population exhibits a highly socialized behavior and lives in herds, that is, the weaker
individuals are kept at the center of their herd for defensive purpose, the interaction terms of
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predator-prey system use the square root of the prey population rather than the standard mass-action
term, which properly accounts for the assumption that the interactions occur along the boundary of
the population. Predator-prey systems with such functional response have attracted much attention
(see [8–23]). Recently, Yuan et al. [10] considered a predator-prey system as following:

dX
dt

= rX(1 −
X
N

) −
α
√

XY

1 + thα
√

X
,

dY
dt

= −sY2 +
cα
√

XY

1 + thα
√

X
,

(1.1)

where −sY2 represents the quadratic mortality for predator population. They investigated the spatial
dynamics of system (1.1) with Neumann boundary conditions and obtained Turing bifurcation.
Considering the fact that there always exists a time delay in the conversion of the biomass of prey to
that of predator in system (1.1), Xu and Yuan [11] studied the local stability and the existence of Hopf
bifurcation of such system. Kooi and Venturino [14] studied ecoepidemic predator-prey model with
prey herd behavior. Liu et al. [18] studied stationary distribution and extinction of a stochastic
predator-prey model with herd behavior. Some authors (Meng and Wang [19], Yang [20, 21], Souna
et al. [22]) obtained dynamical behaviors of such delayed diffusive predator-prey model with herd
schooling behavior, such as Hopf bifurcation, the steady-state bifurcation, diffusion driven instability
and Turing-Hopf bifurcation. Bentout et al. [23] considered prey escaping from prey herd on three
species fractional predator-prey interaction model, and showed the considered system undergoes an
interesting behavior.

Time delays of one type or another have been incorporated into mathematical models of
population dynamics due to maturation time, capturing time or other reasons. In general, delay
differential equations exhibit much more complex dynamics than ordinary differential equations since
a time delay could cause the stable equilibrium to become unstable and even cause the population to
fluctuate. Many authors have devoted to investigating time delay effecting on the dynamics of
biological systems, and obtained some results (see [11, 24–30]).

In 1954, Gordon [31] proposed the economic theory of a common-property resource, which studies
the effect of the harvest effort on the ecosystem from an economic perspective. In that reference, an
algebraic equation is proposed to investigate the economic interest of the yield of the harvest effort,
which takes form as follows: Net Economic Revenue (NER) = Total Revenue (TR)-Total Cost (TC).
Let E(t) and Y(t) represent the harvest effort and the density of harvested population, respectively.
TR = ωE(t)Y(t) and TC = cE(t), where ω represents unit price of harvested population, c represents
the cost of harvest effort. Associated with the above system, an algebraic equation, which considers
the economic interest v of the harvest effort on the harvested population, is established as follows:

E(t)(ωY(t) − c) = v.

In daily life, since economic profit is a very important factor for governments, merchants and even
every citizen, it is necessary to research singular economic systems, which can be described by
differential-algebraic equations or difference-algebraic equations. Luenberger [32] studied the
dynamic invest and produce in the economic system by applying the descriptor system. As far as
biological systems are concerned, the related research results are few. Recently, Zhang et al. [33] first
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proposed a class of singular biological economic systems, which are established by several
differential equations (or several difference equations) and an algebraic equation, and gained some
results on those systems, such as the stabilities, bifurcations and chaos. Meng and Wu [34]
investigated the existence of Hopf bifurcation in a differential-algebraic predator-prey model with
nonlinear harvesting. More results can be found in the references [35–39].

Based on the above discussions, a class of singular biological economic predator-prey system with
square root functional response and two delays have received surprisingly little attention in the
literature. Thus, based on the previous system (1.1) and Gordon theory [31], we establish the
following predator-prey system consisting of two differential equations and an algebraic equation as
follows: 

dX
ds

= rX(1 −
X(s − τ1)

N
) −

α
√

XY

1 + thα
√

X
− EX,

dY
ds

= −d̃Y2 +
b̃α
√

X(s − τ2)Y
1 + thα

√
X(s − τ2)

,

0 = E(p̃X − c̃) − m̃,

(1.2)

where X,Y and E denote the prey, predator and the harvest effort at the time s, respectively. τ1 denotes
the feedback time delay of prey species to the growth of species itself, and τ2 is the time delay which
means the growth rate of predator species depends on the number of the prey species τ2 units of time
earlier. The parameter r and N are the growth rate of the prey and its carrying capacity. The parameter
α is the search efficiency of Y for X, b̃ is biomass conversion or consumption rate, and th is Y’s average
handling time of X. −d̃Y2 represents the quadratic mortality for predator population. p̃ and c̃ represent
unit price of harvested population and the cost of harvest effort. m̃ denotes harvest interest of the harvest
effort on the harvested population. So we will study the dynamics of such system with harvesting for
the prey by selecting different values of two delays in this paper.

The rest of paper is organized as follows. In the next section, with the help of new norm formal
method [40, 41], some conditions of the existence of the positive equilibrium, local stability and the
existence of Hopf bifurcation are obtained. By using the normal form method and center manifold
theory due to Hassard et al. [42], some explicit formulas determining the direction and stability of
periodic solutions bifurcating from Hopf bifurcations are showed in the Section 3. The control of
Hopf bifurcations is given in the Section 4. The optimal tax policy of system is investigated baased
on Pontryagin’s maximum principle in the Section 5. To support our theoretical predictions, some
numerical simulations are included in the Section 6. A brief discussion is also given in the last section.

2. Stability analysis and existence of Hopf bifurcation

It is important to make some simplifying assumptions to discern the basic dynamics and to make
the analysis more tractable. In order to simplify the system (1.2), we use the following dimensionless
transformations:

x =
X
N
, y =

αY

r
√

N
, e =

E
r
, t = rs.
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Thus system (1.2) can be rewritten as following:

dx
dt

= x(1 − x(t − τ1)) −
√

xy
1 + a

√
x
− ex,

dy
dt

= −dy2 +
b
√

x(t − τ2)y
1 + a

√
x(t − τ2)

,

0 = e(px − c) − m,

(2.1)

where a = thα
√

N, b = α
√

Nb̃
r , c = c̃, d =

√
Nd̃
r ,m = m̃

r , p = p̃N.
In the papers [8–11], the authors used the simplifying assumption that a = 0, which implies that

the average handling time is zero. In line with the work in [8–11], we also assume that a = 0. Thus,
system (2.1) takes the form: 

dx
dt

= x(1 − x(t − τ1)) −
√

xy − ex,

dy
dt

= −dy2 + b
√

x(t − τ2)y,

0 = e(px − c) − m.

(2.2)

The initial conditions of system (2.2) have the form

x(θ) = ψ(θ) ≥ 0, y(θ) = η(θ) ≥ 0, e(0) > 0, θ ∈ [−τ, 0), τ = max{τ1, τ2}.

In the next section, we will investigate the local stability of the positive equilibrium and the existence
of Hopf bifurcation.

From the viewpoint of biological interpretation of system, we only consider the positive equilibrium.
In this section, by choosing τ1 and τ2 as the bifurcation parameters and analyzing the corresponding
characteristic equation of linearized system, we investigate the local stability of the positive equilibrium
and the effects of the time delays on the dynamics of system (2.2).

2.1. Existence of the positive equilibrium

There exists a positive equilibrium P(x, y, e) of system (2.2), where the values x, y and e satisfy the
following equations:

x(1 − x) −
√

xy − ex = 0, (2.3a)

−dy2 + b
√

xy = 0, (2.3b)
e(px − c) − m = 0. (2.3c)

From Eq (2.3b) and (2.3c), we can obtain y = b
d

√
x and e = m

px−c , respectively. Substituting the above
values into Eq (2.3a), we can obtain that x satisfies the following equation

x2 + (
b
d
− 1 −

c
p

)x +
c
p

+
m
p
−

bc
dp

= 0. (2.4)

It is obvious that system Eq (2.4) has positive roots if the condition ∆ = ( b
d −1− c

p )2−4( c
p + m

p −
bc
dp ) ≥ 0.

If ∆ = 0, then Eq (2.4) has a unique positive root, defined x∗ =
cd+pd−bp

2dp . That is, system (2.2) has only
one positive equilibrium P∗(x∗, y∗, e∗) if the assumption
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(H1): p > c +
bp
d

holds, here y∗ = b
d

√
x∗ and e∗ = m

px∗−c . When ∆ > 0, Eq (2.4) has two positive roots, defined x∗1 and x∗2;
that is, system (2.2) has two positive equilibria P∗i (x∗i , y

∗
i , e
∗
i ) i = 1, 2, here y∗i = b

d

√
x∗i , e

∗
i = m

px∗i −c (i =

1, 2) and x∗1 =
cd+pd−bp+

√
∆

2dp > x∗, x∗2 =
cd+pd−bp−

√
∆

2dp < x∗.
Remark 1: We can obtain some exact expressions of the positive equilibriums when a = 0 of

system (2.1), which will be used to discuss the dynamical behaviours of system. If a ≤ 0 of
system (2.1), then it is difficult to investigate the properties of such system.

Remark 2: In the following, we only investigate the stability and bifurcation of system (2.2) at the
unique positive equilibrium P∗(x∗, y∗, e∗). Of course, we also study the dynamics of system (2.2) at the
equilibrium P∗i (x∗i , y

∗
i , e
∗
i ) (i = 1, 2) by the same way.

2.2. Stability and existence of Hopf bifurcation

For simplicity, let

f (X) =

(
f1(x, y, e)
f2(x, y, e)

)
=

(
x(1 − x(t − τ1)) −

√
xy − ex

−dy2 + b
√

x(t − τ2)y

)
, g(X) = e(px − c) − m,

where X = (x, y, e)T .
In order to analyze the local stability of the positive equilibrium of the system (2.2), we first use the

linear transformation X(t) = QN(t), where

N(t) =


u(t)
v(t)
E(t)

 , Q =


1 0 0
0 1 0

−
pe∗

px∗−c 0 1

 .
Then, we get DYg(P∗)Q = (0, 0, px∗− c) and u(t) = x(t), v(t) = y(t), E(t) =

pe∗

px∗−c x(t) + e(t). Substituting
the latter into system (2.2), we can obtain

du(t)
dt

= u(t)(1 − u(t − τ1)) −
√

u(t)v(t) − E(t)u(t) +
pe∗u2(t)
pu∗ − c

,

dv(t)
dt

= −dv2(t) + b
√

u(t − τ2)v(t),

0 = (E(t) −
pe∗u(t)
pu∗ − c

)(pu(t) − c) − m.

(2.5)

In order to derive the formula determining the properties of the positive equilibrium of the
system (2.2), we consider the local parametric Ψ of the third equation of system (2.2) as in [40, 41],
which is given as follows:

N(t) = Ψ(Z(t)) = N0 + u0Z(t) + v0h(Z(t)), g(Ψ(Z(t))) = 0,

where u0 =


1 0
0 1
0 0

 , v0 =


0
0
1

 , Z(t) =

(
y1(t)
y2(t)

)
, N0 =


u∗

v∗

E∗

, h(Z(t)) = (0, 0, h3(y1(t), y2(t))T : R2 → R is a

smooth mapping.
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Thus, we obtain the following parametric system of the system (2.5):

dy1(t)
dt

= (u∗ + y1(t))[1 − (y1(t − τ1) + u∗)] −
√

u∗ + y1(t)(v∗ + y2(t))

− (u∗ + y1(t))(E∗ + h3(y1(t), y2(t))) +
pe∗

pu∗ − c
(u∗ + y1(t))2,

dy2(t)
dt

= −d(v∗ + y2(t))2 + b
√

u∗ + y1(t − τ2)(v∗ + y2(t)),

(2.6)

because g(Ψ(Z(t))) = 0. Now, we give the linearized system of parametric system (2.6) at (0, 0) as
follows: 

dy1(t)
dt

= (1 −
b

2d
− u∗ − E∗ +

2pe∗u∗

pu∗ − c
)y1(t) −

√
u∗y2(t) − u∗y1(t − τ1),

dy2(t)
dt

= −b
√

u∗y2(t) +
b2

2d
y1(t − τ2).

(2.7)

The corresponding characteristic equation of the linearized system of the above system is:

λ2 + (b
√

u∗ − A)λ − Ab
√

u∗ + u∗(λ + b
√

u∗)e−λτ1 +
b2
√

u∗

2d
e−λτ2 = 0, (2.8)

where A = 1 − b
2d − u∗ + mc

(pu∗−c)2 .
In order to investigate the distribution of roots of the transcendental equation (2.8), we introduce

the following result which was proved by Ruan and Wei [24] using Rouché’s theorem.

Lemma 2.1. Consider the exponential polynomial

P(λ, e−λτ1 , · · · , e−λτm) = λn + p0
1λ

n−1 + · · · + p0
n−1λ + p0

n + [p1
1λ

n−1 + · · ·

+ p1
n−1λ + p1

n]e−λτ1 + · · · + [pm
1 λ

n−1 + · · · + pm
n−1λ + pm

n ]e−λτm ,

where τi ≥ 0 (i = 1, 2, · · · ,m), pi
j (i = 1, 2, · · · ,m; j = 1, 2, · · · , n) are constants. As (τ1, τ2, · · · , τm)

vary, the sum of the order of the zeros of P(λ, e−λτ1 , · · · , e−λτm) on the open right half plane can change
only if a zero appears on or crosses the imaginary axis.

It is obvious that λ = 0 is not a root of Eq (2.8). When there is no delay, that is, τ1 = τ2 = 0,
Eq (2.8) is rewritten as follows:

λ2 + (u∗ + b
√

u∗ − A)λ + b
√

u∗(u∗ +
b

2d
− A) = 0. (2.9)

Thus, if u∗ + b
2d −A < 0, Eq (2.9) has at least one positive root, which implies that system (2.2) without

time delay is unstable. If the condition
(H2): 1 + mc

(pu∗−c)2 < min
{
2u∗ + b

d , 2u∗ + b
2d + b

√
u∗

}
holds, the two roots of Eq (2.9) have always negative real parts. Thus, we have the following result.

Lemma 2.2. Assume that (H1) and (H2) hold, then the two roots of Eq (2.9) have always negative real
parts, that is, the positive equilibrium of system (2.2) with τ1 = τ2 = 0 is locally asymptotically stable.

AIMS Mathematics Volume 6, Issue 6, 5695–5719.



5701

In what follows, we will discuss in detail the local stability of system around the positive equilibrium
and the existence of Hopf bifurcations occurring at the positive equilibrium by selecting different values
of τ1 and τ2.

Case one: τ1 = 0 and τ2 , 0.
In this case, Eq (2.8) is translated into the following form

λ2 + A11λ + A10 + B10e−λτ2 = 0, (2.10)

where A11 = b
√

u∗ + u∗ − A, A10 = b
√

u∗(u∗ − A), B10 = b2
√

u∗
2d .

Now, we can obtain the same result as Lemma 2.2 when τ2 = 0. For τ2 > 0, let ωi (ω > 0) be a
root of Eq (2.10), then ω satisfies the following equation:

−ω2 − A11ωi + A10 + B10(cosωτ2 − isinωτ2) = 0.

Separating the real and imaginary parts, we obtain B10cosωτ2 = ω2 − A10,

B10sinωτ2 = −A11ω,
(2.11)

which yields that
ω4 + (A2

11 − 2A10)ω2 + A2
10 − B2

10 = 0. (2.12)

Further, if denote v = ω2, we can obtain Φ1(ν) = ν2+(A2
11−2A10)ν+A2

10−B2
10. It is obvious that Eq (2.12)

dose not have positive root when A2
10−B2

10 > 0 and A2
11−2A10 ≥ 0 or ∆1 , (A2

11−2A10)2−4(A2
11−2A10) <

0.
If the following assumption
(H3): A2

10 − B2
10 ≤ 0

holds, then Eq (2.12) has a positive root ω+
2 , here ω+

2 =

√
2A10−A2

11+∆1

2 .
If the following assumption
(H4): A2

10 − B2
10 > 0, A2

11 − 2A10 < 0 and ∆1 > 0

holds, then Eq (2.12) has two positive roots ω+
2 and ω−2 , ω±2 =

√
2A10−A2

11±∆1

2 .
From Eq (2.11), if (H3) holds and denote

τ+
2 j =

1
ω+

2
{arccos

(ω+
2 )2 − A10

B10
+ 2 jπ}, j = 0, 1, 2, · · · ,

then ±iω+
2 are a pair of purely imaginary root of Eq (2.10) with τ2 = τ+

2 j.
Define τ20 = min{τ+

2 j, j = 0, 1, 2, · · · }. Further, if denote λ(τ) = α(τ) + iω(τ) be the root of (2.10),
then it satisfies α(τ20) = 0, ω(τ20) = ω20. Next, we will investigate whether the transversality condition
is satisfied. Differentiating the two sides of Eq (2.10) with respect to τ2, we get

(
dλ
dτ2

)−1 =
2λ + A11

λB10e−λτ2
−
τ2

λ
.

For simplify, we define ω+
2 as ω and τ+

2 j as τ2, and obtain

sign
{d(Reλ)

dτ2
|τ2=τ+

2 j

}
= sign

{
Re

[
dλ(τ2)

dτ2

]−1

τ2=τ+
2 j

}
AIMS Mathematics Volume 6, Issue 6, 5695–5719.
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= sign
{
Re(

2λ + A11

λB10e−λτ2
−
τ2

λ
)|λ=ω+

2 i

}
= sign

{ 1
B2

10

(2ω2
+ + A2

11 − 2A10)
}

=
1

B2
10

sign
{
Φ′1(ν)

}
.

Thus, we have the following conclusion.

Lemma 2.3. Assume that (H1) holds, then the transversality condition is satisfied. That is,

dReλ(τ2)
dτ2

|τ2=τ+
2 j
> 0.

From Eq (2.11), if (H4) holds and we denote

τ±2 j =
1
ω±2
{arccos

(ω±2 )2 − A10

B10
+ 2 jπ}, j = 0, 1, 2, · · · ,

then ±iω+
2 (resp. ±iω−2 ) are a pair of purely imaginary root of Eq (2.10) with τ2 = τ+

2 j (resp. τ2 = τ−2 j).
Further, we can check that there exists a positive integral k > 0 such that τ+

2k+1
> τ−2k

and 0 < τ+
20
< τ−20

<

τ+
21
< τ−21

· · · τ−2k−1
< τ+

2k
< τ−2k

< τ+
2k+1

.
Differentiating the both sides of Eq (2.10) with respect to τ2, then straightforward but tedious

calculations lead to the following conclusion.

Lemma 2.4. Assume (H1) and Φ′1(ν) , 0 hold, then the transversality condition

Sign
{dReλ(τ2)

dτ2

∣∣∣∣
τ2=τ+

2 j

} = Sign
{
Φ′1(ν)

}
,

Sign
{dReλ(τ2)

dτ2

∣∣∣∣
τ2=τ−2 j

}
= −Sign

{
Φ′1(ν)

}
are satisfied, and ( dλ

dτ2
)−1 and Φ′1(ν) have the same sign.

Summarizing the above lemmas and applying Lemma 2.4 to Eq (2.10), we have the following
theorem.

Theorem 2.1. Suppose that (H1) and (H2) are true.
(1) If (H3) holds, system (2.2) is locally asymptotically stable for τ2 ∈ [0, τ20) and unstable for

τ2 > τ20. That is, system (2.2) undergoes a Hopf bifurcation at the positive equilibrium P∗(x∗, y∗, e∗)
when τ2 = τ+

2 j, j = 0, 1, 2, · · · .
(2) If (H4) and Φ′1(ν) , 0, then there exists N ∈ N, when τ2 ∈ (0, τ+

20
)∪ (τ−20

, τ+
21

)∪ · · · (τ−2N
, τ+

2N+1
), all

the roots of Eq (2.10) have negative real part, thus system (2.2) is locally asymptotically stable; when
τ2 ∈ (τ+

20
, τ−20

) ∪ (τ+
21
, τ−21

) ∪ · · · ∪ (τ+
2N
, τ−2N

) ∪ (τ+
2N+1

,+∞), Eq (2.10) has at least one root with positive
real part, thus system (2.2) is unstable. Hopf bifurcation occurs near the positive equilibrium P∗ when
τ2 = τ±2 j, j = 0, 1, 2, · · · .
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Case two: τ1 , 0 and τ2 = 0.
Eq (2.8) takes the form

λ2 + A21λ + +A20 + (B21λ + B20)e−λτ1 = 0, (2.13)

where A21 = b
√

u∗ − A, A20 = b
√

u∗
2d − Ab

√
u∗, B21 = u∗, B20 = bu∗

√
u∗.

Let ωi (ω > 0) be the root of Eq (2.13). We obtain B21ωsinωτ1 + B20cosωτ1 = ω2 − A20,

B21ωcosωτ1 − B20sinωτ1 = −A21ω,
(2.14)

which gives
ω4 + (A2

21 − B2
21 − 2A20)ω2 + A2

20 − B2
20 = 0. (2.15)

Further, if denote v = ω2, we can obtain Φ2(ν) = ν2 + %ν + A2
20 − B2

20, here % = A2
21 − B2

21 − 2A20. It is
obvious that Eq (2.15) dose not have positive root when A2

21 − B2
21 − 2A20 > 0 and A2

20 − B2
20 > 0 or

∆2 , (A2
21 − B2

21 − 2A20)2 − 4(A2
20 − B2

20) < 0. We give two assumptions as following:
(H5): A2

20 − B2
20 ≤ 0;

(H6): A2
21 − B2

21 − 2A20 < 0, A2
20 − B2

20 > 0 and ∆2 > 0.
If the assumption (H5) holds, then Eq (2.15) has only one positive root, defined ω+

1 . If the assumption

(H6) holds, then Eq (2.15) has two positive roots ω±1 =

√
1
2 [−% ± ∆2], and ω+

1 > ω
−
1 > 0.

From Eq (2.14), if denote

τ±1 j
=

1
ω±1

{
arccos

(B20 − A21B21)(ω±1 )2 − A20B20

B2
20 + B2

21(ω±1 )2
+ 2 jπ

}
, j = 0, 1, 2, · · · ,

then ±iω+
1 (resp. ±iω−1 ) are a pair of purely imaginary root of Eq (2.13) with τ1 = τ+

1 j
(resp. τ1 = τ−1 j

).
When (H6) holds, we define τ10 = min{τ±1 j

, j = 0, 1, 2, · · · }. Let λ(τ) = ξ(τ) + iω(τ) be the root of
Eq (2.13) near τ = τ10 satisfying ξ(τ10) = 0, ω(τ10) = ω10. Further, if (H2) holds for τ1 = 0, k switches
from stability to instability to stability occur when the parameters are such that 0 < τ+

10
< τ−10

< τ+
11
<

· · · < τ+
1k
< τ−1k

< τ+
1k+1

.
The following transversality condition is true.

Lemma 2.5. Suppose (H6) and Φ′2(ω2) , 0 hold, then the following transversality condition

dReλ(τ1)
dτ1

|τ1=τ+
1 j
> 0 and

dReλ(τ1)
dτ1

|τ1=τ−1 j
< 0

are satisfied, ( dλ
dτ1

)−1 and Φ′2(ν) have the same sign.

Proof. Taking the derivative of λ with respect to τ1 in Eq (2.13), we obtain

(
dλ
dτ1

)−1 =
(2λ + A21)eλτ1 + B21

λ(B21λ + B20)
−
τ1

λ
.
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For simplify, we define ω±1 as ω and τ±1 j as τ1, and we can obtain

sign
{d(Reλ)

dτ1
|τ1=τ±1 j

}
= sign

{
Re (

dλ
dτ1

)−1|τ1=τ±1 j

}
= sign

{
Re

[ −(2λ + A21)
λ(λ2 + A21λ + A20)

]
|λ=±iω±1 + Re

[ B21

λ(B21λ + B20)
]
λ=±iω±1

}
= sign

{ 2ω2 + A2
21 − 2A20

(A20 − ω2)2 + (A21ω)2 +
−B2

21

B2
20 + (B21ω)2

}
=

1
B2

20 + B2
21ω

2
sign

{
Φ′2(ω2)}.

This completes the proof. �

We can summarize the preceding results as the following theorem.

Theorem 2.2. For the system (2.2), if (H1) and (H2) hold, the following results are true.
(1) If Eq (2.15) does not have positive root, then system (2.2) is locally asymptotically stable for

any τ1 ≥ 0.
(2) If (H5) and Φ2(ω) , 0 hold, then system (2.2) is locally asymptotically stable for τ1 ∈ [0, τ10)

and unstable for τ1 > τ10. System (2.2) undergoes a Hopf bifurcation at the equilibrium P∗ when
τ1 = τ+

1 j
( j = 0, 1, 2, · · · ).

(3) If (H6) and Φ2(ω) , 0, then there exists N ∈ N, when τ1 ∈ (0, τ+
10

)∪ (τ−10
, τ+

11
)∪· · · (τ−1N

, τ+
1N+1

), all
the roots of Eq (2.15) have negative real parts, thus system (2.2) is locally asymptotically stable; when
τ1 ∈ (τ+

10
, τ−10

) ∪ (τ+
11
, τ−11

) ∪ · · · ∪ (τ+
1N
, τ−1N

) ∪ (τ+
1N+1

,+∞), Eq (2.15) has at least one root with positive
real part, thus system (2.2) is unstable. Hopf bifurcation occurs near the positive equilibrium P∗ when
τ1 = τ±1 j

( j = 0, 1, 2, · · · ).

Remark 3 In case of τ1 , 0 and τ2 = 0, whether (H6) or (H7) holds, we define the stable interval
of time delay τ1 as I1s = [0, τ10) (resp. I1s = [0, τ10) ∪ (τ−10

, τ+
11

) ∪ · · · (τ−1N
, τ+

1N+1
).

Case three: τ1 > 0 and τ2 > 0.
This case states that τ2 is regarded as a parameter and τ1 belongs to its stable interval. Letωi (ω > 0)

be a root of Eq (2.8) for any τ∗1 ∈ I1s, then we can obtain
b2
√

u∗

2d
cosωτ2 = ω2 + Ab

√
u∗ − bu∗

√
u∗cosωτ∗1 − ωu∗sinωτ∗1,

b2
√

u∗

2d
sinωτ2 = (b

√
u∗ − A)ω − bu∗

√
u∗sinωτ∗1 + ωu∗cosωτ∗1,

(2.16)

which yields

ω4 + (A2 + b2u∗2)ω2 + A2b2u∗ − 2Au∗(ω2 + b2u∗)cosωτ∗1 − 2u∗(ω3 + b2u∗ω)sinωτ∗1 = 0. (2.17)

Without loss of generality, suppose that
(H7) Eq (2.17) has at least finite positive roots.
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If (H7) holds, the roots of Eq (2.17) defined by ω1, ω2, · · · , ωk. For every fixed ωi (i = 1, 2, · · · , k),
there exists a sequence

τ(i)
2 j =

1
ωi
{arccos

2d(ω2
i + Ab

√
u∗ − bu∗

√
u∗cosωiτ

∗
1 − ωiu∗sinωiτ

∗
1)

b2
√

u∗
+ 2 jπ},

i = 1, 2, · · · , k, j = 0, 1, 2, · · · ,

then ±iωi are a pair of purely imaginary root of (2.8) with τ2 = τ(i)
2 j.

Define
τ2∗ = τ(i)

20 = min
i∈{1,2,··· ,k}

{τ(i)
2 j}, j = 0, 1, 2, · · · .

Let λ(τ) = ξ(τ) + iω(τ) be the root of Eq (2.8) near τ = τ2∗ satisfying ξ(τ2∗) = 0, ω(τ2∗) = ω∗. Further,
we obtain the following lemma.

Lemma 2.6. Suppose (H7) and PRQR − PIQI > 0 hold, then the following transversality condition

dReλ(τ2)
dτ2

|τ2=τ(i)
2 j
> 0

is satisfied, where

PR = b
√

u∗ − A + u∗[(1 − bτ∗1
√

u∗)cosωiτ
∗
1 − ωiτ

∗
1sinωiτ

∗
1],

PI = 2ωi − u∗[(1 − bτ∗1
√

u∗)sinωiτ
∗
1 + ωiτ

∗
1cosωiτ

∗
1],

QR = ω2
i + Ab

√
u∗ − bu∗

√
u∗cosωiτ

∗
1 − ωiu∗sinωiτ

∗
1,

QI = ωi(b
√

u∗ − A) − bu∗
√

u∗sinωiτ
∗
1 + ωiu∗cosωiτ

∗
1.

Proof. Taking the derivative of λ with respect to τ2 in Eq (2.8), we obtain

(
dλ
dτ2

)−1 =
2λ + b

√
u∗ − A + u∗(1 − τ∗1λ − bτ∗1

√
u∗)e−λτ

∗
1

b2
√

u∗
2d λe−λτ2

−
τ2

λ
.

For simplify, defining ωi as ω∗ and τ(i)
2 j as τ2, we can obtain

sign
{d(Reλ)

dτ2
|τ2=τ(i)

2 j

}
= sign

{
Re(

d λ
dτ2

)−1|τ2=τ(i)
2 j

}
= sign

{
Re

[2λ + b
√

u∗ − A + u∗(1 − τ∗1λ − bτ∗1
√

u∗)e−λτ
∗
1

b2
√

u∗
2d λe−λτ2

−
τ2

λ

]
λ=ω∗i

}
=

4d2

ω∗u∗b4(Q2
R + Q2

I )
sign

{
PRQR − PIQI

}
.

If PRQR − PIQI > 0 holds, then this ends the proof. �

Therefore, by the general Hopf bifurcation theorem for FDEs in Hale [25], we have the following
results on stability and bifurcation of system (2.2).
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Theorem 2.3. For system (2.2), suppose (H7) and PRQR − PIQI > 0 hold. Then system (2.2) is locally
asymptotically stable when τ2 ∈ [0, τ2∗) and τ1 ∈ I1s, and system (2.2) undergoes a Hopf bifurcation
at the positive equilibrium P∗ when τ2 = τ2∗. That is, system (2.2) has a branch of periodic solutions
bifurcating from Hopf bifurcation near τ2 = τ2∗.

3. Direction and stability of the Hopf bifurcation

In this section, we shall study the direction of the Hopf bifurcation and stability of bifurcating
periodic solution of system (2.2). The approach employed here is the normal form method and center
manifold theorem due to Hassard et al. [42]. More precisely, we will compute the reduced system on
the center manifold with the pair of conjugate complex, purely imaginary solution of the characteristic
equation (2.8). By taking time delay τ2 for fixed value τ1∗ ∈ I1s, we can determine the Hopf bifurcation
direction to answer the question of whether the bifurcation branch of periodic solution exists locally
for supercritical bifurcation or subcritical bifurcation.

Throughout this section, it is considered system (2.2) undergoes Hopf bifurcation at the positive
equilibrium P∗ when τ2 = τ2∗, τ1∗ ∈ I1s. Without loss of generality, we assume that τ1∗ < τ2∗. Let
x1(t) = y1(t) − y∗1, x2(t) = y2(t) − y∗2, t = t/τ2, τ2 = τ2∗ + µ and x̄i(t) = xi(τ2t) and dropping the bars for
simplification of notations, then system (2.2) is transformed into an functional differential equation in
C = C([−1, 0],R2) as

ẋ(t) = Lµ(xt) + F(µ, xt), (3.1)

where x(t) = (x1(t), x2(t))T ∈ R2, and Lµ : C → R2, F : R ×C → R2 are given, respectively, by

Lµ(φ) = (τ2∗ + µ)[B(τ2)φ(0) + C(τ2)φ(−
τ1∗

τ2∗
) + D(τ2)φ(−1)],

and
F(µ, xt) = (τ2∗ + µ)(F1, F2)T ,

where

B(τ2) =

(
A −

√
u∗

0 −b
√

u∗

)
, C(τ2) =

(
−u∗ 0
0 0

)
, D(τ2) =

(
0 0

b2
√

u∗
2d 0

)
,

and 
F1 = a11φ

2
1(0) + a12φ1(0)φ2(0) + a13φ1(0)φ1(− τ1∗

τ2∗
)

+a111φ
3
1(0) + a112φ

2
1(0)φ2(0),

F2 = b11φ
2
1(−1) + b12φ1(−1)φ2(0) + b22φ

2
2(0) + b111φ

3
1(−1) + b112φ

2
1(−1)φ2(0),

here φ(θ) = (φ1(θ), φ2(θ))T ∈ C([−1, 0],R2),

a11 =
b

4du∗
+

mp
(pu∗ − c)2 −

mp(pu∗ + c)
(pu∗ − c)2 , a12 =

−1

2
√

u∗
, a13 = −1,

a111 =
−3b

(8du∗)2 −
2mp2

(pu∗ − c)3 +
4mp2(pu∗ + 2c)

(pu∗ − c)4 , a112 =
−1

4u∗
√

u∗
,

b11 =
−b2

4du∗
, b12 =

b

2
√

u∗
, b22 = −2d, b111 =

3b2

8d(u∗)2 , b112 =
−b

4u∗
√

u∗
.
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System (3.1) turns to the linear problem
ẋ(t) = Lµxt

by the Riesz representation theorem. There exists 2 × 2 matrix-valued function

η(·, µ) : [−1, 0]→ R2×2,

such that

Lµ(φ) =

∫ 0

−1
dη(θ, µ)φ(θ), φ ∈ C. (3.2)

In fact, we can choose

η(θ, µ) =


(τ2∗ + µ)(B + C + D), θ = 0,
(τ2∗ + µ)(C + D), θ ∈ [− τ1∗

τ2∗
, 0),

(τ2∗ + µ)D, θ ∈ (−1,− τ1∗
τ2∗

),
0, θ = −1.

Then Eq (3.2) is satisfied.
Next, for φ ∈ C([−1, 0],R2), we define the operator A(µ) as

A(µ)φ(θ) =

 dφ
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(θ, µ)φ(θ), θ = 0,

and

R(µ)φ(θ) =

{
0, θ ∈ [−1, 0),
F(µ, φ), θ = 0.

Since dut
dθ = dut

dt , then system (3.1) is equivalent to the following operator equation

u̇(t) = A(µ)ut + R(µ)ut, (3.3)

where ut = u(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C′([−1, 0], (R2)∗), we further define the adjoint A∗ of A as

A∗(µ)ψ(s) =

 −dψ(s)
ds , s ∈ (0, 1],∫ 0

−1
ψ(−s)dη(s, µ), s = 0,

and a bilinear form

〈ψ(s), φ(θ)〉 = ψ̄T (0)φ(0) −
∫ 0

θ=−1

∫ θ

ξ=0
ψ̄T (ξ − s)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0). Then A(0) and A∗(0) are adjoint operators. From the above analysis, we obtain
that ±iω∗τ2∗ are the eigenvalues of A(0) and therefore they are also the eigenvalues of A∗(0). Let q(θ)
be the eigenvector of A(0) corresponding to iω∗τ2∗ and q∗(s) be the eigenvector of A∗(0) corresponding
to −iω∗τ2∗, we have

A(0)q(θ) = iω∗τ2∗q(θ), A∗(0)q∗(s) = −iω∗τ2∗q∗(s).
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By some simple computation, we can obtain

q(θ) = Veiω∗τ2∗θ, q∗(s) = DV∗e−iω∗τ2∗s,

where

V = (1, ρ)T , ρ =
1
√

u∗
(A − u∗e−iω∗τ1∗ − ie−iω∗τ2∗),

V∗ = (1, ρ∗)T , ρ∗ =
2d
√

u∗

2dω∗i + b2e−iω∗τ2∗
,

D̄ =
2d

2d + 2dρρ̄∗ + b2τ2∗e−iω∗τ2∗ρρ̄∗
.

Then < q∗, q >= 1, and < q∗, q̄ >= 0.
In the remainder of this section, by using the same notations as in Hassard et al. [42], we compute

the coordinates to describe the center manifold C0 at µ = 0 and obtain the following expressions:

x1t(0) = z + z̄ + W (1)(0), x2t(0) = ρz + ρ̄∗z̄ + W (2)(0),
x1t(−1) = e−iω∗τ2∗z + eiω∗τ2∗ z̄ + W (1)(−1),
x2t(−1) = ρe−iω∗τ2∗z + ρ̄∗eiω∗τ2∗ z̄ + W (2)(−1),

x1t(−
τ1∗

τ2∗
) = e−iω∗τ1∗z + eiω∗τ1∗ z̄ + W (1)(−

τ1∗

τ2∗
),

x2t(−
τ1∗

τ2∗
) = ρe−iω∗τ1∗z + ρ̄∗eiω∗τ1∗ z̄ + W (2)(−

τ1∗

τ2∗
).

From g(z, z̄) = q̄∗(0)F0(z, z̄) = g20
z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 , we obtain the coefficients determining

the important quantities of the periodic solution:

g20 = 2D̄[a11 + a12ρ + a13e−iω∗τ1∗ + b11ρ̄∗e−iω∗τ2∗ + b12ρ̄∗ρe−iω∗τ2∗ + b22ρ̄∗ρ
2],

g11 = D̄[2a11 + a12(ρ + ρ̄) + a13(eiω∗τ1∗ + e−iω∗τ1∗) + 2b11ρ̄∗

+b12ρ̄∗(ρeiω∗τ2∗ + ρ̄e−iω∗τ2∗) + 2b22ρ̄∗ρρ̄],
g02 = 2D̄[a11 + a12ρ̄ + a13eiω∗τ1∗ + b11ρ̄∗eiω∗τ2∗ + b12ρ̄∗ρ̄eiω∗τ2∗ + +b22ρ̄∗ρ̄

2],
g21 = 2D̄{a11(2W (1)

11 (0) + W (1)
20 (0))

+a12[1
2W (2)

11 (0)W (2)
20 (0) + 1

2 ρ̄W (1)
20 (0) + ρW (1)

11 (0)]
+ a13[W (1)

11 (− τ1∗
τ2∗

) + 1
2W (1)

20 (− τ1∗
τ2∗

) + 1
2W (1)

20 (0)eiω∗τ2∗ + W (1)
11 (0)e−iω∗τ1∗]

+3a111 + a112(2 + ρ̄) + b11ρ̄∗[2W (1)
11 (−1)e−iω∗τ2∗ + W (1)

20 (−1)eiω∗τ2∗]
+b12ρ̄∗[W

(2)
11 (0)e−iω∗τ2∗ + 1

2W (2)
20 (0)eiω∗τ2∗ + ρW (1)

11 (−1) + 1
2 ρ̄W (1)

20 (−1)]
+b22ρ̄∗[2ρW (2)

11 (0) + ρ̄W (2)
20 (0)] + 3b11ρ̄∗e−iω∗τ2∗ + b11ρ̄∗(2ρ + e−2iω∗τ2∗)}.

(3.4)

Since W20(θ) and W11(θ) appears in g21, we need to compute them as follows.

W20(θ) =
ig20q(0)
ω∗τ2∗

eiω∗τ2∗θ +
iḡ02q̄(0)
3ω∗τ2∗

e−iω∗τ2∗θ + E1e2iω∗τ2∗θ,

W11(θ) = −
ig11q(0)
ω∗τ2∗

eiω∗τ2∗θ +
iḡ11q̄(0)
ω∗τ2∗

e−iω∗τ2∗θ + E2,
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where E1 = (E(1)
1 , E(2)

1 )T and E2 = (E(1)
2 , E(2)

2 )T are both two dimensional vectors and can be determined
by

E1 = 2
(
2iω∗ − A + u∗e−2iω∗τ2∗ −

√
u∗

0 2iω∗ + b
√

u∗ − b2

2d e−2iω∗τ2∗

)−1 (
K11

K21

)
,

and

E2 = −

A − u∗ −
√

u∗
b2
√

u∗
2d b

√
u∗

−1 (
K12

K22

)
,

here

K11 = a11 + a12ρ + a13e−iω∗τ1∗ ,

K21 = 2a11 + a12(ρ + ρ̄) + a13(eiω∗τ1∗ + e−iω∗τ1∗),
K12 = b11e−iω∗τ2∗ + b12ρe−iω∗τ2∗ + b22ρ

2,

K22 = 2b11 + b12(ρeiω∗τ2∗ + ρ̄e−iω∗τ2∗) + 2b22ρρ̄.

Furthermore, we can see that each gi j in (3.4) is determined by parameters and delays of system (2.2).
Thus, we can compute the following quantities:

C1(0) = i
2ω∗τ2∗

(g20g11 − 2|g11|
2 −

|g02 |
2

3 ) +
g21
2 ,

µ2 = −
Re{C1(0)}

Re{λ′ (τ2∗)}
,

β2 = 2Re{C1(0)},

T2 = −
Im{C1(0)}+µ2Im{λ

′
(τ2∗)}

ω∗τ2∗
,

(3.5)

which determine the properties of bifurcation periodic solutions in the center manifold at the critical
value τ2∗. By the results of Hassard et al. [42], we have the following results.

Theorem 3.1. In (3.5), the following results hold.
(i) The sign of µ2 determines the direction of the Hopf bifurcation: If µ2 > 0 (resp. µ2 < 0), then

the Hopf bifurcation is supercritical (resp. subcritical) and the bifurcation periodic solutions exist for
τ2 > τ2∗ (τ2 < τ2∗).

(ii) The sign of β2 determines the stability of the bifurcating periodic solutions: The bifurcation
periodic solutions are stable (resp. unstable) if β2 < 0 (resp. β2 > 0).

(iii) The sign of T2 determines the period of the bifurcating periodic solutions: The period increases
(resp. decreases) if T2 > 0 (resp. T2 < 0).

4. The control of Hopf bifurcation

The objective is to extend the range of parameter such that within this largest possible range system
can remain its stable dynamical behavior, and yet the period-doubling bifurcations are being delayed
and even being eliminated completely, or being stabilized to a desired unstable periodic orbit which is
embedded in the chaotic attractor of the system.

The nonlinear controller for the population of the predator is taken as the form

g(t, k̄) = k1y2(t) + k2y3
2(t), (4.1)
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here k̄ = (k1, k2) and k1, k2 are feedback gains.
Introducing the nonlinear controller into system (2.7), we can obtain

.
y1(t) = (1 −

b
2d
− u∗ − E∗ +

2pe∗u∗

pu∗ − c
)y1(t) −

√
u∗y2(t) − u∗y1(t − τ1),

.
y2(t) = −b

√
u∗y2(t) +

b2

2d
y1(t − τ2) + k1y2(t) + k2y3

2(t).
(4.2)

In what follows, we will only discuss one case τ1 = 0 and τ2 , 0. The other cases can be investigated
similarly, so those are omitted.

In order to give the corresponding result, we give the following assumption
(H8) k1 >

A10
A−u∗ and (A10 − k1(u∗ − A)) − (A11 − k1)2 < B10e

k1−A11
2 τ20 .

Theorem 4.1. If (H8) is true, then the control system (4.2) becomes stable when τ = τ20.

Proof. When τ2 = τ20, the associated characteristic transcendental equation of system (4.2) around
(0, 0) is

λ2 + (A11 − k1)λ + (A10 − k1(u∗ − A)) + B10e−λτ2 = 0, (4.3)

where A11, A10 and B10 are the same to that in Eq (2.11)
Let g1(λ) = λ2 + (A11 − k1)λ + (A10 − k1(u∗ − A)) and g2(λ) = −B10e−λτ2 . In order to investigate the

solution of system (4.3), we only need to discuss the solution of g1(λ) = g2(λ). By a series of analysis,
if k1 >

A10
A−u∗ and (A10 − k1(u∗ − A))− (A11 − k1)2 < B10e

k1−A11
2 τ20 hold, then we obtain that the whole roots

of system (4.3) have the negative real part. �

Remark 4 According to the theory of Hopf bifurcation, the nonlinear sate feedback method can be
implemented to eliminate those unfavorable phenomena and stabilize the proposed marine ecosystems.
Therefore, biological population can be controlled at states.

5. Optimal tax policy

In this section, we will discuss the optimal tax policy of system (5.1). Our aim is to find the optimal
tax policy that will maximize the benefits of fish population without extinction. We noticed that as the
tax rate increased, the harvest decreased. Therefore, taxation plays a decisive role. When τ1 = τ2 = 0,
system (2.2) becomes 

.
x(t) = x(1 − x) −

√
xy −

mx
(p1 − T )x − c

,

.
y(t) = −dy2 + b

√
xy.

(5.1)

However, we not only consider the net economic revenue of the harvested, but also consider social
economic revenue of the regulatory agency based on Gupta et al. [43]. Therefore, we have

P(t, x, y, e,T ) = e((p1 − T )x − c) + exT = e(p1x − c).

The present value J(T ) of a continuous time-stream of revenues is given by

J(T ) =

∫ ∞

0
e−δtP(t, x, y, e,T )dt, (5.2)
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where δ is the continuous annual discount rate which is fixed by harvesting agencies.
The control problem over an infinite time horizon is given by

maxJ(T ) =

∫ ∞

0
e−δP(t, x, y, e,T )dt. (5.3)

We take advantage of the maximum principle to get the optimal solution of this problem. The
associated Hamiltonian function is

H(t, x, y, e,T ) = e(p1x − c)e−δt + λ1(x(1 − x) −
√

xy −
mx

(p1 − T )x − c
) + λ2(−dy2 + b

√
xy).

where λi = λi(t)(i = 1, 2) are adjoint variables corresponding to the variables x, y respectively. The
optimal control T which maximizes H must satisfy the following conditions:

T̄ =


Tmax,

∂H
∂T

> 0,

0,
∂H
∂T

< 0.
(5.4)

It is assumed that the optimal solution does not occur at T = Tmax or T = 0. If ∂H
∂T = 0, then we

have λ1(t) = 0. Based on Pontryagin’s maximum principle [44], the adjoint variables must satisfy the
following adjoint equations

dλ1

dt
= −

∂H
∂x

and
dλ2

dt
= −

∂H
∂y
. (5.5)

In order to obtain singular optimal equilibrium solution, we use steady state equations (1 − x) −
√

xy
x
−

x
(p1 − T )x − c

= 0,

− dy + b
√

x = 0.
(5.6)

Thus, Eq (5.5) along with steady state Eq (5.6) gives

dλ1

dt
= ep1e−δt +

λ2by
2
√

x
. (5.7)

From Eq (5.7) we get

λ2(t) =
2ep1e−δt

by
√

x
. (5.8)

In order to obtain an optimal equilibrium, based on the method of reference [45], we rewrite Eq (5.8)
as

λ2(t) = µ2(t)e−δt. (5.9)

Taking the derivative of λ2 with respect to t in (5.9), we have that

dµ2

dt
− δµ2 =

2ep1(2dy − b
√

x)
by
√

x
. (5.10)
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The shadow prices µi(t) = λi(t)eδt(i = 1, 2) should remain constant when limt→∞ λi = 0 for i = 1, 2.
Thus the solution of Eq (5.10) is

µ2 =
2ep1(2dy − b

√
x)

δby
√

x
.

From Eqs (5.8) and (5.10) we get

2ep1

by
√

x
−

2ep1(2dy − b
√

x)
δby
√

x
= 0. (5.11)

That is, 2dy − b
√

x − δ = 0.
According to the interior equilibrium (x∗, y∗), we can get T =

b2cd+p1(b2(d−b)−2dδ2)
b2(d−b)−2dδ2 . At the same time,

we can get the optimal equilibrium solution.

6. Numerical simulations

We will give some numerical results of system (2.2) to support the analytic results in this section.
We consider the values of parameters as follows b = 0.01, c = 0.02, d = 0.75, p = 2500,m = 604.33.
It is easy to check that the condition (H1): p − c − bp

d = 2458.3 > 0 is satisfied. Thus, system (2.2)
without any time delay is locally asymptotically stable (see Figure 1).

0 50 100 150 200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
The system (2.4) without any time delay.

time t

 

 

prey
predator
harvest effort

Figure 1. Dynamical responses of differential-algebraic system model (2.2) with τ1 = τ2 = 0.

We have that τ20 = 2.955 when system (2.2) is considered under the case τ1 = 0 and τ2 , 0.
From Theorem 2.1, we obtain that the corresponding waveform shown in Figure 2. That is, when
τ2 = 2.950 < τ20 = 2.955, the system is locally asymptotically stable, but Hopf bifurcation occurs
once τ2 = 2.960 > τ20 = 2.955. Similarly, we have that τ10 = 1.901 when system (2.2) is considered
under the case τ1 , 0 τ2 = 0 (see Figure 3).
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Figure 2. The trajectories of system (2.2) with initial values “0.4, 0.25” and different values
of time delay τ2. (a) System (2.2) is locally asymptotically stable when τ2 = 2.950 < τ20 =

2.955; (b) Hopf bifurcation occurs around the positive equilibrium when τ2 = 2.960 > τ20 =

2.955.
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Figure 3. The trajectories of system (2.2) with initial values “0.4, 0.25” and different values
of time delay τ1. (a) System (2.2) is locally asymptotically stable when τ1 = 1.900 < τ10 =

1.901; (b) Hopf bifurcation occurs around the positive equilibrium when τ1 = 1.902 > τ10 =

1.900.

Regarding τ2 as the parameter with τ1 = 1.0 ∈ I1s = (0, 1.901), we can obtain that τ2∗ = 1.54. From
Theorem 2.3, system (2.2) is locally asymptotically stable at the positive equilibrium for τ2 ∈ (0, τ2∗)
and unstable for τ2 > τ2∗ (see Figure 4). Lastly, by the algorithm (3.5) derived in Section 3, we have
C1(0) = −6.947−24.011i, then µ2 = 1452.01, β2 = −65.83. Thus, the Hopf bifurcation is supercritical,
and the bifurcating periodic solutions are asymptotically stable, which is illustrated in Figure 5.
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Figure 4. The simulations show the phase portrait of system. (a) System (2.2) is stable with
initial values “0.4, 0.25” when time delay τ1 belongs to its stable interval and time delay τ2

is less than its critical value τ2∗; (b) Hopf bifurcation occurs when time delay τ1 belongs to
its stable interval and τ2 is greater than its critical value τ2∗.
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Figure 5. This simulation shows that the periodic solutions bifurcating from Hopf bifurcation
are stable according to the Theorem 4.1.

In addition, we show the effect of the herd behavior of prey species on the dynamics of system (2.2).
Frome the Figure 6, we can see that the dynamics of system (2.2) is sensitive to the initial values of
prey population. That is, when the number of prey species is small, the herd behavior can cause the
fluctuation of population in system (2.2), even extinction. Inversely, much of prey species with herd
behavior can keep this system be stable.
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Figure 6. The simulations show that herd behavior of system (2.2) depends on the initial
value of the prey species. (a) Prey population dies out and harvest effort fluctuates wildly
when the initial values are “0.2, 0.5, 1.2”; (b) Prey and predator of system (2.2) with sub-
figure(a); (c) System (2.2) is stable when the initial values are “0.8, 0.5, 1.2”.

At last, Yuan et al. [10] pointed out that the Turing pattern is induced by quadratic mortality, which
implies that if the predator mortality is given by the linear form, the spatial predator-prey system can
not show the Turing structures. We also find similar results when the death rate of predator population
in the system (2.2) takes the standard mass-action term (see Figure 7 ).
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Figure 7. The simulations show that species of system (2.2) is stable (resp. fluctuates) when
the predator mortality is given by the linear form.

7. Discussion and conclusions

After Ajraldi et al. [8] proposed a predator-prey system with square root functional response, many
researchers have devoted to studying such systems (see [8–23]). Braza [9] investigated the dynamics
of such system and showed the prey exhibits strong herd structure and the predator interacts with
the prey along the outer corridor of the herd of prey. Yuan et al. [10] also considered the quadratic
mortality for predator population based on such system and proposed a spatial predator-prey model
with Neumann boundary conditions. Xu and Yuan [11] introduced a time delay which means the
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growth rate of predator species to depend on the number of the prey species τ units of time earlier and
studied the local stability and the existence of Hopf bifurcation. Some authors (Meng and Wang [19],
Yang [20,21], Souna et al. [22]) obtained dynamical behaviors of such delayed diffusive predator-prey
model with herd schooling behavior. Based on the above work, we not only introduce a new time delay
denoting the feedback time delay of the prey species, but also add a algebraic equation defining the
economic interest of the yield of the harvest effort, which yields system (1.2).

Firstly, we obtained the conditions for the existence of the positive equilibrium. In order to study
the dynamics of system (1.2), we introduced the new normal form of differential-algebraic systems due
to the work of literatures [40,41]. Then, we analyzed the local stability of the positive equilibrium and
the existence of Hopf bifurcation by taking time delays τ1 and τ2 as bifurcation parameters. Next we
gave the explicit formulas determining the direction of Hopf bifurcation and the stability of bifurcating
periodic solutions by using the normal form theory and the center manifold theorem introduced by
Hassard et al. [42]. From simulations, we found that the critical value of time delay τ2 is less than
that in the literature [11] when τ1 = 0. From the biological point of view, the predator species has to
shorten its time interval to survive when the prey species is predated by natural or man-made factors.
Further, if we considered the time delay of prey species belonging to its stable interval, then we found
that the critical value of time delay τ2 (τ2∗ = 1.54) is less than that (τ20 = 2.955) of system (2.2) without
time delay τ1. From the view of population dynamics, in order to suit the real ecosystem, the predator
species needs much less time to turn prey captured into its own newborns. In addition, in order to
eliminate the bifurcation, the nonlinear state feedback controller is designed. Of course, the optimal
tax policy is also discussed in theory. Unfortunately, we are unable to show the corresponding results
in numerical simulations.

Of course, the herd behavior of prey population may not only be good for themselves but also for
other population, such as the predator population and harvest effort (see Figue 6). Yuan et al. [10]
pointed out that the spatial predator-prey system can not show the Turing structures if the predator
mortality is given by the linear form. Similarly, we find that the prey species is stable or turns up
periodic fluctuation and the predator population dies out as soon as fast when the predator mortality of
system (2.2) takes the linear form (see Figue 7).

Aa pointed out in the remark, we only discuss the dynamics of system (2.1) under the case a = 0.
We may investigate some other dynamics of system (2.1) with a , 0. For example, we may show some
bifurcations and chaos only by numerical simulation. In addition, if the economic interest m is taken as
the parameter, then the singularity induced bifurcation may occur in such singular biological economic
predator-prey system. In order to make the system more realistic, we can consider more factors into
system. The linear harvesting is considered in system (1.2), but the following nonlinear harvesting
function can also be considered for fish. Thus, the third equation of system (1.2) is replaced by the
following form:

0 =
qE

sC−1
0 + E + bsX

( p̃X − c̃) − v

where E = sV̂ with s being a proportionality constant and V̂ is number of same vessels per unit area,
which is used to harvest the population. X is the density of fish at time t, C0 describes the degree of
competition between the vessels, q is the catchability co-efficient and b stands for the proportionality
constant for handling time. We leave this work in the future.
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