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Abstract: This study typically emphasizes analyzing the geometrical singularities of weak solutions
of the mixed boundary value problem for the stationary Stokes and Navier-Stokes system in two-
dimensional non-smooth domains with corner points and points at which the type of boundary
conditions change. The existence of these points on the boundary generally generates local singularities
in the solution. We will see the impact of the geometrical singularities of the boundary or the mixed
boundary conditions on the qualitative properties of the solution including its regularity. The solvability
of the underlying boundary value problem is analyzed in weighted Sobolev spaces and the regularity
theorems are formulated in the context of these spaces. To compute the singular terms for various
boundary conditions, the generalized form of the boundary eigenvalue problem for the stationary
Stokes system is derived. The emerging eigenvalues and eigenfunctions produce singular terms, which
permits us to evaluate the optimal regularity of the corresponding weak solution of the Stokes system.
Additionally, the obtained results for the Stokes system are further extended for the non-linear Navier-
Stokes system.
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1. Introduction

LetD ⊂ R2 be a 2-dimensional bounded domain, whose boundary ∂D comprises the corner points
and points at which the type of boundary conditions change. Note that a point P ∈ ∂D is said to be a
corner point if there exists a neighborhood η(P) of P such thatD∩ η(P) is diffeomorphic to an angle κ
intersected with the unit circle. For simplicity, we are considering a bounded plane polygonal domain
(see Figure 1) with corner points (ω , π) and points (ω = π) where the boundary conditions change.
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The boundary points where the boundary conditions change are also referred to as corner points or
vertices. The obtained results for a polygonal domain can be extended to a 2-dimensional bounded
domain, i.e. (Lipschitz continuous) C0, 1 with corner points. We considered one point as a special case
of interest of corner points with an angle ω = π on one side of the domain D, where the Neumann
boundary condition, the Dirichlet boundary condition, respectively, is prescribed.

NP
1

P 2
P

3
P

1N

2

3

1


2


3


N


Figure 1. Schematic illustration of the polygonal domain with vertices P1, ..., PN .

For the polygonal domainD with the vertices P1, ..., PN , we introduce the following notations. Let
PN+1 = P1, J =

{
1, ...,N

}
, Γi (i ∈ J) is the open edge connecting the vertices Pi+1 and Pi, Γ0 = ΓN ,

and ωi (i ∈ J) is the interior angle made by Γi−1,Γi. Let JD =
{
i ∈ J : on Γi the Dirichlet boundary

conditions are prescribed
}

and JN =
{
i ∈ J : on Γi the Neumann boundary conditions are prescribed

}
.

Let N denote the set of the boundary points ofD, i.e., N =
{
Pi

}
, i ∈ J .

We assume that JD, JN are non-empty disjoint sets and J = JD ∪ JN . Moreover, let Γ0, Γ1 be
given by Γ0 =

⋃
i∈JD

Γi, Γ1 =
⋃

i∈JN
Γi. We have Γ0 ∩ Γ1 = ∅ and ∂D = Γ

0
∪ Γ

1
.

We consider the Navier-Stokes equations for an incompressible, viscous fluid, i.e.
∂u
∂t +

∑
j

u j
∂
∂x j

u + ∇ q − ν∆u = f in D,

div u = 0 in D,
(1.1)

where u = (u1, u2) is the velocity vector field with the cartesian components u1, u2, ν is the viscosity
parameter of the fluid flow, i.e., (ν > 0), q is the hydrostatic pressure and f is a given volume force
density.

If the viscosity coefficient ν is sufficiently large, then the flow can be described by the following
stationary Stokes system on a domainD: −ν∆u + ∇ q = f in D,

div u = 0 in D.
(1.2)

The following mixed boundary conditions are considered on the boundary ∂D:

u = h1 on Γ0, (1.3)

S
[
u, q

]
n = h2 on Γ1, (1.4)
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where n = (n1, n2) is the unit outward normal vector to the boundary and S
[
u, q

]
is the hydrostatic

stress tensor with the cartesian components

S
[
u, q

]
= −qδi j + ν

(∂ui

∂x j
+
∂u j

∂xi

)
. (1.5)

Here, δi j is the Kronecker symbol. Further note that if the second equation of (1.2) becoming
−div u = g for a given function g satisfying the property

∫
D

g dx = 0, then a particular regularity of g is
required for proving the regularity of the pressure function or for handling the non-zero boundary data.
Generally, for incompressible flows the function g is set equal to zero to satisfy the incompressibility
condition. For simplicity, we are considering g equal to zero. Therefore, for a smooth boundary,
smooth given data and boundary conditions, the system (1.2) has a smooth solution [41]. The system
(1.2) with the boundary conditions (1.3)-(1.4) is known as the stationary Stokes system with mixed
boundary conditions [30, 36].

The Navier-Stokes equations or even the Stokes equations are solved for Dirichlet boundary
conditions [7, 10, 11, 15, 17] but this is not common in some situations like finite channel flow
models [17, 28]. Usually, these boundary conditions are used in the upstream of the channel and
on the fixed walls but not downstream of the channel, because the downstream velocity depends on
the flow in a channel which is unknown. The situation becomes more intricate when the boundary
of the domain has corners or edges and the Neumann boundary conditions are applied on parts of the
boundary [27, 35]. Therefore, the second equation of (1.2) helps to characterize the different types of
Neumann boundary conditions with the Green theorem. In numerical methods, the condition (1.4) is
used on the downstream boundary [13].

Presently, the corner singularity theory has been constructed for compressible viscous Stokes
and Navier-Stokes systems for polygonal domains in 2-dimensions and polyhedral domains in 3-
dimensions. The mathematical techniques to analyze the singular structure of the solutions near
corners, edges, and cusps have been discussed in [12, 16, 21, 22, 26, 27, 37]. The key point of the
corner singularity theory is the decomposition of the solution of the given problem into a regular part
and a locally acting singular part which is a linear combination of explicit model singular solutions
sm with unknown coefficients cm. The special singular functions sm rely on the geometry of the model
problem, the differential operator, and the characteristic boundary conditions.

In the singularity expansion method for the Stokes problem, the spectral problems related to
the corner singularities of solutions to elliptic equations were discussed in [7, 8]. Kweon [31] has
considered zero Dirichlet boundary conditions to investigate the regularity results of the incompressible
Navier-Stokes equations in a non-convex polygonal domain. [32, 34] have extended these results for
a non-convex polyhedral cylinder in R3 with inflow boundary conditions for compressible Navier-
Stokes equations. The Helmholtz decomposition to obtain regularity results of the compressible Stokes
system in a non-convex polygonal domain with no-slip boundary conditions is used in [33]. Recently,
Anjam [4] has comprehensively discussed the singularities and regularity results of the stationary
Stokes and Navier-Stokes equations on polygonal domains with convex or non-convex corners.

This study typically emphasizes analyzing the boundary singularities and regularity results of the
stationary Stokes and Navier-Stokes system in two-dimensional non-smooth domains with corner
points and points at which the type of boundary conditions change. We use the theory developed
by Kondratíev [24, 25] and further extended by [39] for scalar problems in the context of weighted
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Sobolev spaces. The solvability of the considered boundary value problem is analyzed in the context
of these weighted Sobolev spaces and the regularity theorems are formulated. To compute the singular
terms for various boundary conditions, the Fourier transform is used to obtain the generalized form
of the boundary eigenvalue problem for the stationary Stokes system. The emerging eigenvalues
and eigenfunctions produce singular terms, which permits us to evaluate the optimal regularity of
the corresponding weak solution of the stationary Stokes system.

The main result for the stationary Stokes system is presented in Theorem 3, and the regularity results
that are direct consequences of Theorem 3 are given in Section 4. Moreover, it is proved that the weak
solution (u, q) of the underlying boundary value problem belongs to W2−γ, 2(D)2 × W1−γ, 2(D), where
γ is an arbitrarily small positive real number that depends on the apex angle ω0. Additionally, the
obtained results for the Stokes system are further extended for the non-linear Navier-Stokes system. It
is proved by using the local diffeomorphism theorem that the solution of the Navier-Stokes equations
has similar regularity results as the solution of the generalized Stokes problem near the corner points
if the norm of the body force is sufficiently small. So far the problem has been ignored with such type
of boundary conditions and domain.

The rest of this paper is organized as follows: Section 2 is devoted to present the weak formulation
of the Stokes problem and introduce some function spaces. In Section 3, we determine a parametric
boundary eigenvalue problem with a complex parameter ξ, the stationary Stokes system is being
considered for various combinations of Dirichlet, Neumann, and mixed boundary conditions. The
main regularity and expansion theorem for the stationary Stokes system is given in Theorem 3. The
transcendental equations for various conditions whose zeros are the eigenvalues of the operator Û(ξ)
are derived. Further, the distribution of eigenvalues and eigenfunctions are discussed. In Section 4,
some regularity results for the stationary Stokes system are investigated. The results of Section 4 are
further extended for non-linear Navier-Stokes system in Section 5. Section 6 is devoted to conclusions.

2. Analytical preliminaries

2.1. The weak formulation of the Stokes problem

In this section, we consider the weak formulation of the stationary Stokes problem (1.2)-(1.4). The
variational formulation, solvability, and the uniqueness of the solution are offered. For a weak solution,
we have restricted ourself to the homogenous boundary conditions. Denote

E(D) =
{
u ∈ C∞(D)2; div u = 0, suppu ∩ Γ0 = ∅

}
,

where suppu =
{
x
∣∣∣ u(x) , 0

}
, and suppu ⊂ D. Let Vm, p be a closure of E(D) in the norm of

Wm, p(D)2, 1 ≤ p < ∞ and m ≥ 0 (m need not be an integer), it is a Banach space with the norm of
Wm, p(D)2. For simplicity, we represent V0, 2 and V1, 2, respectively, as H and V . Usually, these spaces
are used to find the solution of the Navier-Stokes equations with homogeneous Dirichlet boundary
conditions, and they are closed subspaces of the spaces L2(D)2 and W1, 2(D)2. They are Hilbert spaces
with the scalar products (

u, v
)

H =

∫
D

u · vdx,

(
(u, v)

)
V =

∫
D

∇u · ∇v dx =

∫
D

∂ui

∂x j

∂vi

∂x j
dx.

(2.1)
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Let f ∈ H. A pair (u, q) ∈ V × L2(D) is called weak solution for the problem (1.2)-(1.4) if it satisfies

a
(
u, v

)
+ b

(
q, v

)
=

(
f, v

)
∀v ∈ V,

b
(
u, p

)
= 0 ∀p ∈ L2(D),

(2.2)

where

a
(
u, v

)
= ν

∫
D

∇u · ∇v dx and b
(
q, v

)
= −

∫
D

q (div v) dx.

Equation (2.2) is the weak formulation of the boundary value problem (1.2)-(1.4), which is obtained by
multiplying the first equation of (1.2) by a test function v ∈ V and the second equation by p ∈ L2(D).
The pressure q is a scalar function, such that, the pair (u, q) satisfy the Eqs (1.2)-(1.4) in domain D in
the sense of distributions. The bilinear form a(., .) is elliptic and continuous, whereas the bilinear form
b(., .) is continuous and verifies the inf-sup condition (see [15, 20, 41]). It is proved in [6, 38] that for
every f ∈ H, there exists a unique weak solution (u, q) of the boundary value problem (1.2)-(1.4) and
for it the following estimate holds:

‖u‖V + ‖q‖L2(D) ≤ c‖f‖H, (2.3)

where c = c(D). Hence, we have to analyze the smoothness of the weak solution (u, q) and see how it
depends on the sizes of the angles ωi, i = 1, ...,N.

Remarks 1. If the given data on the right-hand sides of (1.2)-(1.4) are smoother, for example,
f ∈ L2(D)2, h1 ∈ [H

3
2 (Γ0)]2 and h2 ∈ [H

1
2 (Γ1)]2, if the domain is sufficiently smooth and the

boundary conditions do not change their types, then it is proved (see [41]) that the weak solution
(u, q) ∈ [H2(D)]2 × [H1(D)]. On the other hand, the same regularity result does not hold, if the
domain has corner points or points at which the type of boundary conditions changes (see [16, 23]).
As a matter of fact, in these cases, the regularity can be described by a decomposition of the two-
dimensional solution field

u(x1, x2) =


u1(x1, x2)
u2(x1, x2)
q(x1, x2)

 , (2.4)

into singular and regular parts of the form

u = using + ureg,

=
∑

j, k

rξ j, k

k Φ j, k(ξ j, k, rk, θk) + ureg.
(2.5)

Here, the regular part ureg belongs to [H2(D)]2 × [H1(D)], the corner points are shown by k with
the equivalent polar coordinates (rk, θk), the exponents ξ j, k are the eigenvalues of a Sturm-Liouville
problem, and Φ j, k are the corresponding generalized eigenvector fields.
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2.2. Weighted Sobolev spaces

To investigate the regularity results of the weak solution (u, q) of the corresponding boundary value
problem, firstly, we introduce some function spaces in line with [1, 14, 24, 39].

Let N be the set of the corner points and of points where the type of boundary conditions change
(shortly called the singular boundary points), i.e., N ⊂ ∂D. Denote

C∞N =
{
v ∈ C∞(D), supp v ∩ N = ∅

}
,

where the supp v is bounded. Let α =
(
α1, ..., αN

)
be an N−tuple of real numbers which satisfying

0 < αi < 1 for 1 ≤ i ≤ N. Therefore, the weight function is characterized by

Φα+m(x) =

N∏
i=1

(
ri(x)

)αi+m
,

where m is an any integer and ri(x) = dist (x, Pi). We denote by Dβv be the multi-index notation for
higher-order derivatives and in cartesian coordinates is defined as

Dβv =
∂|β|v

∂xβ1
1 ∂xβ2

2

, β = (β1, β2), |β| = β1 + β2.

LetWm, p
α (D) be the weighted Sobolev spaces and is the closure of C∞

N
(D) equipped with the norm

‖v‖Wm, p
α (D) =

( ∑
|β|≤m

∫
D

|x|p(α−m+|β|)
∣∣∣Dβv

∣∣∣pdx
) 1

p
. (2.6)

Analogously to the factor spaces, the trace spaces are also defined as

W
m− 1

p , p
α (∂D) =Wm, p

α (D)
/
W

m, p
0, α (D), (2.7)

where Wm, p
0, α (D) is the closure of C∞0 (D) with respect to the norm of Wm, p

α (D). This approach is
classical for domains with conical points. Principally, for 1 ≤ p < ∞, we denote Lp

α(D) =W
0, p
α (D).

For negative integers m, i.e., m ∈ Z, m < 0, we describe the spacesWm, p
α (D) as the closure of the

set C∞
N

(D) equipped with the subsequent norm

‖u‖Wm, p
α (D) = sup

v∈W−m, q
−α (D),
v,0

∣∣∣∣ ∫
D

u · vdx
∣∣∣∣/‖v‖W−m, q

−α (D), (2.8)

where q =
p

p−1 is known as the inverse of p. The dual space of Wm, p
α (D) is given as W−m, q

−α (D).

Similarly for the trace spaces, defining the space W
m+ 1

q , p
α (∂D) for m < 0, m ∈ Z, as the dual space

toW
−m− 1

q , q
−α (∂D). Therefore, the consequent continuous imbeddings are considered directly from the

definition of the above spaces
Wm, p

α (D) ↪→Wm−1, p
α−1 (D), (2.9)

W
m− 1

p , p
α (∂D) ↪→W

m−1− 1
p , p

α−1 (∂D). (2.10)
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For a bounded plane domainD, we have the subsequent continuous imbeddings

Wm, p
α (D) ↪→Wm, p

α1
(D) if α1 > α, (2.11)

and
Wm, p2

α2
(D) ↪→Wm, p1

α1
(D), (2.12)

provided that p2 ≥ p1 and α2 + 2
p2
< α1 + 2

p1
.

Let Q =
{
(τ, θ) : −∞ < τ < ∞, 0 < θ < ω0

}
denote the infinite strip with positive width ω0. For any

real h > 0 and for an integer m ≥ 0, the spaces are defined as

Wm
h (Q) =

{
u ∈ L2(Q) :

∑
|β|≤m

∫
Q

e2hτ
∣∣∣Dβu

∣∣∣2 dτd θ < ∞
}
,

where
‖u‖Wm

h (Q) =
( ∑
|β|≤m

∫
Q

e2hτ
∣∣∣Dβu

∣∣∣2 dτ dθ
) 1

2
.

3. Singularities of the Stokes problem in an infinite cone

In this section, we will see the occurrence of the singular terms of the solution of the mixed boundary
value problem for the stationary Stokes problem near the corners and the structure which they have.
Further, the distribution of the eigenvalues and eigenfunctions are given.

3.1. Localization and the model problem

Assume that D is a polygonal domain. To show that the weak solution (u, q) of the underlying
boundary value problem is regular, we have to investigate its behaviour near the corner points Pi (i ∈
J). Let us consider the point PN as origin and denote ωN = ω0 ∈ (0, 2π). An appropriate infinite
differentiable cut-off function χ(|x|) = χ(r) depending on the distance r from the point PN is defined as

χ(r) =

1 for 0 ≤ r ≤ ε,

0 for r ≥ 2ε.

The number ε is so small that PN is the only corner point of the domain D that lies inside the circle
{x : |x| ≤ 2ε}. We multiply the both sides of (1.2) and (1.3)-(1.4) by the smooth cut-off function χ, then
substitute (v, p) = (χu, χq) in (1.2) and likewise in (1.3)-(1.4). The derivatives are considered in the
distribution sense. Thus, the boundary value problem is set into an infinite cone

S =
{
(r, θ) : 0 < r < ∞, 0 < θ < ω0

}
,

and coincides with the original problem near the PN . The Stokes system (1.2) becomes −ν∆v + ∇p = F in S ,
divv = G in S ,

(3.1)

where F = χ f − 2ν∇χ · ∇u− ν u ∆χ+ q∇χ and G = u · ∇χ. The behavior of (v, p) near the corner point
PN illustrates the regularity of the solution (u, q) in the neighborhood of the point PN . If we suppose
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Figure 2. Infinite cone S with opening angle ω0.

that the right-hand side in (1.2) is f ∈ L2(D)2, then F ∈ L2(S )2 and G ∈ H1(S ). Besides, the following
boundary conditions are prescribed on the subsequent edges ΓS , 0 (θ = 0) and ΓS , ω0 (θ = ω0) of the cone
(see Figure 2). Just one condition is considered per edge to differentiate between the mixed boundary
conditions. Therefore, the obtained boundary conditions are:
Dirichlet boundary conditions:

v = H1 on ΓS , 0, ΓS , ω0 if ΓS , 0, ΓS , ω0 ⊂ Γ0, (3.2)

where χh1 = H1.
Neumann boundary conditions:

S
[
v, p

]
n = H2 on ΓS , 0, ΓS , ω0 , if ΓS , 0, ΓS , ω0 ⊂ Γ1, (3.3)

where χh2 + ν n
(
∇ χ · u + u · χ

)
= H2, and the notation (·) denotes the vector direct product between

two vectors.
Mixed boundary conditions: v = H1 on ΓS , 0 if ΓS , 0 ⊂ Γ0,

S
[
v, p

]
n = H2 on ΓS , ω0 if ΓS , ω0 ⊂ Γ1.

(3.4)

It is observed that the right-hand sides of the obtained boundary conditions have similar smoothness as
the original problem in the domainD. To analyze the regularity results of the boundary value problem
(3.1)-(3.4), we rewrite the operators in polar coordinates. Hence, the transformed form is

−ν
(∂2vr

∂r2 +
1
r
∂vr

∂r
+

1
r2

∂2vr

∂θ2 −
vr

r2 −
2
r2

∂vθ
∂θ

)
+
∂p
∂r

= Fr,

−ν
(∂2vθ
∂r2 +

1
r
∂vθ
∂r

+
1
r2

∂2vθ
∂θ2 −

vθ
r2 +

2
r2

∂vr

∂θ

)
+

1
r
∂p
∂θ

= Fθ,

1
r
∂

∂r
(r vr) +

1
r
∂

∂θ
vθ = G,

(3.5)

where (vr, vθ) are the polar components of the velocity vector v, (Fr, Fθ) are the polar components of F
and are given by

v =

(
vr

vθ

)
= A

(
v1

v2

)
,F =

(
Fr

Fθ

)
= A

(
F1

F2

)
, A =

(
cos θ sin θ
− sin θ cos θ

)
.
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Correspondingly, the boundary conditions (3.2)-(3.4) emerge as

v
∣∣∣
θ=0, ω0

= (vr, vθ)T
∣∣∣
θ=0, ω0

= H
1
, (3.6)

1
r
∂vr
∂θ

+ ∂vθ
∂r −

1
r vθ

∣∣∣
θ=0, ω0

= H
2
r ,

−p + 2ν
(1

r
∂vθ
∂θ

+ 1
r vr

)∣∣∣
θ=0, ω0

= H
2
θ ,

(3.7)



vr

∣∣∣
θ=0

= H
1
r ,

vθ
∣∣∣
θ=0

= H
1
θ ,

1
r
∂vr
∂θ

+ ∂vθ
∂r −

1
r vθ

∣∣∣
θ=ω0

= H
2
r ,

−p + 2ν
(1

r
∂vθ
∂θ

+ 1
r vr

)∣∣∣
θ=ω0

= H
2
θ ,

(3.8)

and H
m

= (H
m
r ,H

m
θ )T , where m = 1 for Dirichlet and m = 2 for Neumann boundary conditions.

They hold in the infinite cone where v(r, θ) = v(x1, x2), p(r, θ) = p(x1, x2), F(r, θ) = F(x1, x2) and
G(r, θ) = G(x1, x2).

Now, the variable τ is introduced by the relation r = eτ. Accordingly, the system (3.5) is set on the
infinite strip with width ω0 as

−ν
(∂2ṽτ
∂τ2 +

∂2ṽτ
∂θ2 − ṽτ − 2

∂ṽθ
∂θ

)
+
∂p̃
∂τ
− p̃ = F̃τ in S̄ ,

−ν
(∂2ṽθ
∂τ2 +

∂2ṽθ
∂θ2 − ṽθ + 2

∂ṽτ
∂θ

)
+
∂p̃
∂θ

= F̃θ in S̄ ,

∂ṽτ
∂τ

+ ṽτ +
∂ṽθ
∂θ

= G̃ in S̄ .

(3.9)

Here, S̄ =
{
(τ, θ) : −∞ < τ < ∞, 0 < θ < ω0

}
and ṽ = v(eτ, θ), p̃ = eτ p(eτ, θ), F̃ = e2τ F(eτ, θ) and

G̃ = eτ G(eτ, θ). The Dirichlet, Neumann and mixed boundary conditions also yield the transformed
form with the boundary data H̃l+1 = elτH

l+1
(eτ, θ), l = 0, 1 as

ṽ
∣∣∣
θ=0, ω0

= (ṽτ, ṽθ)T
∣∣∣∣
θ=0, ω0

= H̃1, (3.10) ±ν
(∂ṽτ
∂θ

+ ∂ṽθ
∂τ
− ṽθ

)∣∣∣∣
θ=0, ω0

= H̃2
τ ,

±
(
− p̃ + 2ν(∂ṽθ

∂θ
+ ṽτ)

)∣∣∣∣
θ=0, ω0

= H̃2
θ ,

(3.11)



ṽτ
∣∣∣
θ=0

= H̃1
τ ,

ṽθ
∣∣∣
θ=0

= H̃1
θ ,

ν
(∂ṽτ
∂θ

+ ∂ṽθ
∂τ
− ṽθ

)∣∣∣∣
θ=ω0

= H̃2
τ ,

− p̃ + 2ν
(∂ṽθ
∂θ

+ ṽτ
)∣∣∣∣
θ=ω0

= H̃2
θ .

(3.12)

To obtain the boundary eigenvalue value problem, the complex Fourier transform with respect to τ is
introduced as

F [v](ξ) = v̂(ξ) = (2π)−
1
2

∫ ∞

−∞

e−iξτ ṽ(τ)dτ, ξ ∈ C, (3.13)
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and the inverse Fourier transform is

F −1[v](ξ) = ṽ(τ) = (2π)−
1
2

∫ ∞+ih

−∞+ih
eiξτv̂(ξ) dξ. (3.14)

It defines an isomorphic mapping, i.e.,

F [v](ξ) =
{
ṽ(τ) :

∫ ∞

−∞

e2hτ|ṽ(τ)|2dτ < ∞
}
→ L2(R + ih), (3.15)

for ξ = s + ih, where h = constant, R + ih =
{
ξ ∈ C : Im ξ = h

}
. Therefore, the subsequent Parseval

identity holds ∫ ∞

−∞

e2hτ |ṽ(τ)|2 dτ =

∫ ∞+ih

−∞+ih
|v̂(ξ)|2 dξ. (3.16)

We have

F
( dm

dτm ṽ(τ)
)
(ξ) = (iξ)mF

(
ṽ(τ)

)
(ξ). (3.17)

Moreover, it is noted that if h1 < h2 and the following properties are satisfied∫ +∞

−∞

e2h1τ |ṽ(τ)|2 dτ < ∞,∫ +∞

−∞

e2h2τ |ṽ(τ)|2 dτ < ∞,
(3.18)

then v̂(ξ) is holomorphic in the strip h1 < Im ξ < h2. Therefore, the relationship between the Fourier
transform and the Mellin transform for any α ∈ C is given by

Reα = −Im ξ, Imα = Re ξ.

Now, by applying (3.13) to (3.9)-(3.12) with respect to τ, the two-point boundary value problem for
the unknown functions (v̂τ, v̂θ, p̂) is obtained. It depends on the complex parameter ξ and holds on the
interval I = (0, ω0). The transformed form of the problem (3.9) is given by

−ν
(∂2v̂τ
∂θ2 − (1 + ξ2)v̂τ − 2

∂v̂θ
∂θ

)
+ (−1 + iξ)p̂ = F̂τ,

−ν
(∂2v̂θ
∂θ2 − (1 + ξ2)v̂θ + 2

∂v̂τ
∂θ

)
+
∂ p̂
∂θ

= F̂θ,

(1 + iξ)v̂τ +
∂v̂θ
∂θ

= Ĝ.

(3.19)

For complex parameter ξ, we have v̂ ∈ W2, 2(I)2, p̂ ∈ W1, 2(I), F̂ ∈ L2(I)2 and Ĝ ∈ W1, 2(I). Let L̂(ξ)
denote the matrix differential operator analogous to the system (3.19) and maps W2, 2(I)2 ×W1, 2(I) →
L2(I)2 ×W1, 2(I). Therefore, one has

L̂(ξ)(v̂, p̂) = (F̂, Ĝ) on I = (0, ω0), (3.20)
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where

L̂(ξ) =


−ν

[ ∂2

∂θ2 − (1 + ξ2)
]

2ν ∂
∂θ

−(1 − iξ)

−2ν ∂
∂θ

−ν
[ ∂2

∂θ2 − (1 + ξ2)
] ∂

∂θ

(1 + iξ) ∂
∂θ

0

 . (3.21)

The operator L̂(ξ) is considered for all parameter ξ ∈ C with various combinations of the boundary
conditions to analyze the qualitative properties of the solution of the underlying problem near the
corner points. Additionally, the Fourier transformed form of the boundary conditions is also expressed
as follows:  v̂τ(ξ, θ)

∣∣∣
θ=0, ω0

= Ĥ1
τ ,

v̂θ(ξ, θ)
∣∣∣
θ=0, ω0

= Ĥ1
θ .

(3.22) ±ν
(∂v̂τ
∂θ
− (1 − iξ)v̂θ

)∣∣∣
θ=0, ω0

= Ĥ2
τ ,

±
(
− p̂ + 2ν(∂v̂θ

∂θ
+ v̂τ)

)∣∣∣
θ=0, ω0

= Ĥ2
θ .

(3.23)


v̂τ(ξ, θ)

∣∣∣
θ=0

= Ĥ1
τ ,

v̂θ(ξ, θ)
∣∣∣
θ=0

= Ĥ1
θ ,

ν
(∂v̂τ
∂θ
− (1 − iξ)v̂θ

)∣∣∣
θ=ω0

= Ĥ2
τ ,

− p̂ + 2ν
(∂v̂θ
∂θ

+ v̂τ
)∣∣∣
θ=ω0

= Ĥ2
θ .

(3.24)

Additionally, the matrix boundary operators for different kinds of boundary conditions can be written
as:
For Dirichlet boundary conditions

B̂DD1(ξ)
∣∣∣
θ=0

=

(
1 0 0
0 1 0

)
, B̂DD2(ξ)

∣∣∣
θ=ω0

=

(
1 0 0
0 1 0

)
. (3.25)

For Neumann boundary conditions

B̂NN1(ξ)
∣∣∣
θ=0

=

ν ∂
∂θ
−ν(1 − iξ) 0

2ν 2ν ∂
∂θ

−1

 , B̂NN2(ξ)
∣∣∣
θ=ω0

=

−ν ∂
∂θ

ν(1 − iξ) 0
−2ν −2ν ∂

∂θ
1

 . (3.26)

For mixed boundary conditions

B̂DN1(ξ)
∣∣∣
θ=0

=

1 0 0
0 1 0

 , B̂DN2(ξ)
∣∣∣
θ=ω0

=

ν ∂
∂θ
−ν(1 − iξ) 0

2ν 2ν ∂
∂θ

−1

 . (3.27)

Analogously, the operator B̂[. .](ξ) is used below to define the general transformed form of the matrix
boundary operators for different kinds of boundary conditions{

B̂[. .](ξ)(v̂, p̂)
}

=
(
Ĥ1, Ĥ2) on ∂I = (0, ω0). (3.28)

Accordingly, the generalized form of the operator pencil Û(ξ) for the two-point boundary value
problem can be written as

Û(ξ) =
[
L̂(ξ),

{
B̂[. .](ξ)

}]
. (3.29)
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Thus, the operator Û(ξ) maps W2, 2(I)2 ×W1, 2(I) into L2(I)2 ×W1, 2(I) × C2 × C2. Note that Û(ξ) can
be defined for every boundary point in the sense of [2, 3]. So, Û(ξ)(θ, ξ) = 0 is used to describe a
generalized eigenvalue problem and the solvability of these type of problems is discussed in [26]. The
operator Û(ξ) realizes an isomorphism for all ξ ∈ C apart from some isolated points (known as the
eigenvalues of Û(ξ)). So, the resolvent R(ξ) =

[
Û(ξ)

]−1 is an operator-valued, meromorphic function
of ξ has poles of finite multiplicity. The eigenvalues of Û(ξ) are obtaining with the determinant method,
which means that the nontrivial solution of the generalized eigenvalue problem leads a transcendental
equation whose zeros are the eigenvalues of Û(ξ).

Besides, the properties of the operator Û(ξ) in the neighborhood of the corner points can be obtained
by the properties of the special operator Û0(ξ) which is explicitly given by the principal parts of the
matrix differential operator L̂(ξ) and the matrix boundary operators B̂[. .](ξ). Hence, we have

L̂0(ξ) =


−ν

( ∂2

∂θ2 − ξ
2) 2ν ∂

∂θ
iξ

−2ν ∂
∂θ

−ν
( ∂2

∂θ2 − ξ
2) ∂

∂θ

iξ ∂
∂θ

0

 , (3.30)

and

B̂0DD1(ξ)
∣∣∣
θ=0

=

(
1 0 0
0 1 0

)
, B̂0DD2(ξ)

∣∣∣
θ=ω0

=

(
1 0 0
0 1 0

)
. (3.31)

B̂0NN1(ξ)
∣∣∣
θ=0

=

ν ∂
∂θ

νiξ 0
2ν 2ν ∂

∂θ
−1

 , B̂0NN2(ξ)
∣∣∣
θ=ω0

=

−ν ∂
∂θ
−νiξ 0

−2ν −2ν ∂
∂θ

1

 . (3.32)

Likewise, we can write for mixed boundary conditions. To compute the eigenvalues ξµ (generally
referred for multiple eigenvalues) and the corresponding eigenfunctions, we proceed as.

Definition 1. A complex number ξ = ξ0 is known as the eigenvalue of Û(ξ) if there exists
a nontrivial solution i.e., û(., ξ0) , 0, which is holomorphic at ξ0, and Û(ξ0) û(θ, ξ0) = 0.
û(θ, ξ0) is called an eigenfunction of Û(ξ0) corresponding to the eigenvalue ξ0. The set of fields{
û0(θ, ξ0), û0,1(θ, ξ0), ..., û0,s(θ, ξ0)

}
with û0,0 = û0 is said to be a Jordan chain corresponding to the

eigenvalue ξ0, if the equation
σ∑

q=0

1
q!

( ∂
∂ξ

)q
Û(ξ) û0,m−q(θ, ξ)

∣∣∣∣
ξ=ξ0

= 0 for m = 1, 2, ..., s,

is satisfied. The number s + 1 is called the length of the Jordan chain.

Remarks 2. It is noted [24–26] that if the complex number ξ is not an eigenvalue of the operator Û(ξ),
then Û(ξ) is an isomorphism between the spaces W2, 2(I)2 ×W1, 2(I) and L2(I)2 ×W1, 2(I) × C2 × C2.

Lemma 1. Let lh = {ξ ∈ C : Im ξ = h}. If no eigenvalues of Û(ξ) lies on the line lh, then the system
(3.19) and (3.22)-(3.24) admits a unique solution (v̂, p̂) ∈ W2,2(I)2 ×W1,2(I) provided (F̂, Ĝ, Ĥ1, Ĥ2) ∈
L2(I)2 ×W1,2(I) × C2 × C2, and it holds for all ξ ∈ lh:

‖v̂‖2W2,2(I)2 + ‖p̂‖2W1,2(I) ≤ c
{
‖F̂‖2L2(I)2 + ‖Ĝ‖2W1,2(I) +

∑
l=0, 1

|ξ|3−2l|Ĥl+1|2
}
, (3.33)

with the constant c is independent of ξ.
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Proof. A similar theorem is proved in [ [19], Theorem 4.9]. So, we omit its proof. �

Therefore, the Lemma 1 provides us an opportunity to prove the following theorem of the solvability
of the problem (3.1)-(3.4).

Theorem 1. Let F ∈ W0, 2
α (S )2, G ∈ W1, 2

α (S ) and Hl+1 ∈ W
2−l− 1

2
α (Γl)2, l = 0, 1. If the line Im ξ =

h = α − 1 contains no eigenvalue of the operator Û(ξ), then the problem (3.1)-(3.4) admits a uniquely
determined solution (v, p) ∈ W2, 2

α (S )2 ×W
1, 2
α (S ) and satisfies the following estimate

‖v‖
W

2, 2
α (S )2 + ‖p‖

W
1, 2
α (S ) ≤ c

{
‖F‖

W
0, 2
α (S )2 + ‖G‖

W
1, 2
α (S ) +

∑
l=0, 1

‖Hl+1‖
W

2−l− 1
2

α (Γl)2

}
, (3.34)

where c > 0 is independent of v and F.

Proof. We prove this theorem by following the idea of Kondratíev [24]. Suppose that the line Im ξ =

h = α − 1 contains no eigenvalue of the operator Û(ξ). First of all, we prove that the right-hand sides
functions of the system (3.9) are Fourier transform in the sense of (3.15). We know from (3.1) that
F ∈ L2(S )2, G ∈ W1, 2(S ). Further note that for all α ≥ 0, F ∈ W0, 2

α (S )
2

and G ∈ W1, 2
α (S ). Since,

F ∈ W0, 2
α (S )

2
, we have ∫

S
|F(x)|2 |x|2α dx =

∫
S̄

e2(τα+τ)|F̃(τ, θ)|2dτ dθ < ∞, (3.35)

where h = α − 1 for all α ≥ 0 and it is meaningful in the sense of (3.15). Therefore, the Fourier
transform of F̃(τ, θ) = (F̃τ, F̃θ) is meaningful in the half plane h = Im ξ ≥ −1 for almost all θ ∈ (0, ω0).

Analogously, for G ∈ W1, 2
α (S ), we have∫

S
|G(x)|2 |x|2(α−1) dx =

∫
S̄

e2τ (α−1) |G̃(τ, θ)|2 dτ dθ < ∞, (3.36)

where h = α − 1 for all α ≥ 0. Therefore, the function G̃(τ, θ) is also Fourier transformable in the half
plane h = Im ξ ≥ −1 for almost all θ ∈ (0, ω0) in the sense of (3.15).

Now, the construction of the singular vector functions can be explained by the observations from
[25, 26, 39]. The main question is the inverse Fourier transform of the right-hand sides of (3.19) and
(3.22)-(3.24) or simply (3.29) which can be read as follows using the formula (3.14):

ṽ j, h(τ, θ) = (2π)−
1
2

∫ ∞+ih

−∞+ih
eiξτ Û−1(ξ)

[
(F̂, Ĝ), (Ĥ1, Ĥ2)

]
dξ. (3.37)

Using the Cauchy theorem yields

ṽ j, h(τ, θ) = (2π)−
1
2 lim

n→∞

{ ∫ −n+iδ

−n+ih
eiξτ Û−1(ξ)

[
(F̂, Ĝ), (Ĥ1, Ĥ2)

]
dξ

+

∫ n+iδ

−n+iδ
eiξτ Û−1(ξ)

[
(F̂, Ĝ), (Ĥ1, Ĥ2)

]
dξ

+

∫ n+ih

n+iδ
eiξτ Û−1(ξ)

[
(F̂, Ĝ), (Ĥ1, Ĥ2)

]
dξ

}
+

1
√

2π
2πi

N∑
ν=1

Res
(
eiξτ Û−1(ξ)

[
(F̂, Ĝ), (Ĥ1, Ĥ2)

])∣∣∣∣
ξ=ξν

.

(3.38)
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The first integral and the third integral tend to zero as n→ ∞ by [24]. The second integral yields
v j, h(x) ∈ W2, 2

α (S )2. The calculation of the residue gives the singular terms. If the operator Û(ξ)
contains no eigenvalue on the line Im ξ = α − 1, ∀α ≥ 0, then the residue vanishes and the inverse
Fourier transform

ṽ j, h(τ, θ) = (2π)−
1
2

∫ ∞+ih

−∞+ih
eiξτ v̂ j, h(ξ, θ) dξ = v j, h(x) ∈ W2, 2

α (S )2,

for j = 1, 2 exists. Thus, ṽ j,h(x) is the uniquely determined solution fromW2, 2
α (S )2 of the underlying

boundary value problem. An analogous result, we obtain for the pressure p̃ ∈ W1, 2
α (S ), where h =

α − 1.
Now, using Lemma 1 and (3.16)-(3.17), we can get (3.34). �

Lemma 2. [29]. Let Û−1(ξ) be the inverse operator of Û(ξ). Û−1(ξ) is a meromorphic operator-
valued function with poles which are the eigenvalues of Û(ξ). The order m of a pole ξ0 is the largest of
the lengths of the Jordan chains corresponding to ξ0. Moreover, the operator Û−1(ξ) has the following
expansion in the neighborhood of ξ0:

Û−1(ξ) =
qm

(ξ − ξ0)m + ... +
q1

(ξ − ξ0)
+ Γ(ξ), (3.39)

where qi : i = 1, ...,m are the finite-dimensional operators which do not depend on ξ and Γ(ξ) is
holomorphic. The operator qm behaves into the space of eigenfunctions of Û(ξ) corresponding to ξ0,
while the operators qm−1, ..., q1 behave into the subspaces of the corresponding associate functions.

The next theorem describes the expansion and the regularity of the problem (3.1)-(3.4).

Theorem 2. Let (v, p) ∈ W2, 2
α (S )2 × W

1, 2
α (S ) be a solution of the problem (3.1)-(3.4) for every

F ∈ W0, 2
α (S )2 ∩W

0, 2
α1 (S )2, G ∈ W1, 2

α (S ) ∩W1, 2
α1 (S ) and Hl+1 ∈ W

2−l− 1
2

α (Γl)2
∩W

2−l− 1
2

α1 (Γl)2, l = 0, 1,
α1 < α. Assume that no eigenvalue of Û(ξ) lies on the lines Im ξ = h1 = α1 − 1 and Im ξ = h = α − 1.
If ξ1, ξ2, ..., ξM are the eigenvalues of Û(ξ) in the strip α1 − 1 < Im ξ < α − 1, then the solution (v, p)
admits the following expansion

(
v, p

)
=

[ M∑
µ=1

Iµ∑
ρ=1

κµρ−1∑
κ=0

cµ, ρ, κ Ψµ, ρ, κ(r, θ)
]

+
[
vreg(r, θ), preg(r, θ)

]
, (3.40)

where Ψµ, ρ, κ(r, θ) are the corresponding singular functions given by

Ψµ, ρ, κ(r, θ) =
(
vµ, ρ, κ(r, θ), pµ, ρ, κ(r, θ)

)
,

with

vµ, ρ, κ(r, θ) = riξµ
κ∑

j=0

(i log r) j

j!
φρ, κ− j
µ (θ),

pµ, ρ, κ(r, θ) = riξµ−1
κ∑

j=0

(i log r) j

j!
ψρ, κ− j
µ (θ).

The regular part
(
vreg(r, θ), preg(r, θ)

)
∈ W

2, 2
α1 (S )2 ×W

1, 2
α1 (S ) and satisfies the following estimate

‖vreg‖W2, 2
α1 (S )2 + ‖preg‖W1, 2

α1 (S ) ≤ c
{
‖F‖

W
0, 2
α1 (S )2 + ‖G‖

W
1, 2
α1 (S ) +

∑
l=0, 1

‖Hl+1‖
W

2−l− 1
2

α1 (Γl)2

}
. (3.41)
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Proof. It follows from Theorem 1 that the solution (v, p) ∈ W2, 2
α (S )2 × W

1, 2
α (S ) of the problem

(3.1)-(3.4) is uniquely determined and specified by the formula (3.37). The use of Cauchy theorem
yields (3.38). It is already stated in Theorem 1 that the first and third integrals in (3.38) are tending
to zero as for n→ ∞. The second integral produces that vreg(x) ∈ W2, 2

α1 (S )2, preg(x) ∈ W1, 2
α1 (S ) is

the uniquely determined solution of (3.1)-(3.4) and the estimate (3.41) is valid. This statement follows
from Theorem 1.

Now, we should calculate the residue in (3.38). Lemma 2 provide us that Û−1(ξ) is a meromorphic
operator-valued function with poles which are the eigenvalues of Û(ξ), and Û−1(ξ) has the expansion
in the form of (3.39). Moreover (F̂, Ĝ) is holomorphic respecting ξ in the strip α1 − 1 < Im ξ < α − 1.
Therefore, we can write

[F̂, Ĝ, Ĥ1, Ĥ2] =

∞∑
m=0

bm(θ) (ξ − ξµ)m, (3.42)

in the neighborhood of ξµ, where the coefficients bm(θ) are elements of L2(I)2 × W1,2(I) × C2 × C2.
Further, we have

eiξτ = eiξµτ[1 + i(ξ − ξµ)τ + ... +
[i(ξ − ξµ)τ]n

n!
+ ...

]
. (3.43)

From (3.39), (3.42) and (3.43), it follows that

eiξτ Û−1(ξ)
[
(F̂, Ĝ), (Ĥ1, Ĥ2)

]
= eiξµτ[1 + i(ξ − ξµ)τ + ... +

[i(ξ − ξµ)τ]n

n!
+ ...

]
·
[ qkµ1

(ξ − ξµ)kµ1
+ ... +

q1

(ξ − ξµ)
+ Γ(ξ)

][ ∞∑
m=0

bm(θ) (ξ − ξµ)m]
.

(3.44)

Therefore, we conclude that

Res
[
eiξτ Û−1(ξ)

[
(F̂, Ĝ), (Ĥ1, Ĥ2)

]]∣∣∣∣
ξ=ξµ

= eiξµτ[q1b1(θ) + ... + qkµ1
bkµ1

(θ)
]

+eiξµτ (iτ)1

1!
[
q2b1(θ) + ... + qkµ1

bkµ1−1(θ)
]
+ ... + eiξµτ (iτ)kµ1−1

(kµ1 − 1)!
[
qkµ1

b1(θ)
]
.

(3.45)

Now, substituting r = eτ, applying Lemma 2 and ( [27], Theorem 1.1.5), we obtain (3.40). �

Now, we derive our fundamental regularity and expansion theorem for the mixed boundary value
problem for the stationary Stokes system in a two-dimensional bounded domain with corner points.
By considering the substitution Reα = −Im ξ − 2, it improves the theorems ( [26], Theorem 8.2.1 and
Theorem 8.2.2) which are based on the Mellin transform and used for the solvability of the elliptic
systems.

Theorem 3. (Regularity and expansion theorem): Let α1 and α2 be real numbers and satisfying
α1 − 1 < α2 < α1. Let a pair (u, q) ∈ Wm, 2

α1 (D)2 ×W
m−1, 2
α1 (D) be a solution of the stationary Stokes

system (1.2) with the homogenous Dirichlet, Neumann, and mixed boundary conditions (1.3)-(1.4) and
f ∈ Wm1−2, p

α2 (D)2 ∩W
m−2, 2
α1 (D)2, where 1 ≤ p < ∞, m1 ≥ m ≥ 2 and α1 ≥ α2 ≥ 0. Then, the following

implications hold:

1. If the strip α2 + 2
p − m1 ≤ Im ξ ≤ α1 + 1 − m is free of eigenvalues of the operator Û(ξ), then the

solution (u, q) ∈
[
W

m1, p
α2 (D)2 ×W

m1−1, p
α2 (D)

]
and holds the following estimate

‖u‖Wm1 , p
α2 (D)2 + ‖q‖

W
m1−1, p
α2 (D) ≤ c(ν,D) ‖f‖

W
m1−2, p
α2 (D)2 .
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2. Let ξ1, ξ2, ..., ξM are the eigenvalues of the operator Û(ξ), and suppose that no eigenvalue lie on
the lines Im ξ = α2 + 2

p −m1 and Im ξ = α1 + 1−m. If the eigenvalues ξ1, ξ2, ..., ξM are situated in
the strip α2 + 2

p −m1 < Im ξ < α1 + 1−m, then the solution (u, q) admits the following expansion
in the neighborhood Pδ of the corner point P:

(
u, q

)
= χ(r)

[ M∑
µ=1

Iµ∑
ρ=1

κµρ−1∑
κ=0

cµ, ρ, κ Ψµ, ρ, κ(r, θ)
]

+
[
ureg(r, θ), qreg(r, θ)

]
, (3.46)

with
(
ureg(r, θ), qreg(r, θ)

)
∈ W

m1, p
α2 (Pδ)2 ×W

m1−1, p
α2 (Pδ). Here, M is the number of eigenvalues of

the operator Û(ξ) in the strip, the constants cµ, ρ, κ depend on the data and the singular functions,
Iµ = dim Ker Û(ξµ), κµρ is the length of the Jordan chains of Û(ξµ), and the corresponding
singular functions are given by

Ψµ, ρ, κ(r, θ) =
(
uµ, ρ, κ(r, θ), qµ, ρ, κ(r, θ)

)
,

with

uµ, ρ, κ(r, θ) = riξµ
κ∑

j=0

(i log r) j

j!
ψρ, κ− j
µ (θ),

qµ, ρ, κ(r, θ) = riξµ−1
κ∑

j=0

(i log r) j

j!
φρ, κ− j
µ (θ).

(3.47)

It is noted from (3.46) and (3.47) that the eigenvalues ξµ = 0 do not yield singularities in the
development of the solution in the neighborhood Pδ.

It is recognized for elliptic boundary value problems that the eigenvalues of the operator Û(ξ) which
lies on the strip have a significant role in the regularity results. The assertions 1 and 2 of Theorem 3
represents the regularity and expansion of the solutions of the system (1.2)-(1.4) near the corner points.

Remarks 3. The technique of Mellin transform, the method of special ansatzes, and spherical
coordinates are used in [26, 27] to obtain the generalized form of the boundary eigenvalue problem
for the stationary Stokes system with Dirichlet and mixed boundary conditions. The existence of the
generalized eigenvalues is discussed in a strip Re ξ ∈ (0, 1). Here, we use the Fourier transform
technique to obtain the generalized form of the boundary eigenvalue problem for the stationary Stokes
system with mixed boundary conditions. Moreover, the existence of the generalized eigenvalues in a
strip Im ξ ∈ (−1, 0) with various combinations of the boundary conditions that depend on the apex
angle ω0 are studied.

3.2. General solutions

Let (v̂τ, v̂θ, p̂) be denoting the general solution of the system (3.19) by considering the right-hand
side functions equal to zero, i.e., L̂(ξ)(v̂, p̂) = 0, where (v̂τ, v̂θ) stands the components of the velocity
vector v̂ and p̂ for the pressure function. On the other hand, If the system (3.19) has the non-zero
right-hand side functions, then the general solution can be written as[

v̂τ, v̂θ, p̂
]T

= Ihom + Ip(ξ, θ).
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Here, Ip denote the particular solution corresponding to the non-zero right-hand side functions and Ihom

is the homogenous or general solution for zero right-hand sides. Here, our interest is to find the Ihom

solution.
For simplicity, we substitute ξ = −iz from [18] into (3.19), then a system of linear ordinary

differential equations is obtained that depends on the complex parameter z.

3.2.1. The fundamental system to the ordinary differential equations

A system of linear ordinary differential equations in θ with complex parameter z is considered

−ν
(∂2v̂τ
∂θ2 − (1 − z2)v̂τ − 2

∂v̂θ
∂θ

)
− (1 − z)p̂ = F̂τ,

−ν
(∂2v̂θ
∂θ2 − (1 − z2)v̂θ + 2

∂v̂τ
∂θ

)
+
∂ p̂
∂θ

= F̂θ,

(1 + z)v̂τ +
∂v̂θ
∂θ

= Ĝ.

(3.48)

Furthermore, the system (3.48) provides a linear homogenous fourth-order ordinary differential
equation with constant complex coefficients, i.e.,

d4v̂θ
dθ4 + 2(1 + z2)

d2v̂θ
dθ2 + (z2 − 1)2v̂θ = 0. (3.49)

It is noted from the general theory of ordinary differential equations that (3.49) gives four independent
solutions, and the general form of the fundamental solution for (z , 0, ±1) or (ξ , 0, ±i) can be written
as 

v̂τ
v̂θ
p̂

 = B1


sin(z + 1)θ
cos(z + 1)θ

0

 + B2


− cos(z + 1)θ
sin(z + 1)θ

0


+ B3


(z − 1) cos(z − 1)θ
−(z + 1) sin(z − 1)θ

4ν z cos(z − 1)θ

 + B4


(z − 1) sin(z − 1)θ
(z + 1) cos(z − 1)θ

4ν z sin(z − 1)θ

 .
(3.50)

Therefore, it is necessary to consider the other cases for various values of z or ξ, and the general forms
of their fundamental solutions are described as follows:
Case 1. (For z = 0; or ξ = 0):

v̂τ
v̂θ
p̂

 = B1


sin θ
cos θ

0

 + B2


− cos θ
sin θ

0


+ B3


− cos θ + θ sin θ

θ cos θ
−2ν cos θ

 + B4


− sin θ − θ cos θ

θ sin θ
−2ν sin θ

 .
(3.51)

Case 2. (For z = −1; or ξ = i):
v̂τ
v̂θ
p̂

 = B1


1
0
0

 + B2


cos 2θ

0
2ν cos θ

 + B3


sin 2θ

0
2ν sin θ

 + B4


0
1
0

 . (3.52)
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Case 3. (For z = 1; or ξ = −i):
v̂τ
v̂θ
p̂

 = B1


sin 2θ
cos 2θ

0

 + B2


cos 2θ
− sin 2θ

0

 + B3


0
0
1

 + B4


0
1
0

 . (3.53)

The coefficients B = (B1, B2, B3, B4)T would be determined according to the types of boundary
conditions. In line with the above cases, we can substitute ξ = −iz into Dirichlet, Neumann, and
mixed boundary conditions. As well, their transformed forms also depend on the complex parameter
z.

3.3. The calculation of the eigenvalues

To evaluate the eigenvalues and corresponding eigenfunctions of the stationary Stokes system, the
solution (3.50) with various combinations of the boundary conditions is considered to obtain a system
of four linear homogeneous equations with our unknowns B1, B2, B3 and B4. The resulting matrix of
coefficients of these equations depends on the complex parameter z, and a nontrivial solution exists
if the determinant of the resulting matrix of coefficients vanishes (see [5]). Further, it produces the
transcendental equations whose roots are the eigenvalues, namely, ξµ wherein (µ is used for multiple
eigenvalues, i.e., µ = 1, ...,M). To compute these results, we proceed as follows.

Dirichlet boundary conditions (DD)
It means that the Dirichlet boundary conditions are given on both sides of the corner point. The
determinant method is used from [5] to obtain a system of linear homogeneous equations. A non-trivial
solution exists if the determinant det DDD(z) of the corresponding system of the matrix of coefficients
vanishes. So, the computation leads to the transcendental equation

2z2 sin2(ω0) + cos(2zω0) − 1 = 0. (3.54)

The roots of (3.54) are the eigenvalues of the operator ÛDD(ξ) =
[
L̂(ξ), {B̂[DD](ξ)}

]
.

Neumann boundary conditions (NN)
It means that the Neumann boundary conditions are given on both sides of the corner point. Therefore,
the computation leads to the transcendental equation

sin2(zω0) − z2 sin2(ω0) = 0, z , 0. (3.55)

The eigenvalues of ÛNN(ξ) =
[
L̂(ξ),

{
B̂[NN](ξ)

}]
are the roots of (3.55).

Mixed boundary conditions (DN)
It means that the Dirichlet or Neumann boundary condition is given on one side of the corner point,
and the other condition is given on the other side. Similar to the latter cases, the obtained equation for
this case is

sin2(zω0) + z2 sin2(ω0) − 1 = 0. (3.56)

The roots of (3.56) are the eigenvalues of ÛDN(ξ) =
[
L̂(ξ), {B̂[DN](ξ)}

]
.

Remarks 4. Due to symmetry, the same results can be obtained if the versed boundary conditions are
used which means that the Neumann condition is at θ = 0 and the Dirichlet condition is at θ = ω0.
Therefore, this case of boundary conditions is not considered here.
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Remarks 5. Consequently, the poles of R(ξ) are the numbers of −izn, where zn are the roots of the Eqs
(3.54)-(3.56).

The following theorem describes the distribution of the eigenvalues of the corresponding boundary
value problem for Dirichlet, Neumann, and mixed boundary conditions for various cases of the values
of z.

Theorem 4. Let ξ = −iz be an eigenvalue of the operator Û(ξ), and satisfies the following
transcendental equations for Dirichlet, Neumann, and mixed boundary conditions. Then

(i) for the Dirichlet problem (3.48) and (3.22), z satisfies the equation

2z2 sin2(ω0) + cos(2zω0) − 1 = 0, (3.57)

(ii) for the Neumann problem (3.48) and (3.23), z satisfies the equation

sin2(zω0) − z2 sin2(ω0) = 0, (3.58)

(iii) for the mixed problem (3.48) and (3.24), z satisfies the equation

sin2(zω0) + z2 sin2(ω0) − 1 = 0. (3.59)

It is easily examined from (3.29) and (3.57)-(3.59) that the zeros of these equations are symmetric
with respect to the origin and the real axis lies in the complex plane. Therefore, the eigenvalues of
the operator Û(ξ) are positioned in the complex plane symmetrically with respect to the origin and the
imaginary axis.

Proof. For Dirichlet boundary conditions The Eq (3.57) is studied in (3.54) with Dirichlet boundary
conditions and is satisfied for z , 0, ±1. Furthermore, the various cases of z are considered with
Dirichlet boundary conditions.

For z = 0, the general solution is taken from (3.51) with Dirichlet boundary conditions and a
system of linear homogeneous equations Σ B = 0 is obtained, wherein the symbol Σ denotes the
matrix of coefficients. It follows from the existence of the non-trivial solution which means that
the determinant of the corresponding matrix of coefficients for the linear homogeneous equations
is zero. We have

det(Σ) = − sin2(ω0) + ω2
0 > 0, (3.60)

which implies that B = 0 and zero is not an eigenvalue.

For z = ±1, the general solutions of the system (3.48) is given in (3.52) and (3.53). By using
Dirichlet boundary conditions, a system of linear homogeneous equations is obtained. Moreover,
the determinant of the matrix of coefficients is zero and the non-trivial solution exists. However,
we are not interested in the null space analogous to the eigenvalues ξ = ±i.

For Neumann boundary conditions The Eq (3.58) is calculated for Neumann boundary conditions
in (3.55) and is satisfied for z , 0, ±1.

For z = 0, we consider the general solution given in (3.51) with the Neumann boundary
conditions, and a system of linear homogeneous equations is obtained. By the use of the method
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of the determinant, we get zero determinant of the matrix of coefficients. Further, the rank of
the matrix of coefficients is two and (0, 0, 0, 1)T and (0, 0, 1, 0)T are two linearly independent
solutions. Thus, the corresponding eigenfunctions are e1 = (cos θ,− sin θ)T and e2 = (sin θ, cos θ)T

which represent the translation in x and y directions.

For z = 1, the general solution is given in (3.53). The determinant of the matrix of coefficients for
this case is zero and the non-trivial solution exists.

For z = −1, the general solution is given in (3.52). The use of the Neumann boundary conditions
gives the following determinant det(Σ) = 2 sin2(ω0) of the corresponding matrix of coefficients.
Since ω0 ∈ (0, 2π], for ω0 = π, 2π, a non-trivial solution exists.

For mixed boundary conditions The Eq (3.59) is studied in (3.56) with the mixed boundary
conditions and is satisfied for z , 0, ±1.

For z = 0, the general solution is given in (3.51) and the mixed boundary conditions are used to
get a system of linear homogenous equations. The determinant of the corresponding system is
det(Σ) = 1 > 0, and is not an eigenvalue of Û(ξ).

For z = 1, the general solution is given in (3.53) and the determinant of the matrix of coefficients
for this case is det(Σ) = − cos 2(ω0).

For z = −1, the general solution is given in (3.52) and the determinant of the matrix of coefficients
is det(Σ) = − cosω0 − cos 2ω0 + 1.

Consequently, z = ±1, are the eigenvalues of the corresponding problem if the corresponding
determinants are equal to zero.

�

4. The regularity results

Let (u, q) ∈ W1, 2(D)2 × L2(D) be the unique weak solution of the stationary Stokes problem. It
follows from the theory of Kondratíev [24] that the pair (u, q) ∈ W2, 2

γ+1(D)2 ×W
1, 2
γ+1(D), where γ is a

small positive real number. To obtain further qualitative regularity results, the theory proposed by [39]
is employed and we will analyze that the weak solution (u, q) ∈ W2, 2

γ+1(D)2 ×W
1, 2
γ+1(D).

Firstly, the case of L2-data is considered for the direct consequences of Theorem 3 and the
observations of Section 3. Let ω0DN denote the maximal angle from the set of all angles of such corner
points wherein types of boundary conditions change. Analogously, ω0DD and ω0NN are the maximal
angle of those corner points which have similar types of boundary conditions, i.e., Dirichlet-Dirichlet
and Neumann-Neumann, on both adjacent sides of the corner point. If no such type of points exists or
the angles ω0DD, ω0NN < π, then strongly we can set ω0DD, ω0NN = π as the minimum value.

The following propositions hold to formulate the regularity results of the weak solution (u, q) of the
stationary Stokes system with various combinations of the boundary conditions.

Lemma 3. Suppose that if the strip α − 1 ≤ Im ξ < ε, α > 0, is free of the zeros of the equations

ÛDD(ξ) = (iξ)2 sin2(ω0) − sin2(iξω0) = 0, ξ , 0, (4.1)

and
ÛNN(ξ) = sin2(iξω0) − (iξ)2 sin2(ω0) = 0, ξ , 0, (4.2)
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for any arbitrary small ε > 0, then the solution (u, q) ∈ W2, 2
α (D)2×W

1, 2
α (D) and satisfies the following

estimate
‖u‖

W
2, 2
α (D)2 + ‖q‖

W
1, 2
α (D) ≤ c(D)‖f‖L2(D)2 . (4.3)

Proof. To show that no eigenvalue of (4.1) and (4.2) lies in the strip α − 1 ≤ Im ξ < ε for an angle
ω0, where α is a small positive real number. Firstly, we are considering the case of Dirichlet boundary
conditions ÛDD(ξ) for an apex angle ω0 = π

2 and ω0 = π, respectively, or for an any arbitrary angle
ω0 ∈ (0, π]. We note that no eigenvalue of (4.1) is found that lie on the line h = Im ξ = t for t > −1.
Consequently, (ṽ, p̃) ∈ [W2, 2

α (S )]2 × [W1, 2
α (S )] for a small positive real number α. In addition, the

singularities appear for this case at corners with an apex angle ω0 is greater than π. (See Figure 3). In
all the following graphs, the red lines indicate the pure imaginary values, while the black lines indicate
the complex parts of the complex ones.

Figure 3. Distribution of eigenvalues for D-D and N-N boundary conditions.

Analogously, the case of Neumann boundary conditions ÛNN(ξ) is considered. There is no
eigenvalue of (4.2) that lie on the line h = Im ξ = t for t > −1, for an angle ω0 = π

2 and ω0 = π,
respectively, or for any arbitrary angle ω0 ∈ (0, π]. It produces singularities when the apex angle ω0 is
greater than π. Hence, it follows that the solution (u, q) ∈ W2, 2

α (D)2 ×W
1, 2
α (D).

Additionally, we have a bounded domain D and the corresponding continuous imbeddings (2.9)
and (2.12). Let we have

W2, 2
α (D)2 ×W1, 2

α (D) ↪→W2, 2
1+α

0 (D)2 ×W
1, 2

1+α

0 (D),

and
W2, 2

1+α (D)2 ×W1, 2
1+α (D) ↪→ W2−α, 2(D)2 ×W1−α, 2(D).

Clearly,

W
2, 2

1+α

0 (D)2 ×W
1, 2

1+α

0 (D) = W2, 2
1+α (D)2 ×W1, 2

1+α (D).
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So,
W2, 2

α (D)2 ×W1, 2
α (D) ↪→ W2−α, 2(D)2 ×W1−α, 2(D).

Finally, we obtain that the weak solution of the Stokes system is

(u, q) ∈
[
W2−α, 2(D)2 ×W1−α, 2(D)

]
,

where α is a small positive real number. Accordingly, the estimate (4.3) can be followed directly from
Theorem 3. �

Analogously, for the case of mixed boundary conditions, we obtain:

Lemma 4. Suppose that if no eigenvalues of the mixed boundary condition

ÛDN(ξ) = (iξ)2 sin2(ω0) − cos2(iξω0) = 0, (4.4)

lie on the line Im ξ = h = γ − 1, then the solution (u, q) ∈ W2−γ, 2(D)2 ×W1−γ, 2(D), where γ depends
on the angle ω0.

Proof. For any arbitrary angle ω0 ∈ (0, 2π), no eigenvalues of the mixed boundary condition (4.4)
lie on the line Im ξ = h = γ − 1 for h ≥ −1

4 . Thus, no eigenvalues of ÛDN(ξ) that lie in the strip
−1

4 ≤ Im ξ < ε for γ ≥ 3
4 , where any arbitrary small ε > 0. So, we obtain that the regularity result

(u, q) ∈ W
5
4 , 2(D)2 ×W

1
4 , 2(D). Besides, the singularities appear at a corner with an apex angle greater

than π
4 (See Figure 4).

Figure 4. Distribution of eigenvalues for Dirichlet-Neumann boundary conditions.

Respectively, for an angle ω0 = π
2 , we have h = Im ξ > −1

2 . So, we obtain that the regularity result
(u, q) ∈ W2−γ, 2(D)2 ×W1−γ, 2(D) for γ > 1

2 . Accordingly, a similar regularity result is obtained for an
angle ω0 = π.

Finally, we obtain that the regularity result (u, q) ∈ W2−γ, 2(D)2 ×W1−γ, 2(D) for an arbitrary small
positive number γ that depends on the apex angle ω0. �
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It is well-known that for every f ∈ V∗, where V∗ is the dual space of V , a unique weak solution
(u, q) ∈ V × L2(D) of some generalized steady Stokes problem exists.

Therefore, the following lemma describes the regularity results for Lp-data.

Lemma 5. Suppose that

(i) for ÛDD(ξ) and ÛNN(ξ) boundary conditions, no-eigenvalues lie on the strip −µ ≤ Im ξ < ε, for
0 ≤ µ < 1, and ε > 0 is an arbitrary small positive number,

(ii) for mixed boundary conditions, ξ0 is the only eigenvalue of ÛDN(ξ) that lie within the strip −µ ≤
Im ξ < ε, for 0 ≤ µ < 1, and additionally, we suppose that this is a simple eigenvalue.

Then for every f ∈ L
2

2−µ (D)2, the weak solution (u, q) of the stationary Stokes system is contained in[
W1+µ, 2(D)

]2
×

[
Wµ, 2(D)

]
.

Proof. The statement can be followed directly from Theorem 3 by considering p = 2
2−µ , α2 = 0 and

α1 = 1 + ε.
Since f ∈ L

2
2−µ (D)2 ⊂ V∗, the similar result is obtained by applying the same process used in Lemmas

3-4. �

5. The Navier-Stokes equations

We consider the steady Navier-Stokes equations −ν∆u + (u · ∇) u + ∇ q = f in D,

div u = 0 in D,
(5.1)

with the homogenous mixed boundary conditions (1.3)-(1.4). If the given right-hand sides have a
sufficiently small norm, then we prove by using the local diffeomorphism theorem that the Navier-
Stokes equations have similar regularity results as the solution of the generalized Stokes problem near
the corner points. Denote

E(D) =
{
u ∈ C∞(D)2; div u = 0, suppu ∩ Γ0 = ∅

}
.

Additionally, we denote H and V are the closures of E(D) equipped with the norms of L2(D)2 and
W1, 2(D). Recall that V and H are the Hilbert spaces and their scalar products are given in (2.1).

Definition 2. Let f ∈ V∗. u is called the weak solution of the problem (5.1) with the homogenous mixed
boundary conditions (1.3)-(1.4), if u ∈ V and satisfies

ν
(
(u, v)

)
+ b

(
u,u, v

)
=

(
f, v

)
∀v ∈ V. (5.2)

Further, b
(
u, v,w

)
describes the trilinear continuous form for every u, v,w ∈ V by

b
(
u, v,w

)
=

∫
D

u j ·
∂vi

∂x j
· wi dx. (5.3)

Definition 3. Let H represent the closure of E(D) in the norm L2(D)2 and describe the Banach space

M =
{
u; there exists f ∈ H such that ν

(
(u, v)

)
=

(
f, v

)
for all v ∈ V

}
.
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Note that,M ↪→↪→ L∞(D),M ↪→↪→ V and V ↪→↪→ H.
For the solvability of the problem (5.1), the subsequent theorem is considered which is known as

the local diffeomorphism theorem (see [9]).

Theorem 5. Let M be a mapping from X into Y which belongs to C1 in some neighbourhood W
of point v0 ∈ X, where X and Y are Banach spaces. If the Fréchet derivative Ḿ(v0) : X → Y is
continuous, one-to-one and onto Y, then there exists a neighbourhood U of point v0 such that U ⊂ W
and a neighbourhood V of point M(v0) such that V ⊂ Y. So, the mapping M is one-to-one from W
onto V.

Let h ∈ H. Then the Lax-Milgram theorem and the Lemmas 3-4 yields that there exists a uniquely
determined w ∈ M, such as

ν
(
(w, v)

)
=

(
h, v

)
∀v ∈ V. (5.4)

Now, the operator Q : M→ H is described by

(Q(w), v) = ν
(
(w, v)

)
∀v ∈ V. (5.5)

Note that the mapping Q is one-to-one. Moreover, we define an operator R : M→ H which is given as

(R(u), v) = (Q(w), v) + b
(
u,u, v

)
∀v ∈ V. (5.6)

Further, the pertinent problem (5.1) can be considered as the single operator equation R(u) = f.
Let u be a fixed point inM, andZu : M→ H be a linear operator which is described as follows

(Zu(w), v) = b
(
u,w, v

)
+ b

(
w,u, v

)
,

=
(
(u∇)w, v

)
+

(
(w∇)u, v

)
∀v ∈ V.

(5.7)

Lemma 6. Let u be some arbitrary fixed element inM. The operator Bu is given by

(Bu(w), v) = (Q(w), v) + (Zu(w), v) ∀v ∈ V, (5.8)

is the Fréchet derivative of R at the point u and Bu ∈ C(M).

Proof. Since
‖R(u + w) − R(u) − Bu(w)‖H = ‖b

(
w,w, ·

)
‖H, (5.9)

and
‖b

(
w,w, ·

)
‖H ≤ C‖w‖2M holds for all w ∈ M. (5.10)

We get

lim
‖w‖M→0

‖R(u + w) − R(u) − Bu(w)‖H
‖w‖M

≤ lim
‖w‖M→0

C‖w‖M = 0, (5.11)

the smoothness of Bu ∈ C(M) is obvious. �

Lemma 7. Let u = 0. Then Bu = B0 = Q is one-to-one.

The more information to prove that Bu is one-to-one and onto H, we refer ( [40], Theorem 5.5F)
and [6].
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Theorem 6. Let P1 be a continuous one-to-one operator from X onto Y, and P2 be a compact linear
operator from X into Y, where X and Y are Banach spaces. Therefore, the subsequent statements are
equivalent:

1. P1 + P2 is one-to-one;
2. P1 + P2 is onto Y.

Theorem 7. Let f ∈ H, the norm of f is sufficiently small. Then a uniquely determined u ∈ M exists,
such that

ν
(
(u, v)

)
+ b

(
u,u, v

)
=

(
f, v

)
∀v ∈ V. (5.12)

Proof. By (5.8),Bu is the sum of operatorsQ andZu. It is noted from the above results thatQ : M→ H
is the one-to-one operator and onto H, andZu is a compact operator. Furthermore, from Lemma 7, Bu

is one-to-one. These facts and Theorem 6 produces that Bu is onto H. Hence, the Theorem 5 yields a
unique solution. �

6. Conclusions

In this article, we have studied the boundary singularities and regularity of the weak solution
of the mixed boundary value problem for the stationary Stokes and Navier-Stokes system in a
two-dimensional non-smooth domain with corner points and points at which the type of boundary
conditions change. The solvability of the considered boundary value problem has been analyzed in
the context of the weighted Sobolev spaces with Kondratíev type weights and the regularity theorems
are formulated. To compute the singular terms for various boundary conditions, the complex Fourier
transform has been used to obtain the generalized form of the boundary eigenvalue problem for the
stationary Stokes system. The emerging eigenvalues and eigenfunctions produce singular terms, which
permits us to evaluate the optimal regularity of the corresponding weak solution of the stationary Stokes
system.

The main regularity and expansion theorem for the stationary Stokes system is presented in Theorem
3. We have discussed the regularity results of the corresponding boundary value problem for the case
of L2 and Lp-data which are the direct consequences of Theorem 3. It is seen for the case of Dirichlet
and Neumann boundary conditions that if the domain D has reentrant corners (ωi > π : i = 1, 2, ...N),
then the weak solution (u, q) of the considered problem produces singularities. On the other hand,
for the case of mixed conditions, the singularities appear at corners with (ωi >

π
4 : i = 1, 2, ...N).

Moreover, it is observed that if singularities exist, then splitting the solution into a singular part which
defines a linear combination of explicit model singularity functions sm for the Stokes operator with
corresponding unknown coefficients Cm and a regular part that belongs to H2 × H1. Finally, it is
proved that the weak solution (u, q) of the underlying boundary value problem belongs to W2−γ, 2(D)2×

W1−γ, 2(D), where γ is an arbitrarily small positive real number that depends on the apex angle ω0.
Additionally, we have extended the obtained results for the Stokes system for the non-linear Navier-

Stokes system. We have proved this by using the local diffeomorphism theorem that the solution of the
Navier-Stokes equations has similar regularity results as the solution of the generalized Stokes problem
near the corner points if the given body force has a sufficiently small norm. To prove this, an operator R
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relating to the Navier-Stokes equations is defined and has shown that it is Fréchet differentiable at the
point u = 0. Furthermore, the Fréchet derivative of R at the point u is agreed with the Stokes problem.

Presently, the Stokes and Navier-Stokes equations with the Navier-slip boundary conditions and
the free-boundary problems in domains with corners have very interesting phenomena. The issues
regarding their existence and regularity are considered for smooth domains but theoretical results for
the corner singularity decomposition are still not obtained. Therefore, these issues are numerically
interesting. In future works, it is important to show the unique existence of the approximations for the
regular parts and coefficients, and to derive their error estimates. On the other hand, it is also observed
that the non-stationary compressible Stokes and Navier-Stokes equations on polygonal domains could
be considered.
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