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2 Department of Statistics, Hacettepe University, Beytepe, Ankara, Turkey

* Correspondence: Email: tolgazaman@karatekin.edu.tr; Tel: +9003762189540.

Abstract: In this study, we propose exponential ratio estimators in the stratified two-phase sampling
utilizing an auxiliary attribute. The expressions for the mean squared error of these exponential-type
estimators under two different cases are derived and theoretical comparisons are made with competing
estimators. We show that the proposed estimators have a lower mean square error than the simple
mean estimator, usual stratified two-phase sampling ratio, and product estimators, usual exponential
ratio and product estimators for the stratified two-phase sampling under the obtained conditions in
theory. In addition, these theoretical results are supported with the aid of a numerical example.
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1. Introduction

Stratification improves the efficiency when the variance between strata is much larger than the
variances within strata. It is used to estimate the population mean of the study variable using ratio or
product estimator for positive or negative correlation, respectively, between the study variable and the
auxiliary attribute. The auxiliary information is available in the form of an attribute. Some of those
can be given as follows: The height of a person may depend on the fact that whether the person is
male or female, the efficiency of a dog may depend on the particular breed of that dog, or the yield of
wheat crop produced may depend on a particular variety of wheat, etc. [1]. There are some recent
studies on the estimators using the information of the auxiliary variable under the stratified two-phase
sampling in literature, such as Sahoo et al. [2], Samiuddin and Hanif [3], Singh and Vishwakarma [4],
Singh and Choudhury [5], Choudhury and Singh [6], Hamad et al. [7], Sanaullah et al. [8], Malik and
Singh [9], and Shabbir and Gupta [10]. The aim of this paper is to suggest the efficient exponential
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type estimators in the stratified two-phase sampling design. In addition, numerous of literature is
available on exponential ratio-type estimators and stratified sampling for mean estimation, for
examples, Vishwakarma and Kumar [11] provided families of separate and combined ratio-product
estimators for estimating the mean in stratified random sampling. Pal and Singh [12] proposed a class
of ratio-cum-ratio type exponential estimators for population mean along with its properties. Singh
et al. [13] introduced some imputation methods to compensate the missing data in two-phase
sampling. Saleem et al. [14] used the quantitative scrambled randomized-response model by
measuring the efficiency of an estimator of the population mean or of the protection of privacy under
two-stage sampling. Ünal and Kadilar [15] provided classes of estimators utilizing the exponential
function for the population mean in the case of non-response in two different cases. Chaudhary et
al. [16] provided a class of combined-type estimators of the population mean in stratified random
sampling using the information on an auxiliary variable under the situation in which non-response is
observed on both study and auxiliary variables. Irfan et al. [17] evaluated the performance of
difference-type-exponential estimators based on dual auxiliary information for population mean. Ünal
and Kadilar [18] adapted the estimator based on the exponential function for the estimation of the
population mean in the presence of non-response on both the study and the auxiliary variables.
Muneer et al. [19] proposed a parent-generalized class of chain exponential ratio type estimators in
stratified random sampling to estimate the finite population mean utilizing known information on two
supplementary variables. Sanaullah et al. [20] introduced a generalized randomized response
technique model and use it to develop some exponential estimators in two-phase sampling. Sinha
et al. [21] introduced the problem of estimating the product of two population means using the
information of auxiliary character under two-phase sampling the non-respondents. Zaman [22]
provided an efficient exponential ratio estimator that allows estimating the population mean in
stratified random sampling using an auxiliary variable. Hassan et al. [23] provided the combination of
exponential and ln ratio type estimator to estimate the mean of study variable by incorporating two
auxiliary variables in two phase sampling design. Consider a finite population U = {1, 2, . . . ,N} of N
identifiable units divided into L strata with the hth stratum (h = 1, 2, . . . , L) having Nh units such that∑L

h=1 Nh = N. Let yhi and phi be the values of the study variable (y) and the auxiliary attribute (p),
respectively, for the ith (i = 1, 2, . . . ,Nh) population element of the hth stratum. Let Ȳ =

∑L
h=1 ωhȲh

and P =
∑L

h=1 ωhPh be populations means of the study and the auxiliary attribute, respectively, and let
Ȳh =

∑Nh
i=1

yhi
Nh

, Ph =
∑Nh

i=1
phi
Nh

be the hth population stratum means. When the information on Ph is not
known, a first phase large sample of size n

′

h(< Nh) is selected from each hth stratum to estimate Ph and
the replace it with its unbiased estimator. To obtain the MSE equation under the stratified two-phase
sampling, let us define ∆0st =

ȳst−Ȳ
Ȳ , ∆1st =

pst−P
P , ∆

′

1st =
p
′

st−P
P , such that E(∆ist) = 0; (i = 1, 2) and

E(∆
′

1st) = 0, Vrs =
∑L

h=1 ω
r+t
h

E[(ȳh−Ȳh)r(ph−Ph)s]
ȲrPs and V

′

rs =
∑L

h=1 ω
r+t
h

E[(ȳh−Ȳh)r(p
′

h−Ph)s]
ȲrPs ,

E(∆2
0st) =

∑L
h=1 ω

2
hθhC2

yh = V20, E(∆2
1st) =

∑L
h=1 ω

2
hθhC2

ph = V02,
E(∆

′2
1st) = E(∆1st∆

′

1st) =
∑L

h=1 ω
2
hθ
′

hC
2
ph = V

′

02, E(∆0st∆1st) =
∑L

h=1 ω
2
hθhCyph = V11,

E(∆0st∆
′

1st) =
∑L

h=1 ω
2
hθ
′

hCyph = V
′

11, where θh = ( 1
nh
− 1

Nh
) and θ

′

h = ( 1
n′h
− 1

Nh
). The procedure of the

stratified two-phase sampling is given as: i) Select a sample size n
′

h from the hth stratum using the
simple random sampling without replacement (SRSWOR) sampling scheme such that

∑L
h=1 n

′

h = n
′

and p
′

h = 1
n′h

∑n
′

h
i=1 phi. This is called a stratified first-phase sample. ii) Select another stratified random
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sample of size nh from each n
′

h(nh < n
′

h) using the SRSWOR such that
∑L

h=1 nh = n and collect the
information on the study variable. This is called a second-phase sample. In the stratified random
sampling, the sample mean estimator is as follows:

ȳst =

L∑
h=1

ωhȳh (1.1)

The variance is given by

Var(ȳst) = Ȳ2
L∑

h=1

ω2
hθhC2

yh = Ȳ2V20 (1.2)

Two cases will be investigated for the selection of the needed sample as follows: Case I. when the
second-phase sample of size n is a sub-sample of the first-phase sample of size n

′

, and Case II. when
the second-phase sample of size n is drawn independently of the first-phase sample of size n

′

, see
Bose [24]. The classical ratio estimator in the stratified two-phase sampling is

ȳRd = ȳst
p
′

st

pst
=

L∑
h=1

ωhȳh(
∑L

h=1 ωh p
′

st∑L
h=1 ωh pst

) (1.3)

The MSE equations of the estimator in (1.3) are

MS E(ȳRd)I � Ȳ2[V20 + (V02 − V
′

02) − 2(V11 − V
′

11)], (1.4)

MS E(ȳRd)II � Ȳ2[V20 + (V02 + V
′

02) − 2V11], (1.5)

for the, Case I and Case II, respectively.
Similarly, the classical product estimator in the stratified two-phase sampling is

ȳPd = ȳst
pst

p′st
=

L∑
h=1

ωhȳh(
∑L

h=1 ωh pst∑L
h=1 ωh p′st

). (1.6)

The MSE equations of the estimator in (1.6) are

MS E(ȳPd)I � Ȳ2[V20 + (V02 − V
′

02) + 2(V11 − V
′

11)], (1.7)

MS E(ȳPd)II � Ȳ2[V20 + (V02 + V
′

02) + 2V11], (1.8)

for the Case-I and the Case-II, respectively.
The classical exponential ratio estimator in the stratified two-phase sampling is as follows:
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ȳExd = ȳstexp(
p
′

st − pst

p′st + pst
). (1.9)

The MSE equations of the estimator in (1.9) are

MS E(ȳExd)I � Ȳ2[V20 +
1
4

(V02 − V
′

02) − (V11 − V
′

11)], (1.10)

MS E(ȳExd)II � Ȳ2[V20 +
1
4

(V02 + V
′

02) − V11], (1.11)

for the Case-I and the Case-II, respectively.
The classical exponential product estimator in the stratified two-phase sampling is as follows:

ȳExp = ȳstexp(
pst − p

′

st

pst + p′st
). (1.12)

The MSE equations of the estimator in (1.12) are

MS E(ȳExp)I � Ȳ2[V20 +
1
4

(V02 − V
′

02) + (V11 − V
′

11)], (1.13)

MS E(ȳExp)II � Ȳ2[V20 +
1
4

(V02 + V
′

02) + V11], (1.14)

for the Case-I and the Case-II, respectively.

2. Materails and methods

Considering the development of a new family of estimators as in Zaman and Kadilar [25] for the
classical exponential ratio estimator, given in (1.9), we propose the following families of ratio and
product exponential estimators under the stratified two-phase sampling, respectively, to estimate the
mean of the variable of study utilizing the information about the proportion of the population
possessing the certain attributes as follows:

ȳstZKi = ȳstexp[
(ψp

′

st + ς) − (ψpst + ς)
(ψp′st + l) + (ψpst + l)

], (2.1)

t̄stZKi = ȳstexp[
(ψpst + ς) − (ψp

′

st + ς)
(ψpst + ς) + (ψp′st + ς)

], (2.2)
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Table 1. Suggested ratio estimators.

Estimators Values of
ψ ς

ȳstZK1 = ȳstexp[ p
′

st−pst

p′st+pst+2β2(ϕ)
] 1 β2(ϕ)

ȳstZK2 = ȳstexp[ p
′

st−pst

p′st+pst+2Cp
] 1 Cp

ȳstZK3 = ȳstexp[ p
′

st−pst

p′st+p+2ρpb
] 1 ρpb

ȳstZK4 = ȳstexp[ β2(ϕ)(p
′

st−pst)
β2(ϕ)(p′st+p)+2Cp

] β2(ϕ) Cp

ȳstZK5 = ȳstexp[ Cp(p
′

st−pst)
Cp(p′st+p)+2β2(ϕ)

] Cp β2(ϕ)

ȳstZK6 = ȳstexp[ Cp(p
′

st−pst)
Cp(p′st+pst)+2ρpb

] Cp ρpb

ȳstZK7 = ȳstexp[ ρpb(p
′

st−pst)
ρpb(p′st+pst)+2Cp

] ρpb Cp

ȳstZK8 = ȳstexp[ β2(ϕ)(p
′

st−pst)
β2(ϕ)(p′st+pst)+2ρpb

] β2(ϕ) ρpb

ȳstZK9 = ȳstexp[ ρpb(p
′

st−pst)
ρpb(p′st+pst)+2β2(ϕ)

] ρpb β2(ϕ)

where ψ(, 0) and ς are either real numbers or the functions of the known parameters of the auxiliary
attribute, such as Cp, β2(ϕ), and the known parameter of the attribute with the study variable ρpb.
Examples of nine proposed estimators for the population mean, which can be computed by taking the
suitable choices of constants ψ and ς, are given in Tables 1 and 2.
Case-I. To obtain the MSE of the estimators ȳstZK , let ȳst = Ȳ(1 + ∆0st), pst = P(1 + ∆1st), and p

′

st =

P(1 + ∆
′

1st) such that
E(∆0st) = E(∆1st) = E(∆

′

1st) = 0,

E(∆2
0st) = V20,E(∆2

1st) = V02, E(∆
′2
1st) = E(∆1st∆

′

1st) = V
′

02, E(∆0st∆1st) = V11, E(∆0st∆
′

1st) = V
′

11.

Expressing the estimators, ȳstZK and ȲstZKi, in terms of ∆ist (i = 0, 1), we can write (2.1) and (2.2) as

ȳstZKi = Ȳ(1 + ∆0st)exp[λi(∆
′

1st − ∆1st){1 + λi(∆
′

1st + ∆1st)}−1], (2.3)

t̄stZKi = Ȳ(1 + ∆0st)exp[−λi(∆
′

1st − ∆1st){1 + λi(∆
′

1st + ∆1st)}−1], (2.4)

respectively. Expanding the right hand sides of (2.3) and (2.4), to the first order of approximation,
multiplying out and neglecting the terms of ∆′s greater than or equal to two, we get

ȳstZKi � Ȳ[1 + ∆0st + λi(∆
′

1st − ∆1st)]⇒ ȳstZKi − Ȳ = Ȳ[∆0st + λi(∆
′

1st − ∆1st)], (2.5)

t̄stZKi � Ȳ[1 + ∆0st − λi(∆
′

1st − ∆1st)]⇒ ȲstZKi − Ȳ = Ȳ[∆0st − λi(∆
′

1st − ∆1st)]. (2.6)
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Table 2. Suggested product estimators.

Estimators Values of
ψ ς

t̄stZK1 = ȳstexp[ p
′

st−pst

p′st+pst+2β2(ϕ)
] 1 β2(ϕ)

t̄stZK2 = ȳstexp[ p
′

st−pst

p′st+pst+2Cp
] 1 Cp

t̄stZK3 = ȳstexp[ p
′

st−pst

p′st+p+2ρpb
] 1 ρpb

t̄stZK4 = ȳstexp[ β2(ϕ)(p
′

st−pst)
β2(ϕ)(p′st+p)+2Cp

] β2(ϕ) Cp

t̄stZK5 = ȳstexp[ Cp(p
′

st−pst)
Cp(p′st+p)+2β2(ϕ)

] Cp β2(ϕ)

t̄stZK6 = ȳstexp[ Cp(p
′

st−pst)
Cp(p′st+pst)+2ρpb

] Cp ρpb

t̄stZK7 = ȳstexp[ ρpb(p
′

st−pst)
ρpb(p′st+pst)+2Cp

] ρpb Cp

t̄stZK8 = ȳstexp[ β2(ϕ)(p
′

st−pst)
β2(ϕ)(p′st+pst)+2ρpb

] β2(ϕ) ρpb

t̄stZK9 = ȳstexp[ ρpb(p
′

st−pst)
ρpb(p′st+pst)+2β2(ϕ)

] ρpb β2(ϕ)

Squaring both sides of (2.5) and (2.6) and taking the expectation, we get the MSE of the proposed
families of estimators in (2.1) and (2.2) as follows:

MS E(ȳstZKi)I � Ȳ2[V20 + λ2
i (V02 − V

′

02) − 2λi(V11 − V
′

11)], (2.7)

MS E(t̄stZKi)I � Ȳ2[V20 + λ2
i (V02 − V

′

02) + 2λi(V11 − V
′

11)], (2.8)

where λ1 = P
2(P+β2(ϕ)) ; λ2 = P

2(P+Cp) ; λ3 = P
2(P+ρpb) ; λ4 =

β2(ϕ)P
2(β2(ϕ)P+Cp) ; λ5 =

CpP
2(CpP+β2(ϕ)) ; λ6 =

CpP
2(CpP+ρpb) ;

λ7 =
ρpbP

2(ρpbP+Cp) ; λ8 =
β2(ϕ)P

2(β2(ϕ)P+ρpb) ; λ9 =
ρpbP

2(ρpbP+β2(ϕ)) .

Case-II. To obtain the MSE of the estimators ȳstZK , let ȳst = Ȳ(1 + ∆0st), pst = P(1 + ∆1st), and
p
′

st = P(1 + ∆
′

1st) such that
E(∆0st) = E(∆1st) = E(∆

′

1st) = 0,
E(∆2

0st) = V20, E(∆2
1st) = V02, E(∆

′2
1st) = V

′

02, E(∆0st∆1st) = V11, E(∆0st∆
′

1st) = 0, E(∆1st∆
′

1st).
Squaring both sides of (2.5) and (2.6) and taking the expectation of both sides, we get the MSE of

the estimators ȳstZKi and ȲstZKi, respectively, as

MS E(ȳstZKi)II � Ȳ2[V20 + λ2
i (V02 + V

′

02) − 2λiV11], (2.9)

MS E(t̄stZKi)II � Ȳ2[V20 + λ2
i (V02 + V

′

02) + 2λiV11], (2.10)

where λ1 = P
2(P+β2(ϕ)) ; λ2 = P

2(P+Cp) ; λ3 = P
2(P+ρpb) ; λ4 =

β2(ϕ)P
2(β2(ϕ)P+Cp) ; λ5 =

CpP
2(CpP+β2(ϕ)) ; λ6 =

CpP
2(CpP+ρpb) ;

λ7 =
ρpbP

2(ρpbP+Cp) ; λ8 =
β2(ϕ)P

2(β2(ϕ)P+ρpb) ; λ9 =
ρpbP

2(ρpbP+β2(ϕ)) .
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3. Results

We compare the proposed estimators with other competing estimators in two different cases in the
stratified two-phase sampling as the following subsections.

3.1. For Case-I and the proposed ratio estimators

(i) With the sample mean estimator,

By (1.2) and (2.9)

MS E(ȳstZKi)I < Var(ȳst); i = 1, 2, . . . , 9

Ȳ2[V20 + λ2
i (V02 − V

′

02) − 2λi(V11 − V
′

11)] < Ȳ2V20,

λ2
i (V02 − V

′

02) − 2λi(V11 − V
′

11) < 0,
λi[λi(V02 − V

′

02) − 2(V11 − V
′

11)] < 0.

For λi > 0,

λi(V02 − V
′

02) − 2(V11 − V
′

11) < 0,

λi <
2(V11 − V

′

11)
(V02 − V ′

02)
. (3.1)

Similarly, for λi < 0,

λi >
2(V11 − V

′

11)
(V02 − V ′

02)
. (3.2)

When the condition (3.1) or (3.2) is satisfied, the proposed exponential ratio estimators, given in
Table 1, perform better than the sample mean.

(ii) With the classical ratio estimator

By (1.4) and (2.9)

MS E(ȳstZKi)I < MS E(ȳRd)I; i = 1, 2, . . . , 9

Ȳ2[V20 + λ2
i (V02 − V

′

02) − 2λi(V11 − V
′

11)] < Ȳ2[V20 + (V02 − V
′

02) − 2(V11 − V
′

11)],
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λ2
i (V02 − V

′

02) − 2λi(V11 − V
′

11) − (V02 − V
′

02) + 2(V11 − V
′

11) < 0,
(V02 − V

′

02)(λi − 1)(λi + 1) − 2(V11 − V
′

11)(λi − 1) < 0,
(λi − 1)[(λi + 1)(V02 − V

′

02) − 2(V11 − V
′

11)] < 0.

For λi > 1,

(λi + 1)(V02 − V
′

02) − 2(V11 − V
′

11) < 0,

(λi + 1) <
2(V11 − V

′

11)
(V02 − V ′

02)
,

λi <
2(V11 − V

′

11) − (V02 − V
′

02)
(V02 − V ′

02)
. (3.3)

Similarly, for λi < 1,

λi >
2(V11 − V

′

11) − (V02 − V
′

02)
(V02 − V ′

02)
. (3.4)

When the condition (3.3) or (3.4) is satisfied, the proposed exponential ratio estimators, given in
Table 1, perform better than the classical ratio estimator, given in (1.3).

(iii) With the classical exponential ratio estimator

By (1.10) and (2.9)

MS E(ȳstZKi)I < MS E(ȳExd)I; i = 1, 2, . . . , 9

Ȳ2[V20 + λ2
i (V02 − V

′

02) − 2λi(V11 − V
′

11)] < Ȳ2[V20 +
1
4

(V02 − V
′

02) − (V11 − V
′

11)],

λ2
i (V02 − V

′

02) − 2λi(V11 − V
′

11) −
1
4

(V02 − V
′

02) + (V11 − V
′

11) < 0,

(V02 − V
′

02)(λi −
1
2

)(λi +
1
2

) − 2(V11 − V
′

11)(λi −
1
2

) < 0,

(λi −
1
2

)[(λi +
1
2

)(V02 − V
′

02) − 2(V11 − V
′

11)] < 0.

For λi >
1
2 ,

(λi +
1
2

)(V02 − V
′

02) − 2(V11 − V
′

11) < 0,
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4273

(λi +
1
2

) <
2(V11 − V

′

11)
(V02 − V ′

02)
,

λi <
4(V11 − V

′

11) − (V02 − V
′

02)
2(V02 − V ′

02)
. (3.5)

Similarly, for λi <
1
2 ,

λi >
4(V11 − V

′

11) − (V02 − V
′

02)
2(V02 − V ′

02)
. (3.6)

When the condition (3.5) or (3.6) is satisfied, the proposed exponential ratio estimators, given in
Table 1, perform better than the classical exponential ratio estimator, given in (1.9).

3.2. For Case-II and the proposed ratio estimators

(i) With the sample mean estimator,

By (1.2) and (2.11)

MS E(ȳstZKi)II < Var(ȳst); i = 1, 2, . . . , 9

Ȳ2[V20 + λ2
i (V02 + V

′

02) − 2λiV11] < Ȳ2V20,

λ2
i (V02 + V

′

02) − 2λiV11 < 0,
λi[λi(V02 + V

′

02) − 2V11] < 0.

For λi > 0,

λi(V02 + V
′

02) − 2V11 < 0,

λi <
2V11

(V02 + V ′

02)
.

Similarly, for λi < 0,

λi <
2V11

(V02 + V ′

02)
. (3.7)

When the condition (3.7) or (3.8) is satisfied, the proposed exponential ratio estimators, given in
Table 1, perform better than the sample mean.
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(ii) With the classical ratio estimator

By (1.5) and (2.11)

MS E(ȳstZKi)II < MS E(ȳRd)II; i = 1, 2, . . . , 9

Ȳ2[V20 + λ2
i (V02 + V

′

02) − 2λiV11] < Ȳ2[V20 + (V02 + V
′

02) − 2V11],
λ2

i (V02 + V
′

02) − 2λiV11 − (V02 + V
′

02) + 2V11 < 0,
(V02 + V

′

02)(λi − 1)(λi + 1) − 2V11(λi − 1) < 0,
(λi − 1)[(λi + 1)(V02 + V

′

02) − 2V11] < 0.

For λi > 1

(λi + 1)(V02 + V
′

02) − 2V11 < 0,

(λi + 1) <
2V11

(V02 + V ′

02)
,

λi <
2V11 − (V02 + V

′

02)
(V02 + V ′

02)
. (3.8)

Similarly, for λi < 1

λi >
2V11 − (V02 + V

′

02)
(V02 + V ′

02)
. (3.9)

When the condition (3.9) or (3.10) is satisfied, the proposed exponential ratio estimators, given in
Table 1, perform better than the classical ratio estimator, given in (1.3).

(iii) With the classical exponential ratio estimator

By (1.11) and (2.11)

MS E(ȳstZKi)II < MS E(ȳExd)II; i = 1, 2, . . . , 9

Ȳ2[V20 + λ2
i (V02 + V

′

02) − 2λiV11] < Ȳ2[V20 +
1
4

(V02 + V
′

02) − V11],
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λ2
i (V02 + V

′

02) − 2λiV11 −
1
4

(V02 + V
′

02) + V11 < 0,

(V02 + V
′

02)(λi −
1
2

)(λi +
1
2

) − 2V11(λi −
1
2

) < 0,

(λi −
1
2

)[(λi +
1
2

)(V02 + V
′

02) − 2V11] < 0.

For λi >
1
2 ,

(λi +
1
2

)(V02 + V
′

02) − 2V11 < 0,

(λi +
1
2

) <
2V11

(V02 + V ′

02)
,

λi <
4V11 − (V02 + V

′

02)
2(V02 + V ′

02)
. (3.10)

Similarly, for λi <
1
2 ,

λi >
4V11 − (V02 + V

′

02)
2(V02 + V ′

02)
. (3.11)

When the condition (3.11) or (3.12) is satisfied, the proposed exponential ratio estimators, given in
Table 1, perform better than the classical exponential ratio estimator, given in (1.9).

We would like to remark that similar comparisons could be made for product estimators.

4. Discussion

We have used the data of Kadilar and Cingi [26], to examine the efficiencies of the proposed
exponential estimators for the population mean in the stratified two-phase sampling. This data is
defined as: Study variable is apple production amount in 1999; auxiliary attribute is the number of
apple trees more than 15000 in 1999. (Source: Institute of Statistics, Republic of Turkey). We have
stratified the data by regions of Turkey (as 1: Marmara 2: Agean 3: Mediterranean 4: Central
Anatolia 5: Black Sea 6: East and Southeast Anatolia) and from each stratum; we have randomly
selected the samples whose sizes are computed by using the Neyman allocation method. The
summary statistics of the data are given in Table 3. As the correlation between the variable of study
and the auxiliary attribute is positive for the population, we only use the ratio estimators. We use the
Eq (4.1) to obtain the percent relative efficiency (PRE) of different estimators,

PRE =
Var(ȳst)
MS E(y)

× 100, (4.1)
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where MS E(y) is the MSE values of the proposed estimators in Section 2 (ȳstZKi, i = 1, 2, . . . , 9) and
other estimators mentioned in Section 1 (ȳRd, ȳExd) for both cases.

Table 3. Data statistics.

Total Stratum → 1 2 3 4 5 6

N = 854 λ1 = −0.138 Nh 106 106 94 171 204 173
n
′

= 370 λ2 = 0.121 n
′

h 35 50 75 145 45 20
n = 200 λ3 = 0.332 nh 13 24 55 95 10 3
Ȳ = 2930.127 λ4 = −0.687 Ȳh 1536.78 2212.59 9384.30 5588.01 966.96 404.40
S y = 17105.3 λ5 = −0.184 S yh 6425.09 11551.53 29907.48 28643.42 2389.77 945.75
Cy = 5.839 λ6 = 0.356 Cyh 4.181 5.221 3.187 5.126 2.471 2.339
Cp = 1.239 λ7 = 0.029 Cph 1.401 1.372 0.943 0.929 1.128 2.105
β2(ϕ) = −1.82 λ8 = 0.691 Cyph 1.725 1.720 0.863 0.826 0.966 3.024
V20 = 0.144 λ9 = −0.022 θ

′

h 0.019 0.011 0.003 0.001 0.017 0.044
V02 = 0.069 θh 0.067 0.032 0.008 0.005 0.095 0.328
V
′

02 = 0.010 ω2
h 0.015 0.015 0.012 0.040 0.057 0.041

V11 = 0.049
V
′

11 = 0.007

When we examine the efficiency conditions, determined in Section 3, for the data set, we obtain
that they are satisfied for the suggested estimators, say ȳstZK8, as follows:

For λ8 = 0.69062 > 0, λ8 = 0.69062 < 2(V11−V
′

11)

(V02−V′02)
= 1.39543 =⇒ Condition (3.1) is satisfied.

For λ8 = 0.69062 < 1, λ8 = 0.69062 > 2(V11−V
′

11)−(V02−V
′

02)

(V02−V′02)
= 0.39543 =⇒ Condition (3.3) is satisfied.

For λ8 = 0.69062 > 0.5, λ8 = 0.69062 <
4(V11−V

′

11)−(V02−V
′

02)

2(V02−V′02)
= 0.89543 =⇒ Condition (3.4) is

satisfied.

For λ8 = 0.69062 > 0, λ8 = 0.69062 < 2V11

(V02+V′02)
= 1.22005 =⇒ Condition (3.6) is satisfied.

For λ8 = 0.69062 < 1, λ8 = 0.69062 > 2V11−(V02+V
′

02)

(V02+V′02)
= 0.22005 =⇒ Condition (3.9) is satisfied.

For λ8 = 0.69062 > 0.5 λ8 = 0.69062 < 4V11−(V02+V
′

02)

2(V02+V′02)
= 0.72005 =⇒ Condition (3.10) is satisfied.

The comparisons of the proposed exponential ratio estimators have been made with respect to the
stratified two-phase ratio estimators in literature. The MSE values of the estimators in Table 4 are
obtained using (1.2), (1.4), (1.5), (1.10), (1.11), (2.7) and (2.9), respectively, and the relative efficiency
values of the estimators for both of the cases are given in Table 5. From Table 5, it is shown that the
proposed exponential ratio estimators ȳstZK2, ȳstZK3, ȳstZK6, ȳstZK7 and ȳstZK8 perform better than all other
mentioned estimators for both cases. Note that the most efficient estimator is the proposed estimator,
ȳstZK8,for the dataset.
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Table 4. MSE values of the classical and suggested exponential estimators.

Estimators Case I Case II
ȳst 1238296.35 1238296.35
ȳRd 1036469.19 1087246.96
ȳExd 1009782.9 991166.596

ȳstZK1 1346860.5 1367609.66
ȳstZK2 1159733.69 1147176.64
ȳstZK3 1057738.07 1035551.26
ȳstZK4 1968437.26 2137542.13
ȳstZK5 1386671.02 1415684.56
ȳstZK6 1049457.46 1027179.13
ȳstZK7 1217627.94 1214069.3
ȳstZK8 989856.486 987315.085

Table 5. Percent relative efficiencies (PREs) of the estimators with respect to ȳst.

Estimators Case I Case II
ȳst 100 100
ȳRd 119.47257 113.8928
ȳExd 122.62996 124.9332

ȳstZK1 * *
ȳstZK2 106.7741976 107.9429536
ȳstZK3 117.0702254 119.578469
ȳstZK4 * *
ȳstZK5 * 87.46979249
ȳstZK6 117.9939529 120.5531064
ȳstZK7 101.6974321 101.9955244
ȳstZK8 125.0985737 125.420584
ȳstZK9 * *

* Estimator is not applicable.

5. Conclusions

Tables 4 and 5 clearly show that the stratified two-phase sampling of Eq (2.1) for estimating the
population mean using an auxiliary attribute are more efficient. The estimator in Eq (2.1) lower mean
square error than the sample mean estimator ȳst of Eq (1.1), the estimator ȳRd of Eq (1.3), the estimator
ȳExd of Eq (1.9) in stratified two-phase sampling. This means that the proposed exponential estimators
for both cases is more efficient than the ratio and the exponential estimators. Finally, it is concluded
that the efficiencies of the suggested estimators are better in theory and for the data set used in the
article. We hope that in the future we will expand the estimators presented here to ranked set sampling
as in Mahdizadeh and Zamanzade [27].
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18. C. Ünal, C. Kadilar, Exponential type estimator for the population mean in the presence of non-
response, J. Stat. Manage. Syst., 23 (2020), 603–615.

19. S. Muneer, A. Khalil, J. Shabbir, A parent-generalized family of chain ratio exponential estimators
in stratified random sampling using supplementary variables, Commun. Stat.–Simul. Comput.,
2020, DOI: 10.1080/03610918.2020.1748887.

20. A. Sanaullah, I. Saleem, S. Gupta, M. Hanif, Mean estimation with generalized
scrambling using two-phase sampling, Commun. Stat.–Simul. Comput., 2020, DOI:
10.1080/03610918.2020.1778032.

21. R. R. Sinha, S. Gangwar, S. Sharma, Regression-cum-exponential estimators for product of two
population means under double sampling the non-respondents, Proc. Natl. Acad. Sci. India Sect. A
Phys. Sci., 2020, DOI: 10.1007/s40010-020-00693-x.

22. T. Zaman, An efficient exponential estimator of the mean under stratified random sampling, Math.
Popul. Stud., 2020, DOI: 10.1080/08898480.2020.1767420.

23. Y. Hassan, M. Ismail, W. Murray, M. Q. Shahbaz, Efficient estimation combining exponential and
ln functions under two phase sampling, AIMS Mathematics, 5 (2020), 7605–7623.

24. C. Bose, Note on the sampling error in the method of double sampling, Sankhya, 6 (1943), 329–
330.

25. T. Zaman, C. Kadilar, New class of exponential estimators for finite population mean in two-phase
sampling, Commun. Stat.–Theor. Methods, 50 (2021), 874–889.

26. C. Kadilar, H. Cingi, Ratio estimators in stratified random sampling, Biometrical J., 45 (2003),
218–225.

27. M. Mahdizadeh, E. Zamanzade, Stratified pair ranked set sampling, Commun. Stat.–Theor.
Methods, 47 (2018), 5904–5915.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 5, 4265–4279.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Materails and methods
	Results
	For Case-I and the proposed ratio estimators
	For Case-II and the proposed ratio estimators

	Discussion
	Conclusions

