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1. Introduction

Recently, neural networks (NNs) have drawn considerable attention in many fields of science and
engineering applications for example associative memories, fixed-point computation, control, static
image processing and combinatorial optimization Ref. [1–3]. However, time-delay is common in
various biological and physical phenomena, which is demonstrated by applying of mathematical
modelling with time-delay in a wide range of applications for instance mechanical transmission, fluid
transmission, metallurgical processes and networked control systems which is frequently a source of
chaos, instability and poor control performance. These applications are extensively dependent upon
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the stability of the equilibrium of NNs. So, stability is much importance in dynamical properties of
NNs when NNs are designed. As research results, the stability problem and the performance of the
NNs with time-delay have been improved in Ref. [4–12]. However, most results were discussed only
on the discrete delay in NNs. In contrast, the distributed delay should be associated with a model of a
system that there exists a distribution of propagation delays over a period of time in some cases as
discussed in Ref. [13, 14]. Therefore, there has been an increasing interest in the delayed NNs, and a
great number of results on these topics have been reported in the literature Ref. [15–23] as well.

On the other hand, the passivity is interesting problem and is closely related to the circuit analysis
method. The properties of the passivity are that the system can keep the system internally stable
Ref. [24, 25]. Especially, the passive system employs the product of input and output as the energy
provision and embodies the energy attenuation character. A passive system only burns energy without
energy production and passivity represents the property of energy consumption Ref. [26]. The issue of
passivity performance analysis has been used in various areas such as fuzzy control, signal processing,
networked control and sliding mode control Ref. [27]. Due to these features, the passivity problems
have been an active area of research in recently decades with NNs.

In the same way, Ref. [28–30] also studied the passivity analysis of neural network with discrete
and distributed delays. In addition, many uncertain factors such as uncertain parameters, disturbance
and environmental noise are regularly encountered in many practical and engineering systems, and
these make it difficult to develop an exact mathematical model. Therefore, the parameter uncertainties
are very important and unavoidable while modelling NNs in both theoretical and practical cases.
Meanwhile, improved the delay-dependent approach to passivity analysis for uncertain NNs with
discrete interval and distributed time-varying delays has also discussed in Ref. [31, 32]. However,
there are few results for studying this problem with uncertainties to the best of the authors’s
knowledge, we study delay-dependent passivity criteria for uncertain NNs with discrete interval and
distributed time-varying delays.

Recently, several approaches to reduce the conservatism for the system with time delay have been
reported in the literature, namely an appropriate Lyapunov-Krasovskii functional method by utilizing
information of the neuron activation function and some techniques to evaluate the bounds on some
cross-terms product arising in the analysis of the delay-dependent stability problem such as integral
inequality, refined Jensen’s inequality, and free weighting matrices approach etc. These approaches
will give better maximum allowable upper bound for time-varying delay over some existing ones
Ref. [33–40]. However, these previous works still study on delay-derivative-dependent stability
criteria. Practically time delays can occur in an irregular fashion such as sometimes the time-varying
delays are not differentiable.

Therefore in this paper, we have followed robust passivity analysis of NNs with interval
nondifferentiable and distributed time-varying delays to obtain a better maximum bound value and to
relax the derivative condition of delay. Moreover, system is assumed that the parameter uncertainties
are norm-bounded for checking the passivity of the addressed NNs in LMIs, which can be checked
numerically using the effective LMI toolbox in MATLAB. This is the first time that we apply the
methods to study the networks model to reduce the condition of delays being non-differentiable
delays. Moreover, the system can be turned into the delayed NNs proposed in Ref. [36, 39, 40] which
means that this work is more general than them. Furthermore, the main ideas of this work are given as
follows:

AIMS Mathematics Volume 6, Issue 3, 2778–2795.



2780

• The challenge of this paper is studying the new result on robust passivity analysis of NNs with
non-differentiable mixed time-varying delays which mean that this work can be used for various
systems with fast time-varying delays compared with previous works considered on differentiable
delay (ṙ(t) ≤ µ).
• The new Lyapunov Krasovskii functional establishes more relationships among different vectors,

avoids the extra conservatism arising from estimating the time-varying delays and utilizes more
information about the upper and lower bounds of the time delays existing in the systems.
• The new sufficient conditions based on refined Jensen-based inequalities proposed in Ref. [41],

are less conservative than the others proposed Ref. [33–40] which are shown in the comparison
examples.

The rest of paper is organized as follows: Section 2 provides some mathematical preliminaries and
network model. Section 3 presents the passivity analysis of uncertain NNs with interval and distributed
time-varying delays. Numerical examples are given in Section 4. Finally, the conclusion is provided
in Section 5.

2. Network model and mathematics preliminaries

Notations: Rn is the n-dimensional Euclidean space; Rm×n denotes the set of m× n real matrices; In

represents the n-dimensional identity matrix. Let S+
n denotes the set of symmetric positive definite

matrices in Rn×n. We also denoted by D+
n the set of positive diagonal matrices. A matrix

D = diag{d1, d2, ..., dn} ∈ D
+
n if di > 0 (i = 1, 2, ..., n). The notation X ≥ 0 (respectively, X > 0 ) means

that X is positive semi-definite (respectively, positive definite); diag(. . .) denotes a block diagonal

matrix;
[

X Y
? Z

]
stands for

[
X Y
YT Z

]
; Matrix dimensions, if not explicitly stated, are assumed to be

compatible for algebraic operations.
Consider the following of NNs with nondifferentiable interval and distributed time-varying delays

in the form:
ṗ(t) = −Dp(t) + Ag(p(t)) + A1g(p(t − r(t))) + A2

∫ t

t−d(t)
g(p(s)) ds + u(t),

q(t) = C1g(p(t)) + C2g(p(t − r(t))) + C3

∫ t

t−d(t)
g(p(s)) ds + C4u(t),

p(t) = φ(t), t ∈ [−θ, 0], θ = max{r2, d},

(2.1)

where n denotes the number of neurons in the network, p(t) = [p1(t), p2(t), ..., pn(t)]T ∈ Rn is the
neurons state vector, q(t) ∈ Rn is the output vector and u(t) is the external input of the network,
D = diag{d1, d2, ..., dn} is a positive diagonal matrix, A, A1, A2 are interconnection weight matrices,
C1,C2,C3,C4 are real matrices, g(p(t)) = [g1(p1(t)), g2(p2(t)), ..., gn(pn(t))]T ∈ Rn denotes the
activation function, g(p(t − r(t))) = [g1(p1(t − r(t))), g2(p2(t − r(t))), ..., gn(pn(t − r(t)))]T ∈ Rn. and
φ(t) ∈ Rn is the initial function.

The variables r(t) and d(t) represent the mixed delays of the model in (2.1) and satisfy

0 ≤ r1 ≤ r(t) ≤ r2 and 0 ≤ d(t) ≤ d, ∀t ≥ 0, (2.2)

where r1, r2, and d are constants.
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The neural activation functions gi(pi(t)) are continuous gi(0) = 0 and there exist constants l−i , l
+
i

(i = 1, 2, ..., n) such that

l−i ≤
gi(p) − gi(q)

p − q
≤ l+i , ∀p, q ∈ R, p , q. (2.3)

Definition 2.1. [5] The neural network (2.1) is said to be passive if there exists a scalar γ > 0 such
that for all t f ≥ 0

2
∫ t f

0
qT (s)u(s) ds ≥ −γ

∫ t f

0
uT (s)u(s) ds, (2.4)

under the zero initial condition.

Lemma 2.2. [41] For a given matrix Q ∈ S+
n and a function e : [u, v] → Rn whose derivative

ė ∈ C([u, v],Rn), the following inequalities hold:∫ v

u
ėT (s)Qė(s) ds ≥

1
v − u

ε̂T Q̄ ε̂, (2.5)∫ v

u

∫ v

s
ėT (α)Qė(α) dα ds ≥ 2Γ̂T Q̂ Γ̂, (2.6)

where Q̄ = diag{Q, 3Q, 5Q}, Q̂ = diag{Q, 2Q}, ε̂ = [εT
1 , ε

T
2 , ε

T
3 ]T , Γ̂ = [ΓT

1 ,Γ
T
2 ]T and

ε1 = e(v) − e(u),

ε2 = e(v) + e(u) −
2

v − u

∫ v

u
e(s) ds,

ε3 = e(v) − e(u) +
6

v − u

∫ v

u
e(s) ds −

12
(v − u)2

∫ v

u

∫ v

s
e(α) dα ds,

Γ1 = e(v) −
1

v − u

∫ v

u
e(s) ds,

Γ2 = e(v) +
2

v − u

∫ v

u
e(s) ds −

6
(v − u)2

∫ v

u

∫ v

s
e(α) dα ds.

Lemma 2.3. [6] For a positive definite matrix P > 0, and an integral function
{
e(α)|α ∈ [u, v]

}
, then

the following inequalities hold:∫ v

u
eT (α)Pe(α) dα ≥

1
v − u

(∫ v

u
e(α) dα

)T

P
(∫ v

u
e(α) dα

)
, (2.7)

∫ v

u

∫ v

β

∫ v

s
eT (α)Pe(α) dα dβ ds

≥
6

(v − u)3

(∫ v

u

∫ v

β

∫ v

s
e(α) dα dβ ds

)T

P
(∫ v

u

∫ v

β

∫ v

s
e(α) dα dβ ds

)
. (2.8)
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Lemma 2.4. [6] Let M,N and F(t) be real matrices of appropriate dimensions with F(t) satisfying
FT (t)F(t) ≤ I. Then for any scalar ε > 0.

MF(t)N + (MF(t)N)T ≤ ε−1MMT + εNT N. (2.9)

Lemma 2.5. [6] Given constant symmetric matrices P,Q,R with appropriate dimensions satisfying
P = PT , Q = QT > 0. Then P + RT Q−1R < 0 if and only if

[
P RT

R −Q

]
< 0 or

[
−Q R
RT P

]
< 0. (2.10)

3. Main results

In this section, the new result on robust passivity analysis for NNs with interval nondifferentiable
and distributed time-varying delays will be established. Let us set
L1 = diag{l−1 , l

−
2 , ..., l

−
n }, L2 = diag{l+1 , l

+
2 , ..., l

+
n }, r12 = r2 − r1,

S̄ k = diag{S k, 3S k, 5S k}, k = 1, 2, T =


In −In 0 0
In In −2In 0
In −In 6In −6In

 ,
Σ1(r) = [ϕT

1 r1ϕ
T
9 (r − r1)ϕT

10 + (r2 − r)ϕT
11

r2
1
2 ϕ

T
12]T ,

Σ2 = [AT (ϕ1 − ϕ2)T (ϕ2 − ϕ4)T r1(ϕ1 − ϕ9)T ]T ,
Σ3 = [ϕT

2 ϕT
8 ]T , Σ4 = [ϕT

4 ϕT
7 ]T , Σ5 = [ϕT

1 ϕT
5 ]T ,

Σ6 = [ϕT
1 ϕT

2 ϕT
9 ϕT

12]T , Σ7 = [ϕT
3 ϕT

4 ϕT
11 ϕT

14]T , Σ8 = [ϕT
2 ϕT

3 ϕT
10 ϕT

13]T ,
Σ9(r) = [((r − r1)ϕ10 + (r2 − r)ϕ11)T (ϕ16 + ϕ17)T ]T ,
Σ10 =

r2
1
2 ϕ1 −

r2
2
2 ϕ12, Σ11(r) =

r2
12
2 ϕ2 −

(r−r1)2

2 ϕ13 −
(r2−r)2

2 ϕ14,
Σ12 = ϕ5 − L1ϕ1, Σ13 = L2ϕ1 − ϕ5,
Σ14 = ϕ6 − L1ϕ3, Σ15 = L2ϕ3 − ϕ6,
Σ16 = ϕ5 − ϕ6 − L1(ϕ1 − ϕ3), Σ17 = L2(ϕ1 − ϕ3) − ϕ5 + ϕ6,
Σ18 = ϕ5 − ϕ8 − L1(ϕ1 − ϕ2), Σ19 = L2(ϕ1 − ϕ2) − ϕ5 + ϕ8,
Σ20 = ϕ5 − ϕ7 − L1(ϕ1 − ϕ4), Σ21 = L2(ϕ1 − ϕ4) − ϕ5 + ϕ7,
Σ22 = ϕ7 − ϕ8 − L1(ϕ4 − ϕ2), Σ23 = L2(ϕ4 − ϕ2) − ϕ7 + ϕ8,
Σ24 = ϕ6 − ϕ8 − L1(ϕ3 − ϕ2), Σ25 = L2(ϕ3 − ϕ2) − ϕ6 + ϕ8,
Σ26 = ϕ7 − ϕ6 − L1(ϕ4 − ϕ3), Σ27 = L2(ϕ4 − ϕ3) − ϕ7 + ϕ6,
Γ0(r) = ΣT

1 (r)PΣ2 + ϕT
1 (L2W2 − L1W1)A− ϕT

5 (W2 −W1)A,
Γ1 = ϕT

1 (Q2 + Q3)ϕ1 − ϕ
T
2 Q2ϕ2 − ϕ

T
4 Q3ϕ4 + ΣT

3 Q1Σ3 − ΣT
4 Q1Σ4 + r2

12Σ
T
5 S 3Σ5 + d2ϕT

5 S 4ϕ5,

Γ2 = AT [r2
1S 1 + r2

12S 2 +
r2

1
2 R1 +

r2
12
2 R2 +

r6
1

36Z1 +
(r3

2−r3
1)(r2−r1)3

36 Z2]A,
Γ3 = ϕT

15(γIn + 2C4)ϕ15 + Sym(ϕT
15(C1ϕ5 + C2ϕ6 + C3ϕ18)),

Ω1(r) = Sym(Γ0(r)) + Γ1 + Γ2 − Γ3,
Ω2 = ΣT

6 T T S̄ 1TΣ6, Ω3 = ΣT
7 T T S̄ 2TΣ7, Ω4 = ΣT

8 T T S̄ 2TΣ8,
Ω5 = 2(ϕ1 − ϕ9)T R1(ϕ1 − ϕ9) + 4(ϕ1 + 2ϕ9 − 3ϕ12)T R1(ϕ1 + 2ϕ9 − 3ϕ12),
Ω6 = 2(ϕ2 − ϕ10)T R2(ϕ2 − ϕ10) + 4(ϕ2 + 2ϕ10 − 3ϕ13)T R2(ϕ2 + 2ϕ10 − 3ϕ13) + 2(ϕ3 − ϕ11)T R2(ϕ3 − ϕ11) +

4(ϕ3 + 2ϕ11 − 3ϕ14)T R2(ϕ3 + 2ϕ11 − 3ϕ14),
Π(r) = ΣT

9 (r)S 3Σ9(r) + ΣT
10Z1Σ10 + ΣT

11(r)Z2Σ11(r),
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∆0 = ΣT
12∆1Σ13 + ΣT

14∆2Σ15 + ΣT
16∆3Σ17 + ΣT

18∆4Σ19 + ΣT
20∆5Σ21 + ΣT

22∆6Σ23 + ΣT
24∆7Σ25 + ΣT

26∆8Σ27,
A = Dϕ1 + Aϕ5 + A1ϕ6 + A2ϕ18 + ϕ15,
and ϕi = [0n×(i−1)n In 0n×(18−i)n] (i = 1, 2, ..., 18).

Based on the Lyapunov–Krasovskii functional approach, we present our new theorem for passivity
of NNs (2.1).

Theorem 3.1. The delayed neural network in (2.1) is passive in the sense of definition 2.1 for any
delays r(t) and d(t) satisfying 0 ≤ r1 ≤ r(t) ≤ r2 and 0 ≤ d(t) ≤ d if there exist matrices P ∈
S+

4n; Q1, S 3 ∈ S
+
2n; Q2,Q3, S 1, S 2, S 4,R1,R2,Z1,Z2 ∈ S

+
n ; ∆k,Wσ ∈ D

+
n , (k = 1, 2, ..., 8;σ = 1, 2), and a

scalar γ > 0 satisfy the following LMI:

Φ(r) = Sym(∆0) − Π(r) −Ω1(r) −
6∑

k=2

Ωk < 0. (3.1)

Proof. Consider the following Lyapunov-Krasovskii functional:

V(t, pt) =

5∑
i=1

Vi(t, pt),

where,

V1(t, pt) = ηT
1 (t)Pη1(t) + 2

n∑
i=1

w1i

∫ pi(t)

0
(gi(s) − l−i s) ds

+2
n∑

i=1

w2i

∫ pi(t)

0
(l+i s − gi(s)) ds,

V2(t, pt) =

∫ t−r1

t−r2

ηT
2 (s)Q1η2(s) ds +

∫ t

t−r1

pT (s)Q2 p(s) ds +

∫ t

t−r2

pT (s)Q3 p(s) ds,

V3(t, pt) = r1

∫ 0

−r1

∫ t

t+s
ṗT (u)S 1 ṗ(u) du ds + r12

∫ −r1

−r2

∫ t

t+s
ṗT (u)S 2 ṗ(u) du ds

+r12

∫ −r1

−r2

∫ t

t+s
ηT

2 (u)S 3η2(u) du ds + d
∫ 0

−d

∫ t

t+s
gT (p(u))S 4g(p(u)) du ds,

V4(t, pt) =

∫ t

t−r1

∫ t

s

∫ t

u
ṗT (λ)R1 ṗ(λ) dλ du ds +

∫ −r1

−r2

∫ −r1

s

∫ t

t+u
ṗT (λ)R2 ṗ(λ) dλ du ds,

V5(t, pt) =
r3

1

6

∫ t

t−r1

∫ t

s

∫ t

λ

∫ t

u
ṗT (θ)Z1 ṗ(θ) dθ du dλ ds

+
(r3

2 − r3
1)

6

∫ −r1

−r2

∫ −r1

s

∫ −r1

λ

∫ t

t+u
ṗT (θ)Z2 ṗ(θ) dθ du dλ ds.

Let ∆k = diag{λk1, λk2, ..., λkn} (k = 1, 2, ..., 8), Wσ = diag{wσ1,wσ2, ...,wσn} ( j = 1, 2), and

η1(t) =
[
pT (t)

∫ t

t−r1

pT (s) ds
∫ t−r1

t−r2

pT (s) ds
∫ t

t−r1

∫ t

s
pT (u) du ds

]T
,

η2(t) =
[
pT (t) gT (p(t))

]T
,

AIMS Mathematics Volume 6, Issue 3, 2778–2795.



2784

ξ(t) =
[
pT (t), pT (t − r1), pT (t − r(t)), pT (t − r2), gT (p(t)), gT (p(t − r(t))), gT (p(t − r2)),

gT (p(t − r1)),
1
r1

∫ t

t−r1

pT (s) ds,
1

r(t) − r1

∫ t−r1

t−r(t)
pT (s) ds,

1
r2 − r(t)

∫ t−r(t)

t−r2

pT (s) ds,

2
r2

1

∫ t

t−r1

∫ t

s
pT (u) du ds,

2
(r(t) − r1)2

∫ t−r1

t−r(t)

∫ t−r1

s
pT (u) du ds,

2
(r2 − r(t))2

∫ t−r(t)

t−r2

∫ t−r(t)

s
pT (u) du ds, uT (t),

∫ t−r1

t−r(t)
gT (p(s)) ds,

∫ t−r(t)

t−r2

gT (p(s)) ds,∫ t

t−d(t)
gT (p(s)) ds

]T
.

The derivative of V(t, pt) along the solution of system (2.1) as follows:

V̇1(t, pt) = 2ηT
1 (t)Pη̇1(t) + 2

n∑
i=1

w1i

[
gi(pi(t)) ṗi(t) − l−i (pi(t)) ṗi(t)

]
+2

n∑
i=1

w2i

[
l+i (pi(t)) ṗi(t) − gi(pi(t)) ṗi(t)

]
= 2ηT

1 (t)Pη̇1(t) + 2
[
pT (t)(L2W2 − L1W1) − gT (p(t))(W2 −W1)

]
ṗ(t),

V̇2(t, pt) = ηT
2 (t − r1)Q1η2(t − r1) − ηT

2 (t − r2)Q1η2(t − r2) + pT (t)(Q2 + Q3)p(t)
−pT (t − r1)Q2 p(t − r1) − pT (t − r2)Q3 p(t − r2),

V̇3(t, pt) = r2
1 ṗT (t)S 1 ṗ(t) + r2

12 ṗT (t)S 2 ṗ(t) + r2
12η

T
2 (t)S 3η2(t)

−r1

∫ t

t−r1

ṗT (s)S 1 ṗ(s) ds − r12

∫ t−r1

t−r2

ṗT (s)S 2 ṗ(s) ds

+d2gT (p(t))S 4g(p(t)) − r12

∫ t−r1

t−r2

ηT
2 (s)S 3η2(s) ds

−d
∫ t

t−d
gT (p(s))S 4g(p(s)) ds,

V̇4(t, pt) =
r2

1

2
ṗT (t)R1 ṗ(t) +

r2
12

2
ṗT (t)R2 ṗ(t) −

∫ t

t−r1

∫ t

s
ṗT (u)R1 ṗ(u) du ds

−

∫ −r1

−r2

∫ t−r1

t+s
ṗT (u)R2 ṗ(u) du ds,

V̇5(t, pt) =
r6

1

36
ṗT (t)Z1 ṗ(t) +

(r3
2 − r3

1)(r2 − r1)3

36
ṗT (t)Z2 ṗ(t)

−
r3

1

6

∫ t

t−r1

∫ t

s

∫ t

λ

ṗT (u)Z1 ṗ(u) du dλ ds

−
(r3

2 − r3
1)

6

∫ −r1

−r2

∫ −r1

s

∫ t−r1

t+λ
ṗT (u)Z2 ṗ(u) du dλ ds.

We conclude that,

V̇(t, pt) ≤ ξT (t)
(
Sym(Γ0(r)) + Γ1 + Γ2

)
ξ(t)
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−r1

∫ t

t−r1

ṗT (s)S 1 ṗ(s) ds − r12

∫ t−r1

t−r2

ṗT (s)S 2 ṗ(s) ds

−r12

∫ t−r1

t−r2

ηT
2 (s)S 3η2(s) ds − d(t)

∫ t

t−d(t)
gT (p(s))S 4g(p(s)) ds

−

∫ t

t−r1

∫ t

s
ṗT (u)R1 ṗ(u) du ds −

∫ t−r1

t−r2

∫ t−r1

s
ṗT (u)R2 ṗ(u) du ds

−
r3

1

6

∫ t

t−r1

∫ t

s

∫ t

λ

ṗT (u)Z1 ṗ(u) du dλ ds

−
(r3

2 − r3
1)

6

∫ −r1

−r2

∫ −r1

s

∫ t−r1

t+λ
ṗT (u)Z2 ṗ(u) du dλ ds. (3.2)

According to Lemma 2.2, we have

−r1

∫ t

t−r1

ṗT (s)S 1 ṗ(s) ds ≤ −ξT (t)ΣT
6 T T S̄ 1TΣ6ξ(t) = −ξT (t)Ω2ξ(t).

(3.3)

By splitting, we have

−r12

∫ t−r1

t−r2

ṗT (s)S 2 ṗ(s) ds = −r12

∫ t−r(t)

t−r2

ṗT (s)S 2 ṗ(s) ds − r12

∫ t−r1

t−r(t)
ṗT (s)S 2 ṗ(s) ds. (3.4)

Applying Lemma 2.2 yields

−r12

∫ t−r(t)

t−r2

ṗT (s)S 2 ṗ(s) ds ≤ −ξT (t)ΣT
7 T T S̄ 2TΣ7ξ(t) = −ξT (t)Ω3ξ(t). (3.5)

−r12

∫ t−r1

t−r(t)
ṗT (s)S 2 ṗ(s) ds ≤ −ξT (t)ΣT

8 T T S̄ 2TΣ8ξ(t) = −ξT (t)Ω4ξ(t). (3.6)

−

∫ t

t−r1

∫ t

s
ṗT (u)R1 ṗ(u) du ds ≤ −ξT (t)Ω5ξ(t). (3.7)

−

∫ t−r1

t−r2

∫ t−r1

s
ṗT (u)R2 ṗ(u) du ds ≤ −ξT (t)Ω6ξ(t). (3.8)

In the same way, applying the inequalities (2.7) and (2.8), then we obtain

−r12

∫ t−r1

t−r2

ηT
2 (s)S 3η2(s) ds ≤ −

( ∫ t−r1

t−r2

η2(s) ds
)T

S 3

( ∫ t−r1

t−r2

η2(s) ds
)

≤ −ξT (t)ΣT
9 (r)S 3Σ9(r)ξ(t), (3.9)

−d(t)
∫ t

t−d(t)
g(p(s))T (s) S 4 g(p(s)) ds ≤ −

( ∫ t

t−d(t)
g(p(s)) ds

)T
S 4

( ∫ t

t−d(t)
g(p(s)) ds

)
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= −ξT (t)ϕT
18S 4ϕ18ξ(t), (3.10)

−
r3

1

6

∫ t

t−r1

∫ t

s

∫ t

λ

ṗT (u)Z1 ṗ(u) du dλ ds ≤ −ξT (t)
(r2

1

2
ϕ1 −

r2
1

2
ϕ12

)T
Z1

(r2
1

2
ϕ1 −

r2
1

2
ϕ12

)
ξ(t)

= −ξT (t)ΣT
10Z1Σ10ξ(t), (3.11)

−
(r3

2 − r3
1)

6

∫ −r1

−r2

∫ −r1

s

∫ t−r1

t+λ
ṗT (u)Z2 ṗ(u) du dλ ds ≤ −ξT (t)ΣT

11(r)Z2Σ11(r)ξ(t). (3.12)

For λ1i > 0, i = 1, 2, . . . , n, it can be deduced from (2.3) that

2(gi(pi(t)) − l−i pi(t))λ1i(l+i pi(t) − gi(pi(t))) ≥ 0,

and thus

ξT (t)Sym
(
ΣT

12∆1Σ13

)
ξ(t) ≥ 0. (3.13)

From (3.13), we have

ξT (t)Sym(∆0)ξ(t) ≥ 0. (3.14)

Then, to show that NNs (2.1) is passive, we define J(t f ) =

∫ t f

0

[
− γuT (t)u(t) − 2qT (t)u(t)

]
dt where

t f ≥ 0. Consider the zero initial condition and we have

J(t f ) =

∫ t f

0

[
V̇(pt) − γuT (t)u(t) − 2qT (t)u(t)

]
dt − V(pt f )

≤

∫ t f

0

[
V̇(pt) − γuT (t)u(t) − 2qT (t)u(t) dt

]
.

From (3.2) to (3.14), it can be deduced that

V̇(pt) − γuT (t)u(t) − 2qT (t)u(t) ≤ ξT (t)Φ(r)ξ(t).

where Φ(r) is an affine function in r, for Φ(r) < 0, r ∈ [r1, r2] if and only if Φ(r1) < 0 and Φ(r2) < 0. if
(3.1) holds for r = r1 and r = r2 and we have Φ(r) < 0, then

V̇(pt) − γuT (t)u(t) − 2qT (t)u(t) ≤ 0.

Considering, we have J(t f ) < 0 for any t f ≥ 0 if condition (2.3) is satisfied. Thus, the system of NNs
(2.1) is passive. The proof is completed. �

Remark 1. We can see that the time delay in this work is a continuous function which belongs to
a given interval. It means that the lower and upper bounds of the time-varying delay are available.
Moreover, there is no need to be differentiable for the delay function. Therefore, the delays considering
in this brief are more general than those studied in [29, 33, 34, 38].

AIMS Mathematics Volume 6, Issue 3, 2778–2795.



2787

Remark 2. The activation function in inequality (2.3) studied by [40] is more general
than [28, 33, 36, 39] because the constants l−i and l+i can be positive, zero or negative. We can see that
the activation function under (2.3) can be unbounded, non-monotonic, non-differentiable. Hence, the
passivity condition is considered in this work is less conservative than Ref. [28, 33, 36, 39].

Remark 3. The proof of theorem 3.1 shows estimating of integral terms by lemma 2.2 applying
equations (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8), which obtained a tighter upper bound than Jensen’s
inequality used in Ref. [25, 29, 33, 36].

Based on the presented passivity condition in theorem 3.1, we will develop passivity analysis of
uncertain NNs established as follows. Consider

ṗ(t) = −(D + ∆D(t))p(t) + (A + ∆A(t))g(p(t)) + (A1 + ∆A1(t))g(p(t − r(t)))

+(A2 + ∆A2(t))
∫ t

t−d(t)
g(p(s)) ds + u(t),

q(t) = C1g(p(t)) + C2g(p(t − r(t))) + C3

∫ t

t−d(t)
g(p(s)) ds + u(t),

p(t) = φ(t), t ∈ [−θ, 0], θ = max{r2, d},

(3.15)

where ∆D(t), ∆A(t), ∆A1(t), ∆A2(t) are the time-varying parameter uncertainties, which are assumed
to be of the form

[∆D(t) ∆A(t) ∆A1(t) ∆A2(t)] = MF(t)[N1 N2 N3 N4], (3.16)

where M,N1,N2,N3 and N4 are known real constant matrices, and F(·) is an unknown time-varying
matrix function satisfying FT (t)F(t) ≤ I then we have the following result.

Theorem 3.2. The delayed neural network in (3.15) is passive in the sense of definition 2.1 for any
delays τ(t) and d(t) satisfying 0 ≤ r1 ≤ r(t) ≤ r2 and 0 ≤ d(t) ≤ d if there exist matrices P ∈
S+

4n; Q1, S 3 ∈ S
+
2n; Q2,Q3, S 1, S 2, S 4,R1,R2,Z1,Z2 ∈ S

+
n ; ∆k,Wσ ∈ D

+
n , (k = 1, 2, ......, 8;σ = 1, 2), and a

scalar γ > 0 satisfy the following LMI:[
Φ(r) + εΞT

2 Ξ2 ΞT
1

Ξ1 −εI

]
< 0, (3.17)

where

Ξ1 = [P1M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],
Ξ2 = [−N1 0 0 0 N2 N3 0 0 0 0 0 0 0 0 0 0 0 N4 0],

and Φ(r) is defined in theorem 3.1.

Proof. Replacing D, A, A1, and A2 in theorem 3.1 with D+ MF(t)N1, A+ MF(t)N2, A1 + MF(t)N3, A2 +

MF(t)N4 respectively, so we have

Φ(r) + ΞT
1 F(t)Ξ2 + ΞT

2 F(t)Ξ1 < 0. (3.18)

Applying lemma 2.4, it can be deduced that for ε > 0

Φ(r) + ε−1ΞT
1 Ξ1 + εΞT

2 Ξ2 < 0. (3.19)

From lemma 2.5 shows that (3.19) is equivalent to (3.17), therefore the proof is completed. �
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Remark 4. If delayed NNs (2.1) are setting as C2 = 0,C3 = 0 and C4 = 0, the networks model turns
into the delayed NNs proposed in [28, 33, 38, 40]:


ṗ(t) = −Dp(t) + Ag(p(t)) + A1g(p(t − r(t))) + A2

∫ t

t−d(t)
g(p(s)) ds + u(t),

q(t) = C1g(p(t)),
p(t) = φ(t), t ∈ [−d, 0].

(3.20)

Hence, our network model (2.1) includes previous network model, which can be regarded as a
special case of neural network (2.1).

Remark 5. To illuminate how to solve the upper bound of r2 for system (2.1) satisfying time-varying
delays (2.2) and neural activation functions (2.3), the following steps are performed.

Step 1: Given positive diagonal matrix D, real matrices A, A1, A2,C1,C2,C3 and positive constants
r1, d.

Step 2: Select a positive constant γ.

Step 3: Define variable matrices with appropriate dimensions P,Q1, S 3,Q2,Q3, S 1, S 2, S 4,R1,R2,

Z1,Z2,∆k,Wσ (k = 1, 2, ..., 8;σ = 1, 2).

Step 4: Use matlab software to compute the value of the variable.

Step 5: Calculate the value of LMIs, in (3.1).

4. Numerical examples

In this section, three numerical examples are given to illustrate the merits of the proposed robust
passivity results.

Example 4.1. Consider a neural network (2.1) with the following parameters:

D =

[
2.2 0
0 1.8

]
, A =

[
1.2 1
−0.2 0.3

]
, A1 =

[
0.8 0.4
−0.2 0.1

]
, A2 =

[
0 0
0 0

]
,

L1 = diag{0, 0}, L2 = diag{1, 1}, C1 = I, and C2 = C3 = C4 = 0. The neural activation functions are
assumed to be gi(pi) = 1

2 (|pi + 1| − |pi − 1|) (i = 1, 2). It is easy to check that the neural activation
functions are satisfied (2.3) with l−i = 0 and l+i = 0 (i = 1, 2). Using Matlab LMI Toolbox, we can
conclude that the upper bound of r2 without non differentiable µ which is shown in Table 1 is feasibility
of the LMI in theorem 3.1. In addition, the results from [36–40] without distributed delay are listed
in Table 1. As shown in this table, the criterion of this paper is less conservative than those results
obtained in [36–40]. According to Figure 1, it can be confirmed that neural network (2.1) under zero
input and the initial condition [p1(t), p2(t)]T = [−1, 1]T is stable.
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Table 1. Upper bound of r2 for Example 4.1.

µ µ = 0.5 unknown
[36] 0.5227 -
[39] 1.3752 -
[40] 3.0430 -
[38] 3.0835 -
[37] 3.6566 -

Theorem 3.1 - 4.1010

0 5 10 15 20 25 30
Time t
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-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p(
t)

p
1
(t)

p
2
(t)

Figure 1. State trajectory of neural network in Example 4.1.

Example 4.2. Consider a uncertain neural network (3.15) with the following parameters:

D =

[
2.3 0
0 2.5

]
, A =

[
0.3 0.2
0.4 0.1

]
, A1 =

[
0.5 0.7
0.7 0.4

]
, A2 =

[
0.5 −0.3
0.2 1.2

]
,

M = diag{0.1, 0.1}, N1 = N2 = N3 = N4 = diag{1, 1}. With these parameters, we can conclude that
the upper bound of r2 are shown in Table 2 is feasibility of the LMI in theorem 3.2. Moreover, the
results from [33, 35, 40] are listed in Table 2. As shown in this table, the criteria of this paper is less
conservative than those results obtained in [33, 35, 40]. We have activation functions as above and set

∆D(t) = ∆A(t) = ∆A1(t) = ∆A2(t) =

[
0.1 sin(t) 0

0 0.1 sin(t)

]
shown in Figure 2. From Figure 2, it

can be confirmed that the neural network (3.15) without input u(t) is robustly stable, which the initial
condition [p1(t), p2(t)]T = [1.5,−1.5]T .
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Table 2. Upper bound of r2 for Example 4.2.

µ=0.1 unknown µ
[33] 0.5005 0.4269
[40] 0.5504 -
[35] 0.6621 -

Theorem 3.2 - 3.0420
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Figure 2. State trajectory of neural network in Example 4.2.

Example 4.3. Consider a uncertain neural network (3.15) with the following parameters:

D =

[
2.2 0
0 1.5

]
, A =

[
1 0.6

0.1 0.3

]
, A1 =

[
1 −0.1

0.1 0.2

]
, A2 =

[
0 0
0 0

]
,

M = diag{0.1, 0.1}, N1 = 0.1,N2 = 0.2I, N3 = 0.3I, N4 = diag{0, 0} and C1 = C2 = C3 = C4 = I. In
this example, we can conclude that the upper bounds of r2 are shown in Table 3 is feasibility of the LMI
in theorem 3.2. Moreover, the results from [33, 34, 40] without distributed delay are listed in Table 3.
As shown in this table, the criterion of this paper is less conservative than those results obtained in [33,

34, 40]. We have activation functions as above and set ∆D(t) =

[
0.01 sin(t) 0

0 0.01 sin(t)

]
, ∆A(t) =[

0.02 sin(t) 0
0 0.02 sin(t)

]
, ∆A1(t) =

[
0.03 sin(t) 0

0 0.03 sin(t)

]
shown in Figure 3. From Figure 3, it

can be confirmed that the neural network (3.15) without input u(t) is robustly stable, which the initial
condition [p1(t), p2(t)]T = [2,−1]T .
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Table 3. Upper bound of r2 for Example 4.3.

µ=0.3 unknown µ
[33] 0.4197 0.3994
[40] 1.9091 -
[34] 2.1350 -

Theorem 3.2 - 2.3220
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Figure 3. State trajectory of neural network in Example 4.3.

Remark 6. An important property in linear circuit and system theory is passivity which is applicable
to the analysis of properties of immittance or hybrid matrices of various classes of neural networks,
inverse problem of linear optimal control, Popov criterion, circle criterion and spectral factorization
by algebra [42]. In the recent years, passivity properties have also been related to the neural networks
[36–40]. It should be pointed out that the aforementioned results have the restrictions on the derivative
time-varying delays which mean that the delayed conditions in this work are more applicable in the
real-world system by establishing Lyapunov-Krasovskii functional fully of the information of the delays
r1, r2 and d. On the other hand, in this work, we use the refined Jensen’s inequality to estimate single
and double integrals. By applying the aforementioned techniques, we obtain the less conservative
results than the others [25, 29, 33, 36].

Example 4.4. Consider a uncertain neural network (3.15) with the following parameters:

D =


2.0 0 0
0 2.5 0
0 0 2.3

 , A =


−2.7 0.6 0.34
0.5 1.0 0.16
0.8 2.0 −1.0

 ,
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A1 =


0.8 0.15 0.16
0.5 0.1 0.25
0.5 0.25 1.0

 , A2 =


0.37 0.9 −1.38
0.18 0.1 −0.13
0.5 0.7 −0.5

 ,
M = diag{0.1, 0.1, 0.1}, N1 = 0.1I, N2 = 0.2I, N3 = 0.2I, N4 = 0.1I, C1 = C2 = C3 = C4 = I and

∆D(t) =


0.2 sin(t) 0 0

0 0.2 sin(t) 0
0 0 0.3 sin(t)

 , ∆A(t) =


0.15 sin(t) 0 0

0 0.05 sin(t) 0
0 0 0.1 sin(t)

 ,

∆A1(t) =


0.15 sin(t) 0 0

0 0.1 sin(t) 0
0 0 0.05 sin(t)

 , ∆A2(t) =


0.1 sin(t) 0 0

0 0.2 sin(t) 0
0 0 0.1 sin(t)

 .
In Example 4.4, the state trajectory of neural network (3.15) for r1 = 1, r2 = 2, d = 0.5 and g1(s) =

g2(s) = g3(s) = tanh(s) without input u(t) has been analyzed. The result is robustly stable shown in
Figure 4 with the initial condition [p1(t), p2(t), p3(t)]T = [2, 1,−2, ]T .
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Figure 4. State trajectory of neural network in Example 4.4.

5. Conclusions

In this research, we focused on new results for robust passivity analysis of NNs with interval
nondifferentiable and distributed time-varying delays. Using refined Jensen’s inequalities, and
applying the Lyapunov-Krasovskii functional containing single, double, triple and quadruple
integrals, the new conditions were obtained in terms of LMI which can be checked by using LMI
toolbox in MATLAB. Moreover, These results are less conservative than the existing ones and can be
an effective method. Compared with existing ones, the obtained criteria are more effective because of
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the application of refined Jensen-based inequality technique comprising single and double inequalities
evaluating. Three numerical examples have been proposed to show the effectiveness of the methods.
For further research, we can use these methods to consider the dynamic networks with Markovian
jumping delayed complex networks or stochastic delayed complex networks.
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