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Abstract: Intuitionistic fuzzy hypersoft set is an extension of the intuitionistic fuzzy soft set used to 

express insufficient evaluation, uncertainty, and anxiety in decision-making. It is a new technique to 

realize computational intelligence and decision-making under uncertain conditions. The intuitionistic 

fuzzy hypersoft set can deal with uncertain and fuzzy information more effectively. The concepts and 

properties of the correlation coefficient and the weighted correlation coefficient of the intuitionistic 

fuzzy hypersoft sets are proposed in the following research. A prioritization technique for order 

preference by similarity to ideal solution (TOPSIS) based on correlation coefficients and weighted 

correlation coefficients is introduced under the intuitionistic fuzzy hypersoft sets. We also introduced 

aggregation operators, such as intuitionistic fuzzy hypersoft weighted average and intuitionistic 

fuzzy hypersoft weighted geometric operators. Based on the established TOPSIS method and 

aggregation operators, the decision-making algorithm is proposed under an intuitionistic fuzzy 

hypersoft environment to resolve uncertain and confusing information. A case study on 

decision-making difficulties proves the application of the proposed algorithm. Finally, a comparative 

analysis with the advantages, effectiveness, flexibility, and numerous existing studies demonstrates 

this method's effectiveness. 
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1. Introduction 

Multi-attribute decision making (MADM) is the mandatory circumstance for decision science. 

Its purpose is to differentiate probably the most specific alternative within feasible alternatives. The 

person making the decision needs to evaluate a given choice through various types of evaluation 

conditions, such as numbers, intervals, etc. However, it is difficult for one person in several 

circumstances since there are various uncertainties within the data, pick out the suitable one due to 

lack of expertise or infraction. Thus, to measure such risks and check the process, a wide family of 

theories was presented. First, Zadeh developed the concept of a fuzzy set (FS) [1] to solve those 

problems that contain uncertainty and ambiguity. In some cases, we must carefully consider 

membership as a non-membership value in the proper representation of objects that cannot be 

processed by FS. To overcome these difficulties, Atanassov proposed intuitionistic fuzzy sets (IFS) [2]. 

Many other theories had been developed, such as cubic IFS [3], interval-valued IFS [4], linguistic 

interval-valued IFS [5], etc. used by researchers. Recently, Alcantud et al. [6] presented the strategy 

to aggregate an infinite sequence of IFS; they also developed the scores and accuracy functions for 

temporal IFS and used the proposed functions for decision making. Thoroughly the theories 

mentioned above, substance are considered by experts, and the sum of their two memberships and 

non-membership values cannot exceed one. 

Atanassov's intuitionistic fuzzy set only deals with insufficient data due to membership and 

non-membership values, but IFS cannot deal with incompatible and imprecise information. 

Molodtsov [7] proposed a general mathematical tool to deal with uncertain, ambiguous, and undefined 

substances, called soft sets (SS). Maji et al. [8] proposed the concept of a fuzzy soft set (FSS) by 

combining FS and SS. Ali et al. [9] presented different types of parameter reduction for bipolar FSS 

and established a novel decision-making methodology. Maji et al. proposed an intuitionistic fuzzy 

soft set (IFSS) with basic operations and properties [10]. Yang et al. [11] introduced the concept of 

interval-valued fuzzy soft sets (IVFSS) with operations and proved some important results by 

combining IVFS and SS, and they also used the developed concepts for decision-making. Akram et 

al. [12] proposed some novel hybrid structures, such as intuitionistic fuzzy n-soft sets, n-soft rough 

intuitionistic fuzzy sets as well as intuitionistic fuzzy n-soft rough sets and studied their desirable 

features. Additionally, they developed a decision-making method based on the developed structure to 

resolve the decision-making problem. Gerstenkorn and Mafiko [13] established a method for 

functionally measuring the interrelationship of IFS. Now, this method is called correlation and has 

developed characteristic coefficients. 

Correlation plays an important role in statistics and engineering. The combined relationship of 

two variables can be used to estimate the interdependence of two variables through correlation 

analysis. Although probabilistic methods have been applied to various practical engineering 

problems, there are still some obstacles in probability strategies. For example, the probability of the 

process depends on the large amount of data collected, which is random. However, large complex 

systems have many vague uncertainties, so it is difficult to obtain accurate probability events. 

Therefore, due to limited quantitative information, results based on probability theory do not always 

provide useful information for experts. Also, in practical applications, sometimes there is not enough 
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data to properly process standard statistical data. Due to the obstacles mentioned above, results based 

on probability theory are not always available to experts. Therefore, probabilistic methods are 

usually insufficient to resolve such inherent uncertainties in the data. Many researchers have 

proposed and suggested different methodologies to solve problems that contain uncertainty [1–6]. To 

measure the relationship between fuzzy numbers, Yu [14] established the correlation coefficient (CC) 

of fuzzy numbers. Chiang and Lin [15] discussed the fuzzy correlation of fuzzy data by 

implementing the subsequent strategies for conventional statistics; they gained the formula of fuzzy 

CC, which is enlightened in the fuzzy set. 

Garg [16] developed an MCDM method based on weighted cosine similarity measures in an IFS 

environment and used the proposed technique for pattern identification and clinical diagnosis. Garg 

and Kumar [17] proposed some new similarity measures to measure the relative strength of IFS. 

They also compiled the number of connections for the set-pair analysis (SPA) and developed some 

new similarity and weighted similarity measures based on the specified SPA. Garg and Rani [18] 

extended the IFS technique to complex IFS (CIFS) and developed CC and WCC in the CIFS 

environment. Hung and Wu [19] proposed the center of gravity method to calculate the CC of IFS 

and extended the proposed method to IVIFS. Bustince and Burillo [20] introduced IVIFS and CC's 

correlation and proved the decomposition theorem about IVIFS. Hong [21] and Mitchell [22] also 

established CC for IFS and IVIFS, respectively. Garg and Arora introduced related metrics on IFSS 

and built the TOPSIS technique on the developed related measures [23]. Huang and Guo [24] 

established an improved CC based on IFS with their properties, and they also developed the IVIFS 

coefficient. Singh et al. [25] proposed one-parametric and two-parametric summaries of CC on IFS 

and applied the proposed technique to multi-attribute group decision-making problems. 

Hwang and Yoon [26] developed the TOPSIS to solve decision-making problems. Using the 

TOPSIS method easily obtains the minimum distance from a positive ideal solution, which supports 

electing the finest alternative. After the TOPSIS method was invented, many researchers used the 

TOPSIS method for decision-making and extended this method to fuzzy and intuitionistic fuzzy 

environments [27–34]. Akram et al. [35] extended the TOPSIS technique to m-polar hesitant fuzzy 

TOPSIS for multi-criteria group decision making (MCGDM). Garg and Arora [36] developed a 

generalized version of the intuitionistic Fuzzy soft set (IFSS) with weighted average and geometric 

aggregation operators and constructed a decision-making technique to solve the problem in an 

intuitionistic fuzzy environment. Zhang et al. [37] established the TOPSIS-WAA method under 

covering based fuzzy rough set and based on MCDM; they designed a ranking structure in finite 

fuzzy covering approximation space (FCAS). Jiang et al. [38] described a unique method for 

grappling the MADM problem by mixing the developed model of rough set and the VIKOR method 

under the finite FCAS environment. They applied the developed method to choose the most 

appropriate drug for those who are victims of the ailment with Alzheimer’s disease. The entropy 

measurement and the idea of the TOPSIS method based on CC were developed by using complex 

q-order neighbor pairs of fuzzy information and used well-established techniques for 

decision-making [39]. Many researchers have presented several models to deal with MCDM, 

MADM, and MCGDM problems, including PROMETHEE-EDAS methods [40], three-way 

decisions [41,42], CVPIFRS [43], and IF-TOPSIS [44] based on CIFRS models, etc. 

Smarandache [45] extended the concept of soft sets to hypersoft sets (HSS) by replacing 

function F of one parameter with a multi-parameter (sub-attributes) function defined on the cartesian 

product of n different attributes. The established HSS is more flexible than soft sets and more 
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suitable for decision-making environments. He also presented the further extension of HSS, such as 

crisp HSS, fuzzy HSS, intuitionistic fuzzy HSS, neutrosophic HSS, and plithogenic HSS. Nowadays, 

the HSS theory and its extensions rapidly progress, many researchers developed different operators 

and properties based on HSS and its extensions [46–48]. Abdel-Basset et al. [49] plithogenic set 

theory was used to eliminate uncertainty and evaluate the manufacturing industry's financial 

performance. Then, they used the VIKOR and TOPSIS methods to determine the weight of the 

financial ratio using the AHP method to achieve this goal. Abdel-Basset et al. [50] presented an 

effective combination of plithogenic aggregate operations and quality feature deployment procedures. 

The advantage of this combination is to improve accuracy, as a result, summarizes the 

decision-makers. 

In this research, the TOPSIS technique is extended to IFHSS information, and the mechanism is 

based on IFHSNs assumptions. To measure the degree of dependency on IFHSS, we proposed a new 

CC on IFHSS and studied some properties of the developed CC. To achieve the goal accurately, the 

given TOPSIS technique can be extended to solve the multi-attribute decision-making (MADM) 

problem. In this study, our main goal is to introduce a novel CC under the IFHSS information and 

develop the TOPSIS method of IFHSS based on the proposed CC. To solve MADM problems based 

on the extended TOPSIS approach, develop an algorithm, and check the validity of the proposed 

technique with a numerical illustration. The correlation measures are given that IFHSS has been 

considered for the pairs of IFHSSs, which will be used to compute the interrelation as well as the 

scope of dependence between the elements. Because the existing IFS and IFSS are special cases of 

IFHSS, the measures that have been formulated are more general than the current measures. CC 

retains the linear relationship between under-considered elements. To find the general closeness 

coefficient, the researchers used the basic TOPSIS method, similarity measure, and distance. 

Meanwhile, in our developed method, CC can be used to calculate the closeness coefficient. 

The rest of this article is organized as follows. In Section 2, we remembered some basic 

definitions, such as SS, HSS, and IFHSS, which will be used to construct this article's structure. In 

Section 3, we proposed the correlation and informational energies of IFHSS and developed CC and 

WCC and their properties by using the correlation and informational energies. Section 4 introduces 

the intuitionistic fuzzy hypersoft weighted average (IFHSWA) and intuitionistic fuzzy hypersoft 

weighted geometric (IFHSWG) operators with their decision-making approach. An extended 

TOPSIS technique based on CC in the IFHSS environment is proposed, and an algorithm is 

developed based on the proposed TOPSIS method to solve the MADM problem, and a numerical 

description is given in Section 5. Furthermore, we use some existing techniques to present 

comparative studies between our proposed methods. Likewise, present the advantages, naivety, 

flexibility as well as effectiveness of the planned algorithms. We organized a brief discussion and a 

comparative analysis of the recommended approach and the existing techniques in Section 6. 

2. Preliminaries 

In this section, we recollect some basic definitions that help build the structure of the following 

manuscript such as soft set, hypersoft set, fuzzy hypersoft set, and intuitionistic fuzzy hypersoft set. 
Definition 2.1. [7] Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 

𝒫(𝒰) be the power set of 𝒰 and 𝒜 ⊆ ℰ. A pair (ℱ,𝒜) is called a soft set over 𝒰 and its mapping 

is given as 
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ℱ:𝒜 → 𝒫(𝒰) 

It is also defined as: 

 ℱ,𝒜 =  ℱ ℯ ∈ 𝒫 𝒰 : ℯ ∈ ℰ, ℱ ℯ =  ∅ 𝑖𝑓 ℯ ∉ 𝒜  

Definition 2.2. [8] ℱ 𝒰  be a collection of all fuzzy subsets over 𝒰 and ℰ be a set of attributes. 

Let 𝒜 ⊆ ℰ, then a pair (ℱ,𝒜) is called FSS over 𝒰, where ℱ is a mapping such as ℱ: 𝒜 → 

𝘍 𝒰 . 

Definition 2.3. [45] Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 

𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be a set of attributes and set 𝐾𝑖  a set of corresponding sub-attributes of 𝑘𝑖  
respectively with 𝐾𝑖  ∩ 𝐾𝑗  = φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1 × 𝐾2 × 

𝐾3× … × 𝐾𝑛  = 𝒜  =  𝑎1𝑕 × 𝑎2𝑘 × ⋯× 𝑎𝑛𝑙   be a collection of multi-attributes, where 1 ≤ 𝑕 ≤ 

𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 

𝐾𝑛  = 𝒜 ) is said to be HSS over 𝒰 and its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛  = 𝒜  →  𝒫(𝒰). 

It is also defined as 

(ℱ, 𝒜 ) =  𝑎 , ℱ𝒜  𝑎  : 𝑎 ∈ 𝒜 , ℱ𝒜  𝑎   ∈  𝒫(𝒰)  

Definition 2.4. [45] Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 

𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be a set of attributes and set 𝐾𝑖  a set of corresponding sub-attributes of 𝑘𝑖  
respectively with 𝐾𝑖  ∩ 𝐾𝑗  = φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1 × 𝐾2 × 𝐾3× 

… × 𝐾𝑛  = 𝒜  =  𝑎1𝑕 × 𝑎2𝑘 × ⋯× 𝑎𝑛𝑙   be a collection of sub-attributes, where 1 ≤ 𝑕 ≤ 𝛼, 1 ≤ 𝑘 

≤ 𝛽, and 1 ≤ 𝑙 ≤ 𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝔽𝒰 be a collection of all fuzzy subsets over 𝒰. Then 

the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛  = 𝒜 ) is said to be FHSS over 𝒰 and its mapping is defined as 

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛  = 𝒜  → 𝔽𝒰. 

It is also defined as 

(ℱ, 𝒜 ) =   𝑎 , ℱ𝒜  𝑎   : 𝑎 ∈ 𝒜 , ℱ𝒜  𝑎   ∈  𝔽𝒰  ∈   0, 1   

Example 2.1. Consider the universe of discourse 𝒰  =  𝛿1 , 𝛿2  and 𝔏 = 

 ℓ1 = 𝑇𝑒𝑎𝑐𝑕𝑖𝑛𝑔 𝑚𝑒𝑡𝑕𝑑𝑜𝑙𝑜𝑔𝑦, ℓ2 = 𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠, ℓ3 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠  be a collection of attributes with 

following their corresponding sub-attribute values are given as teaching methodology = 𝐿1  = 

 𝑎11 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑎𝑠𝑒, 𝑎12 =  𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛 , Subjects = 𝐿2  =  𝑎21 = 𝑀𝑎𝑡𝑕𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =
 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑎23 =  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 , and Classes = 𝐿3 =  𝑎31 = 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 =  𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙 . 

Let 𝒜  = 𝐿1 × 𝐿2 × 𝐿3 be a set of attributes 

𝒜  = 𝐿1 × 𝐿2 × 𝐿3 =  𝑎11 , 𝑎12  ×  𝑎21 , 𝑎22 , 𝑎23  ×  𝑎31 , 𝑎32  

=  
 𝑎11 , 𝑎21 , 𝑎31 ,  𝑎11 , 𝑎21 , 𝑎32 ,  𝑎11 , 𝑎22 , 𝑎31 ,  𝑎11 , 𝑎22 , 𝑎32 ,  𝑎11 , 𝑎23 , 𝑎31 ,  𝑎11 , 𝑎23 , 𝑎32 ,
 𝑎12 , 𝑎21 , 𝑎31 ,  𝑎12 , 𝑎21 , 𝑎32 ,  𝑎12 , 𝑎22 , 𝑎31 ,  𝑎12 , 𝑎22 , 𝑎32 ,  𝑎12 , 𝑎23 , 𝑎31 ,  𝑎12 , 𝑎23 , 𝑎32 ,

  

𝒜  =  𝑎 1 , 𝑎 2, 𝑎 3, 𝑎 4, 𝑎 5, 𝑎 6, 𝑎 7, 𝑎 8, 𝑎 9, 𝑎 10 , 𝑎 11 , 𝑎 12  

Then the FHSS over 𝒰 is given as follows: 
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(ℱ, 𝒜 ) = 

 

 𝑎 1 ,  𝛿1, .6 ,  𝛿2, .3  ,  𝑎 2,  𝛿1, .7 ,  𝛿2, .5  ,  𝑎 3,  𝛿1, .8 ,  𝛿2, .3  ,  𝑎 4,  𝛿1, .2 ,  𝛿2, .8  ,

 𝑎 5,  𝛿1, .4 ,  𝛿2, .3  ,  𝑎 6,  𝛿1, .2 ,  𝛿2, .5  ,  𝑎 7,  𝛿1, .6 ,  𝛿2, .9  ,  𝑎 8 ,  𝛿1, .2 ,  𝛿2, .3  ,

 𝑎 9,  𝛿1 , .4 ,  𝛿2, .7  ,  𝑎 10 ,  𝛿1, .1 ,  𝛿2, .7  ,  𝑎 11 ,  𝛿1 , .4 ,  𝛿2, .6  ,  𝑎 12 ,  𝛿1, .2 ,  𝛿2, .7  

  

Definition 2.5. [45] Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 

𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be a set of attributes and set 𝐾𝑖  a set of corresponding sub-attributes of 𝑘𝑖  
respectively with 𝐾𝑖  ∩ 𝐾𝑗  = φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1 × 𝐾2 × 𝐾3× 

… × 𝐾𝑛  = 𝒜  =  𝑎1𝑕 × 𝑎2𝑘 × ⋯× 𝑎𝑛𝑙   be a collection of sub-attributes, where 1 ≤ 𝑕 ≤ 𝛼, 1 ≤ 𝑘 

≤ 𝛽, and 1 ≤ 𝑙 ≤ 𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝐼𝐹𝑆𝒰 be a collection of all intuitionistic fuzzy 

subsets over 𝒰. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛  = 𝒜 ) is said to be IFHSS over 𝒰, and its 

mapping is defined as 

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛  = 𝒜  →  𝐼𝐹𝑆𝒰. 

It is also defined as 

(ℱ, 𝒜 ) =   𝑎 , ℱ𝒜  𝑎   : 𝑎 ∈ 𝒜 , ℱ𝒜  𝑎   ∈  𝐼𝐹𝑆𝒰 ∈   0, 1   

where ℱ𝒜  𝑎   =   𝛿, 𝜎ℱ 𝑎   𝛿 , 𝜏ℱ 𝑎   𝛿  : 𝛿 ∈ 𝒰 , where 𝜎ℱ 𝑎   𝛿  and 𝜏ℱ 𝑎   𝛿  represents the 

membership and non-membership values of the attributes such as 𝜎ℱ 𝑎   𝛿 , 𝜏ℱ 𝑎   𝛿  ∈   0, 1 , and 

0 ≤ 𝜎ℱ 𝑎   𝛿  + 𝜏ℱ 𝑎   𝛿  ≤ 1. 

Simply an intuitionistic fuzzy hypersoft number (IFHSN) can be expressed as ℱ  = 

  𝜎ℱ 𝑎   𝛿 , 𝜏ℱ 𝑎   𝛿   , where 0 ≤ 𝜎ℱ 𝑎   𝛿 + 𝜏ℱ 𝑎   𝛿 ≤ 1. 

Example 2.2. Consider the universe of discourse 𝒰  =  𝛿1 , 𝛿2  and 𝔏 = 

 ℓ1 = 𝑇𝑒𝑎𝑐𝑕𝑖𝑛𝑔 𝑚𝑒𝑡𝑕𝑑𝑜𝑙𝑜𝑔𝑦, ℓ2 = 𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠, ℓ3 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠  be a collection of attributes with 

following their corresponding attribute values are given as teaching methodology = 𝐿1  =  𝑎11 =
𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑎𝑠𝑒, 𝑎12 =  𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛 Subjects = 𝐿2  = 

 𝑎21 = 𝑀𝑎𝑡𝑕𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑎23 =  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 , and Classes = 𝐿3  =  𝑎31 =
𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 =  𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙 . 

Let 𝒜  = 𝐿1 × 𝐿2 × 𝐿3 be a set of attributes 

𝒜  = 𝐿1 × 𝐿2 × 𝐿3 =  𝑎11 , 𝑎12  ×  𝑎21 , 𝑎22 , 𝑎23  ×  𝑎31 , 𝑎32  

=  
 𝑎11 , 𝑎21 , 𝑎31 ,  𝑎11 , 𝑎21 , 𝑎32 ,  𝑎11 , 𝑎22 , 𝑎31 ,  𝑎11 , 𝑎22 , 𝑎32 ,  𝑎11 , 𝑎23 , 𝑎31 ,  𝑎11 , 𝑎23 , 𝑎32 ,
 𝑎12 , 𝑎21 , 𝑎31 ,  𝑎12 , 𝑎21 , 𝑎32 ,  𝑎12 , 𝑎22 , 𝑎31 ,  𝑎12 , 𝑎22 , 𝑎32 ,  𝑎12 , 𝑎23 , 𝑎31 ,  𝑎12 , 𝑎23 , 𝑎32 ,

  

𝒜  =  𝑎 1 , 𝑎 2, 𝑎 3, 𝑎 4, 𝑎 5, 𝑎 6, 𝑎 7, 𝑎 8, 𝑎 9, 𝑎 10 , 𝑎 11 , 𝑎 12  

Then the IFHSS over 𝒰 is given as follows: 

(ℱ, 𝒜 ) = 

 
 
 

 
 

 𝑎 1 ,  𝛿1 , (.6, .3) ,  𝛿2, (.3, .5)  ,  𝑎 2,  𝛿1 , (.2, .7) ,  𝛿2, (.1, .5)  ,  𝑎 3,  𝛿1, (.2, .8) ,  𝛿2, (.3, .4)  ,

  𝑎 4 ,  𝛿1,  . 2, .5  ,  𝛿2,  . 1, .6   ,  𝑎 5 ,  𝛿1,  . 4, .3  ,  𝛿2,  . 3, .5   ,  𝑎 6 ,  𝛿1,  . 2, .4  ,  𝛿2,  . 1, .5   ,

 𝑎 7,  𝛿1 , (.2, .6) ,  𝛿2, (.4, .2)  ,  𝑎 8,  𝛿1, (.2, .5) ,  𝛿2, (.3, .1)  ,  𝑎 9,  𝛿1 , (.4, .2) ,  𝛿2, (.3, .5)  ,

 𝑎 10 ,  𝛿1, (.1, .4) ,  𝛿2, (.7, .2)  ,  𝑎 11 ,  𝛿1, (.4, .5) ,  𝛿2, (.2, .5)  ,  𝑎 5 ,  𝛿1, (.1, .2) ,  𝛿2, (.2, .7)   
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3. Correlation coefficient for intuitionistic fuzzy hypersoft set 

In this section, the concept of correlation coefficient and weighted correlation coefficient on 

IFHSS is proposed with some basic properties. 

Definition 3.1. Let (ℱ,𝒜 )  =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈  𝒰  and (Ⅎ,𝔅 )  = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈  𝒰  be two IFHSSs defined over a universe of discourse 𝒰. Then, 

their intuitionistic informational energies of (ℱ,𝒜 ) and (Ⅎ, 𝔅 ) can be described as follows: 

Ϛ𝐼𝐹𝐻𝑆𝑆(ℱ,𝒜 ) =     𝜎ℱ 𝑎 𝑘  𝛿𝑖  
2

+  𝜏ℱ 𝑎 𝑘  𝛿𝑖  
2

 𝑛
𝑖=1

𝑚
𝑘=1              (3.1) 

Ϛ𝐼𝐹𝐻𝑆𝑆(Ⅎ,𝔅 ) =     𝜎Ⅎ 𝑎 𝑘  𝛿𝑖  
2

+  𝜏Ⅎ 𝑎 𝑘  𝛿𝑖  
2

 𝑛
𝑖=1

𝑚
𝑘=1 .            (3.2) 

Definition 3.2. Let (ℱ,𝒜 )  =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  and (Ⅎ,𝔅 )  = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈  𝒰  be two IFHSSs defined over a universe of discourse 𝒰. Then, 

their correlation measure between (ℱ,𝒜 ) and (Ⅎ, 𝔅 ) can be described as follows: 

𝒞𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ, 𝔅 )) =    𝜎ℱ 𝑎 𝑘  𝛿𝑖 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 +  𝜏ℱ 𝑎 𝑘  𝛿𝑖 ∗ 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖  
𝑛
𝑖=1

𝑚
𝑘=1 .  (3.3) 

Proposition 3.1. Let (ℱ,𝒜 )  =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  and (Ⅎ,𝔅 )  = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  be two IFHSSs and 𝒞𝐼𝐹𝑯𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) be a correlation 

between them, then the following properties hold. 

1) 𝒞𝐼𝐹𝑯𝑆𝑆( ℱ,𝒜  , (ℱ,𝒜 )) = Ϛ𝐼𝐹𝐻𝑆𝑆(ℱ,𝒜 ) 

2) 𝒞𝐼𝐹𝐻𝑆𝑆( Ⅎ,𝒜  , (Ⅎ,𝔅 )) = Ϛ𝐼𝐹𝐻𝑆𝑆(Ⅎ,𝔅 ) 

Proof. The proof is trivial. 

Definition 3.3. Let (ℱ,𝒜 )  =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈  𝒰  and (Ⅎ,𝔅 )  = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈  𝒰  be two IFHSSs, then correlation coefficient between them 

given as 𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) and expressed as follows: 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) = 
𝒞𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  ,(Ⅎ,𝔅 )) 

 Ϛ𝐼𝐹𝐻𝑆𝑆  ℱ,𝒜  ∗  Ϛ𝐼𝐹𝐻𝑆𝑆 (Ⅎ,𝔅 )

                  (3.4) 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) = 

   𝝈𝓕 𝒂 𝒌 
 𝜹𝒊 ∗𝝈𝓖 𝒂 𝒌 

 𝜹𝒊 + 𝝉𝓕 𝒂 𝒌 
 𝜹𝒊 ∗𝝉𝓖 𝒂 𝒌 

 𝜹𝒊  
𝒏
𝒊=𝟏

𝒎
𝒌=𝟏

     𝝈𝓕 𝒂 𝒌 
 𝜹𝒊  

𝟐

+ 𝝉𝓕 𝒂 𝒌 
 𝜹𝒊  

𝟐

 𝒏
𝒊=𝟏

𝒎
𝒌=𝟏       𝝈𝓖 𝒂 𝒌 

 𝜹𝒊  

𝟐

+ 𝝉𝓖 𝒂 𝒌 
 𝜹𝒊  

𝟐

 𝒏
𝒊=𝟏

𝒎
𝒌=𝟏

       (3.5) 

Proposition 3.2. Let (ℱ,𝒜 ) =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  and (Ⅎ,𝔅 ) = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  be two IFHSSs, then CC between them satisfies the following 

properties 
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1) 0 ≤ 𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ, 𝔅 )) ≤ 1 

2) 𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ, 𝔅 )) = 𝛿𝐼𝐹𝐻𝑆𝑆( Ⅎ,𝔅  ,  ℱ,𝒜  ) 

3) If  ℱ,𝒜   = (Ⅎ,𝔅 ), that is ∀ 𝑖, 𝑘, 𝜎ℱ 𝑎 𝑘  𝛿𝑖 = 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , and  𝜏ℱ 𝑎 𝑘  𝛿𝑖 = 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖 , then 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ, 𝔅 )) = 1. 

Proof 1. 𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 ))  ≥  0 is trivial, here we only need to prove that 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) ≤ 1. 

From Eq 3.3, we have 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) =    𝜎ℱ 𝑎 𝑘  𝛿𝑖 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 +  𝜏ℱ 𝑎 𝑘  𝛿𝑖 ∗ 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖  
𝑛
𝑖=1

𝑚
𝑘=1  

=   𝜎ℱ 𝑎 𝑘  𝛿1 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿1 + 𝜏ℱ 𝑎 𝑘  𝛿1 ∗ 𝜏Ⅎ 𝑎 𝑘  𝛿1  
𝑚
𝑘=1  

+   𝜎ℱ 𝑎 𝑘  𝛿2 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿2 + 𝜏ℱ 𝑎 𝑘  𝛿2 ∗ 𝜏Ⅎ 𝑎 𝑘  𝛿2  
𝑚
𝑘=1  

+ 

⋮ 

+ 

  𝜎ℱ 𝑎 𝑘  𝛿𝑛 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿𝑛 +  𝜏ℱ 𝑎 𝑘  𝛿𝑛 ∗ 𝜏Ⅎ 𝑎 𝑘  𝛿𝑛  

𝑚

𝑘=1

 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) 

= 

 
 
 

 
  𝜎ℱ 𝑎 1 

 𝛿1 ∗ 𝜎Ⅎ 𝑎 1 
 𝛿1 + 𝜏ℱ 𝑎 1 

 𝛿1 ∗ 𝜏Ⅎ 𝑎 1 
 𝛿1  +

 𝜎ℱ 𝑎 2 
 𝛿1 ∗ 𝜎Ⅎ 𝑎 2 

 𝛿1 + 𝜏ℱ 𝑎 2 
 𝛿1 ∗ 𝜏Ⅎ 𝑎 2 

 𝛿1  +

⋮

 𝜎ℱ 𝑎 𝑚   𝛿1 ∗ 𝜎Ⅎ 𝑎 𝑚   𝛿1 + 𝜏ℱ 𝑎 𝑚   𝛿1 ∗ 𝜏Ⅎ 𝑎 𝑚   𝛿1   
 
 

 
 

 

+ 

 
 
 

 
  𝜎ℱ 𝑎 1 

 𝛿2 ∗ 𝜎Ⅎ 𝑎 1 
 𝛿2 + 𝜏ℱ 𝑎 1 

 𝛿2 ∗ 𝜏Ⅎ 𝑎 1 
 𝛿2  +

 𝜎ℱ 𝑎 2 
 𝛿2 ∗ 𝜎Ⅎ 𝑎 2 

 𝛿2 + 𝜏ℱ 𝑎 2 
 𝛿2 ∗ 𝜏Ⅎ 𝑎 2 

 𝛿2  +

⋮

 𝜎ℱ 𝑎 𝑚   𝛿2 ∗ 𝜎Ⅎ 𝑎 𝑚   𝛿2 + 𝜏ℱ 𝑎 𝑚   𝛿2 ∗ 𝜏Ⅎ 𝑎 𝑚   𝛿2   
 
 

 
 

 

+ 

⋮ 

+ 

 
 
 

 
  𝜎ℱ 𝑎 1 

 𝛿𝑛 ∗ 𝜎Ⅎ 𝑎 1 
 𝛿𝑛 +  𝜏ℱ 𝑎 1 

 𝛿𝑛 ∗ 𝜏Ⅎ 𝑎 1 
 𝛿𝑛  +

 𝜎ℱ 𝑎 2 
 𝛿𝑛 ∗ 𝜎Ⅎ 𝑎 2 

 𝛿𝑛 +  𝜏ℱ 𝑎 2 
 𝛿𝑛 ∗ 𝜏Ⅎ 𝑎 2 

 𝛿𝑛  +

⋮

 𝜎ℱ 𝑎 𝑚   𝛿𝑛 ∗ 𝜎Ⅎ 𝑎 𝑚   𝛿𝑛 +  𝜏ℱ 𝑎 𝑚   𝛿𝑛 ∗ 𝜏Ⅎ 𝑎 𝑚   𝛿𝑛   
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=    𝜎ℱ 𝑎 𝑘  𝛿1 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿1  +  𝜎ℱ 𝑎 𝑘  𝛿2 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿2  + ⋯+  𝜎ℱ 𝑎 𝑘  𝛿𝑛 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿𝑛   
m
k=1  

+   τℱ 𝑎 𝑘  𝛿1 ∗ τℲ 𝑎 𝑘  𝛿1  +  τℱ 𝑎 𝑘  𝛿2 ∗ τℲ 𝑎 𝑘  𝛿2  + ⋯+  τℱ 𝑎 𝑘  𝛿𝑛 ∗ τℲ 𝑎 𝑘  𝛿𝑛   

m

k=1

 

By using Cauchy-Schwarz inequality 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 ))2 ≤  

    𝜎ℱ 𝑎 𝑘  𝛿1  
2

+  𝜎ℱ 𝑎 𝑘  𝛿2  
2

+ ⋯+  𝜎ℱ 𝑎 𝑘  𝛿𝑛  
2

 +   𝜏ℱ 𝑎 𝑘  𝛿1  
2

+  𝜏ℱ 𝑎 𝑘  𝛿2  
2

+ ⋯+  𝜏ℱ 𝑎 𝑘  𝛿𝑛  
2

  

𝑚

𝑘=1

×     𝜎Ⅎ 𝑎 𝑘  𝛿1  
2

+  𝜎Ⅎ 𝑎 𝑘  𝛿2  
2

+ ⋯+  𝜎Ⅎ 𝑎 𝑘  𝛿𝑛  
2

 +   𝜏Ⅎ 𝑎 𝑘  𝛿1  
2

+  𝜏Ⅎ 𝑎 𝑘  𝛿2  
2

+ ⋯+  𝜏Ⅎ 𝑎 𝑘  𝛿𝑛  
2

  

𝑚

𝑘=1

 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 ))2 ≤ 

    𝜎ℱ 𝑎 𝑘  𝛿𝑖  
2

+  𝜏ℱ 𝑎 𝑘  𝛿𝑖  
2

 

𝑛

𝑖=1

𝑚

𝑘=1

×     𝜎Ⅎ 𝑎 𝑘  𝛿𝑖  
2

+  𝜏Ⅎ 𝑎 𝑘  𝛿𝑖  
2

 

𝑛

𝑖=1

𝑚

𝑘=1

 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 ))2 ≤ Ϛ𝐼𝐹𝐻𝑆𝑆(ℱ,𝒜 ) ×  Ϛ𝐼𝐹𝐻𝑆𝑆(Ⅎ, 𝔅 ). 

Therefore, 𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ, 𝔅 ))2  ≤ Ϛ𝐼𝐹𝐻𝑆𝑆(ℱ,𝒜 ) ×  Ϛ𝐼𝐹𝐻𝑆𝑆(Ⅎ,𝔅 ) . Hence, by using 

Definition 3.4, we have 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) ≤ 1. So, 0 ≤ 𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) ≤ 1. 

Proof 2. The proof is obvious. 

Proof 3. From Eq 3.5, we have 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) = 

   𝜎ℱ 𝑎 𝑘  𝛿𝑖 ∗ 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 +  𝜏ℱ 𝑎 𝑘  𝛿𝑖 ∗ 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖  
𝑛
𝑖=1

𝑚
𝑘=1

     𝜎ℱ 𝑎 𝑘  𝛿𝑖  
2

+  𝜏ℱ 𝑎 𝑘  𝛿𝑖  
2

 𝑛
𝑖=1

𝑚
𝑘=1       𝜎Ⅎ 𝑎 𝑘  𝛿𝑖  

2
+  𝜏Ⅎ 𝑎 𝑘  𝛿𝑖  

2

 𝑛
𝑖=1

𝑚
𝑘=1

 

As we know that 

𝜎ℱ 𝑎 𝑘  𝛿𝑖 = 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , and  𝜏ℱ 𝑎 𝑘  𝛿𝑖 = 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖  ∀ 𝑖, 𝑘. We get 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) = 

    𝜎ℱ 𝑎 𝑘 
 𝛿𝑖  

2

+ 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1

𝑚
𝑘=1

     𝜎ℱ 𝑎 𝑘 
 𝛿𝑖  

2

+ 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1

𝑚
𝑘=1       𝜎ℱ 𝑎 𝑘 

 𝛿𝑖  

2

+ 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1

𝑚
𝑘=1

 

𝛿𝐼𝐹𝐻𝑆𝑆( ℱ,𝒜  , (Ⅎ,𝔅 )) = 1 

Thus, prove the required result. 
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Definition 3.4. Let (ℱ,𝒜 ) =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈  𝒰  and (Ⅎ,𝔅 ) = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈  𝒰  be two IFHSSs. Then, their correlation coefficient is given as 

𝛿𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ,𝔅 )) and defined as follows: 

𝛿𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ,𝔅 )) = 

𝒞𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  ,(Ⅎ,𝔅 )) 

𝑚𝑎𝑥  Ϛ𝐼𝐹𝐻𝑆𝑆 (ℱ,𝒜 ),Ϛ𝐼𝐹𝐻𝑆𝑆 (Ⅎ,𝔅 ) 
                 (3.6) 

𝛿𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ,𝔅 )) = 

   𝜎ℱ 𝑎 𝑘 
 𝛿𝑖 ∗𝜎Ⅎ 𝑎 𝑘 

 𝛿𝑖 + 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖 ∗𝜏Ⅎ 𝑎 𝑘 

 𝛿𝑖  
𝑛
𝑖=1

𝑚
𝑘=1

𝑚𝑎𝑥      𝜎ℱ 𝑎 𝑘 
 𝛿𝑖  

2

+ 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1

𝑚
𝑘=1 ,    𝜎Ⅎ 𝑎 𝑘 

 𝛿𝑖  

2

+ 𝜏Ⅎ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1

𝑚
𝑘=1   

       (3.7) 

Proposition 3.3. Let (ℱ,𝒜 ) =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈  𝒰  and (Ⅎ,𝔅 ) = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  be two IFHSSs. Then, CC between them satisfies the following 

properties 

1) 0 ≤ 𝛿𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ, 𝔅 )) ≤ 1 

2) 𝛿𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ, 𝔅 )) = 𝛿𝐼𝐹𝐻𝑆𝑆

1 ( Ⅎ,𝔅  ,  ℱ,𝒜  ) 

3) If  ℱ,𝒜   = (Ⅎ,𝔅 ), that is ∀ 𝑖, 𝑘, 𝜎ℱ 𝑎 𝑘  𝛿𝑖 = 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , and  𝜏ℱ 𝑎 𝑘  𝛿𝑖 = 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖 , then 

𝛿𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ, 𝔅 )) = 1. 

Proof. Similar to Proposition 3.2. 

In this era, it is very necessary to consider the weights of IFHSS in practical applications. 

Whenever the decision-maker adjusts different weights for each alternative in the universe of 

discourse, the decision may be different. Consequently, it's particularly significant to plan the weight 

before decision making. Let Ω =  Ω1 , Ω2, Ω3, … , Ω𝑚  
𝑇 be a weight vector for experts such as Ω𝑘  > 

0,  Ω𝑘
𝑚
𝑘=1  = 1 and γ =  γ1 , γ2 , γ3 , … , γ𝑛 

𝑇  be a weight vector for parameters such as γ𝑖  > 0, 

 γ𝑖
𝑛
𝑖=1  = 1. In the following, we develop the WCC between IFHSS by extending Definitions 3.3, 3.4. 

Definition 3.5. Let (ℱ,𝒜 )  =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  and (Ⅎ,𝔅 )  = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  be two IFHSSs. Then, their weighted correlation coefficient is 

given as 𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  , (Ⅎ,𝔅 )) and defined as follows: 

𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  , (Ⅎ,𝔅 )) = 
𝒞𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  ,(Ⅎ,𝔅 )) 

 Ϛ𝑊𝐼𝐹𝐻𝑆𝑆  ℱ,𝒜  ∗  Ϛ𝑊𝐼𝐹𝐻𝑆𝑆 (Ⅎ,𝔅 )

                       (3.8) 

𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  , (Ⅎ,𝔅 )) = 

 Ω𝑘  γ 𝑖 𝜎ℱ 𝑎 𝑘 
 𝛿𝑖 ∗𝜎Ⅎ 𝑎 𝑘 

 𝛿𝑖 + 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖 ∗𝜏Ⅎ 𝑎 𝑘 

 𝛿𝑖  
𝑛
𝑖=1  𝑚

𝑘=1

  Ω𝑘  γ 𝑖  𝜎ℱ 𝑎 𝑘 
 𝛿𝑖  

2

+ 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1  𝑚

𝑘=1    Ω𝑘  γ 𝑖  𝜎Ⅎ 𝑎 𝑘 
 𝛿𝑖  

2

+ 𝜏Ⅎ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1  𝑚

𝑘=1

      (3.9) 
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Definition 3.6. Let (ℱ,𝒜 )  =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  and (Ⅎ,𝔅 )  = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  be two IFHSSs. Then, their weighted correlation coefficient is 

given as 𝛿𝑊𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ,𝔅 )) and defined as follows: 

𝛿𝑊𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ,𝔅 )) = 

𝒞𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  ,(Ⅎ,𝔅 )) 

𝑚𝑎𝑥  Ϛ𝑊𝐼𝐹𝐻𝑆𝑆  ℱ,𝒜  ,Ϛ𝑊𝐼𝐹𝐻𝑆𝑆 (Ⅎ,𝔅)  
                 (3.10) 

𝛿𝑊𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜 , (Ⅎ,𝔅)) = 

 Ω𝑘  γ 𝑖 𝜎ℱ 𝑎 𝑘 
 𝛿𝑖 ∗𝜎Ⅎ 𝑎 𝑘 

 𝛿𝑖 + 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖 ∗𝜏Ⅎ 𝑎 𝑘 

 𝛿𝑖  
𝑛
𝑖=1  𝑚

𝑘=1

𝑚𝑎𝑥   Ω𝑘  γ 𝑖  𝜎ℱ 𝑎 𝑘 
 𝛿𝑖  

2

+ 𝜏ℱ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1  𝑚

𝑘=1 , ὡ𝑘  Ω𝑘  γ 𝑖  𝜎Ⅎ 𝑎 𝑘 
 𝛿𝑖  

2

+ 𝜏Ⅎ 𝑎 𝑘 
 𝛿𝑖  

2

 𝑛
𝑖=1  𝑚

𝑘=1  𝑚
𝑘=1   

  (3.11) 

If we consider Ω = {
1

𝑚
, 

1

𝑚
,…, 

1

𝑚
} and γ = {

1

𝑛
, 

1

𝑛
,…, 

1

𝑛
}, then 𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  , (Ⅎ,𝔅 )) and 

𝛿𝑊𝐼𝐹𝐻𝑆𝑆
1 ( ℱ,𝒜  , (Ⅎ,𝔅 ))  are reduced to 𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  , (Ⅎ, 𝔅 ))  and 𝛿𝑊𝐼𝐹𝐻𝑆𝑆

1 ( ℱ,𝒜  , (Ⅎ,𝔅 )) 

respectively. 

Proposition 3.4. Let (ℱ,𝒜 )  =   𝛿𝑖 , 𝜎ℱ 𝑎 𝑘  𝛿𝑖 , 𝜏ℱ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  and (Ⅎ,𝔅 )  = 

  𝛿𝑖 , 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖   ⎸𝛿𝑖 ∈ 𝒰  be two IFHSSs. Then, CC between them satisfies the following 

properties 

1) 0 ≤ 𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  , (Ⅎ, 𝔅 )) ≤ 1 

2) 𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  , (Ⅎ,𝔅 )) = 𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( Ⅎ,𝔅  ,  ℱ,𝒜  ) 

3) If  ℱ,𝒜   = (Ⅎ,𝔅 ), that is ∀ 𝑖, 𝑘, 𝜎ℱ 𝑎 𝑘  𝛿𝑖 = 𝜎Ⅎ 𝑎 𝑘  𝛿𝑖 , and  𝜏ℱ 𝑎 𝑘  𝛿𝑖 = 𝜏Ⅎ 𝑎 𝑘  𝛿𝑖 , then 

𝛿𝑊𝐼𝐹𝐻𝑆𝑆 ( ℱ,𝒜  , (Ⅎ,𝔅 )) = 1. 

Proof. Similar to Proposition 3.2. 

4. Aggregation operators for intuitionistic fuzzy hypersoft sets 

In this section, intuitionistic fuzzy hypersoft weighted average and intuitionistic fuzzy hypersoft 

weighted geometric operators for IFHSSs are presented. We also develop the decision-making 

approach based on the proposed operators. 

4.1. Operational laws for IFHSNs 

Definition 4.1.1. Let 𝔍𝑒  =  𝜎, 𝜏 , 𝔍𝑒11
 =  𝜎11 , 𝜏11 , and 𝔍𝑒12

 =  𝜎12 , 𝜏12  be three IFHSNs and 𝛼 

be a positive real number, by algebraic norms, we have 

1) 𝔍𝑒11
⊕ 𝔍𝑒12

 =  𝜎11 + 𝜎12 − 𝜎11𝜎12 , 𝜏11𝜏12    

2) 𝔍𝑒11
⊗𝔍𝑒12

 =  𝜎11𝜎12 , 𝜏11 + 𝜏12 − 𝜏11𝜏12  

3) 𝛼𝔍𝑒  =   1 −  1 − 𝜎 𝛼 ,  𝜏 𝛼    

4) 𝔍𝑒
𝛼  =    𝜎 𝛼 , 1 −  1 − 𝜏 𝛼    
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Some averaging and geometric aggregation operators for IFHSSs have been defined based on the 

above laws for the collection of IFHSNs ∆. 

Definition 4.1.2. Let  𝔍𝑒𝑖𝑗  =  𝜎𝑖𝑗 , 𝜏𝑖𝑗   be an IFHSN, Ω𝑖  and γ𝑗  are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖  > 0,  Ω𝑖
𝑛
𝑖=1  = 1, γ𝑗  > 

0,  γ𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛  → ∆ defined as follows 

𝐼𝐹𝐻𝑆𝑊𝐴  𝔍𝑒11
, 𝔍𝑒12

, … , 𝔍𝑒𝑛𝑚   = ⊕ 𝑗=1
𝑚 γ𝑗  ⊕𝑖=1

𝑛 Ω𝑖𝔍𝑒𝑖𝑗   .           (4.1) 

Theorem 4.1.1. Let 𝔍𝑒𝑖𝑗  =  𝜎𝑖𝑗 , 𝜏𝑖𝑗   be an IFHSNs, where  𝑖 =  1, 2, … , 𝑛, 𝑎𝑛𝑑 𝑗 =  1, 2, … ,𝑚 , the 

aggregated value is also an IFHSN, such as 

𝐼𝐹𝐻𝑆𝑊𝐴  𝔍𝑒11
, 𝔍𝑒12

, … , 𝔍𝑒𝑛𝑚    

=  1 −     1 − 𝜎𝑖𝑗  
Ω𝑖𝑛

𝑖=1  
γ𝑗

𝑚
𝑗=1 ,     𝜏𝑖𝑗  

Ω𝑖𝑛
𝑖=1  

γ𝑗
𝑚
𝑗=1  .            (4.2) 

Proof. Similar to Theorem 3.1 [51]. 

Example 4.1.1. Let 𝒰  = {𝛿1 , 𝛿2 , 𝛿3 , 𝛿4 } be a set of decision-makers with weights Ω𝑖  = 

 0.35, 0.25, 0.10, 0.30 𝑇, who are going to describe the qualities of a school under the defined set of 

attributes 𝔏 =  𝑒1 = 𝑒𝑛𝑣𝑜𝑖𝑟𝑛𝑚𝑒𝑛𝑡, 𝑒2 = 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦  and their corresponding sub-attributes 𝑒1  = 

 𝑒11 = greenry, 𝑒12 = a good system of cleaning , 𝑒2  =  𝑒21 = security guards, 𝑒22 = camera′s  
. 𝔏′  = 𝑒1 × 𝑒2 be a set of sub-attributes such as 𝔏′  = 𝑒1 × 𝑒2=  𝑒11 , 𝑒12  ×  𝑒21 , 𝑒22  
=   𝑒11 , 𝑒21 ,  𝑒11 , 𝑒22 ,  𝑒12 , 𝑒21 ,  𝑒12 , 𝑒22  , 𝔏

′  =  𝑎 1 , 𝑎 2, 𝑎 3, 𝑎 4  be a set of all multi sub-attributes 

with weights γ𝑗  =  0.3, 0.4, 0.1, 0.2 𝑇. The assumed rating values of the experts for each sub-attribute 

in the form of IFHSNs  𝔍, 𝔏′  =  𝜎𝑖𝑗 , 𝜏𝑖𝑗  4×4
 given as follows 

 𝔍, 𝔏′  =  

 . 3, .5  . 6, .2  . 1, .3  . 7, .2 
 . 5, .2  . 4, .6  . 3, .4  . 1, .3 
 . 4 .6  . 2, .5  . 6, .1  . 5, .1 
 . 4, .2  . 3, .6  . 4, .5  . 3, .4 

  

By using Eq 4.2, 

𝐼𝐹𝐻𝑆𝑊𝐴  𝔍𝑒11
, 𝔍𝑒12

, … , 𝔍𝑒44
   

=  1 −     1 − 𝜎𝑖𝑗  
Ω𝑖4

𝑖=1  
γ𝑗

4
𝑗=1 ,     𝜏𝑖𝑗  

Ω𝑖4
𝑖=1  

γ𝑗
4
𝑗=1  . 

=  

1 −  
  . 7 0.35 . 5 0.25 . 6 0.1 . 6 0.3 .3  . 4 0.35 . 6 0.25 . 8 0.1 . 7 0.3 .4

  . 9 0.35 . 7 0.25 . 4 0.1 . 6 0.3 .1  . 3 0.35 . 9 0.25 . 5 0.1 . 7 0.3 .2 

 
  . 5 0.35 . 2 0.25 . 6 0.1 . 2 0.3 .3  . 2 0.35 . 6 0.25 . 5 0.1 . 6 0.3 .4

  . 3 0.35 . 4 0.25 . 1 0.1 . 5 0.3 .1  . 2 0.35 . 3 0.25 . 1 0.1 . 4 0.3 .2 

  

=  . 41937, .33227 . 

Definition 4.1.3. Let  𝔍𝑒𝑖𝑗  =  𝜎𝑖𝑗 , 𝜏𝑖𝑗   be an IFHSN, Ω𝑖  and γ𝑗  are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖  > 0,  Ω𝑖
𝑛
𝑖=1  = 1, γ𝑗  > 

0,  γ𝑗
𝑚
 𝑗=1  = 1, then IFHSWG operator is defined as 

𝐼𝐹𝐻𝑆𝑊𝐺  𝔍𝑒11
, 𝔍𝑒12

, … , 𝔍𝑒𝑛𝑚   = ⊗𝑗=1
𝑚  ⊗𝑖=1

𝑛 𝔍𝑒𝑛𝑚
Ω𝑖  

γ𝑗
.             (4.3) 
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Theorem 4.1.2. By using the IFHSWG operator, the obtained value is also an IFHSN and given as 

follows 

𝐼𝐹𝐻𝑆𝑊𝐺  𝔍𝑒11
, 𝔍𝑒12

, … , 𝔍𝑒𝑛𝑚    

=      𝜎𝑖𝑗  
Ω𝑖𝑛

𝑖=1  
γ𝑗

𝑚
𝑗=1 , 1 −     1 − 𝜏𝑖𝑗  

Ω𝑖𝑛
𝑖=1  

γ𝑗
𝑚
𝑗=1  .           (4.4) 

Proof. Similar to Theorem 3.2 [51]. 

Definition 4.1.4. Let  𝔍𝑒𝑖𝑗  =  𝜎𝑖𝑗 , 𝜏𝑖𝑗   be an IFHSN. Then, the score function under the IFHSS 

environment is defined as follows: 

𝕊(𝔍𝑒𝑖𝑗 ) = 
𝜎𝑖𝑗 + 𝜏𝑖𝑗

2
                               (4.5) 

Example 4.1.2. Reconsider Example 4.1.1. 

 𝔍, 𝔏′  =  

 . 3, .5  . 6, .2  . 1, .3  . 7, .2 
 . 5, .2  . 4, .6  . 3, .4  . 1, .3 
 . 4 .6  . 2, .5  . 6, .1  . 5, .1 
 . 4, .2  . 3, .6  . 4, .5  . 3, .4 

  

By using Eq 4.4, we have 

𝐼𝐹𝐻𝑆𝑊𝐺  𝔍𝑒11
, 𝔍𝑒12

, … , 𝔍𝑒44
   

=      𝜎𝑖𝑗  
Ω𝑖4

𝑖=1  
γ𝑗

4
𝑗=1 , 1 −     1 − 𝜏𝑖𝑗  

Ω𝑖4
𝑖=1  

γ𝑗
4
𝑗=1   

=  

 
  . 3 0.35 . 5 0.25 . 4 0.1 . 4 0.3 .3  . 6 0.35 . 4 0.25 . 2 0.1 . 3 0.3 .4

  . 1 0.35 . 3 0.25 . 6 0.1 . 4 0.3 .1  . 7 0.35 . 1 0.25 . 5 0.1 . 3 0.3 .2 ,

1 −  
  . 5 0.35 . 8 0.25 . 4 0.1 . 8 0.3 .3  . 8 0.35 . 4 0.25 . 5 0.1 . 4 0.3 .4

  . 7 0.35 . 6 0.25 . 9 0.1 . 5 0.3 .1  . 8 0.35 . 7 0.25 . 9 0.1 . 6 0.3 .2 

  

𝐼𝐹𝐻𝑆𝑊𝐺  𝔍𝑒11
, 𝔍𝑒12

, … , 𝔍𝑒44
  =  . 3567, .4002  

4.2. Decision-making approach based on proposed operators  

An MADM approach is presented here based on the proposed operators and described the 

numerical examples for showing their efficiency. 

4.2.1. Proposed approach 

Consider ℵ  =  ℵ1, ℵ2, ℵ3 , … , ℵ𝑠  and 𝒰  =  𝛿1 , 𝛿2, 𝛿3, … , 𝛿𝑛  are set of 𝑠  alternatives 𝑛 

experts respectively, the weights of experts is given as Ω =  Ω1 , Ω1 , … , Ω𝑛 
𝑇 and Ω𝑖 >0,  Ω𝑖

𝑛
𝑖=1 = 

1. Let 𝔏 =  𝑎1 , 𝑎2, … , 𝑎𝑚   be a set of attributes and 𝔏′  =   𝑎1𝜌 × 𝑎2𝜌 × …× 𝑎𝑚𝜌   for all 𝜌 ∈

 1, 2, … , 𝑡    be a collection of their corresponding sub-attributes, with weights γ = 

 γ1 , γ2 , γ3 , … , γ𝜌 
𝑇
 such as γ𝜌  > 0,  γ𝜌

𝑡
𝜌=1  = 1. The elements in the collection of sub-attributes 

are multi-valued; for the sake of convenience, the elements of 𝔏′  can be expressed as 𝔏′  = 

 𝑎 𝜕 : 𝜕 ∈  1, 2, … , 𝑘  . Experts give their preferences for each alternative in term of IFHSNs, such as 

ℒ𝑖𝑗
(𝑧)

 =  𝜎𝑖𝑗
(𝑧)

, 𝜏𝑖𝑗
(𝑧)
 , where 0 ≤ 𝜎𝑖𝑗

(𝑧)
, 𝜏𝑖𝑗

(𝑧)
 ≤ 1 and 𝜎𝑖𝑗

(𝑧)
+ 𝜏𝑖𝑗

(𝑧)
 ≤ 1 for all 𝑖, 𝑗 are given in Tables 
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1–4. Construct the aggregated IFHSNs ∆𝑘 , based on the expert's preference values for each alternative 

by using IFHSWG and IFHSWA operators. Finally, utilize the ranking of the alternatives based on the 

score function. 

Table 1. Decision matrix for alternative ℵ(1). 

ℵ(𝟏) 𝒂 𝟏 𝒂 𝟐 𝒂 𝟑 𝒂 𝟒 𝒂 𝟓 𝒂 𝟔 𝒂 𝟕 𝒂 𝟖 

𝜹𝟏  . 3, .5   . 2, .3   . 1, .3   . 3, .6   . 2, .4   . 2, .6   . 5, .4   . 1, .3  

𝜹𝟐  . 2, .7   . 4, .6   . 3, .4   . 1, .2   . 1, .2   . 2, .4   . 2, .5   . 4, .5  

𝜹𝟑  . 2, .3   . 2, .5   . 1, .6   . 3, .4   . 4 .6   . 1, .4   . 2, .3   . 2, .5  

𝜹𝟒  . 2, .4   . 2, .3   . 2, .4   . 4, .6   . 3, .5   . 3, .6   . 4, .5   . 1, .3  

Table 2. Decision matrix for alternative ℵ(2). 

ℵ(𝟐) 𝒂 𝟏 𝒂 𝟐 𝒂 𝟑 𝒂 𝟒 𝒂 𝟓 𝒂 𝟔 𝒂 𝟕 𝒂 𝟖 

𝜹𝟏  . 2, .6   . 3, .4   . 4, .5   . 3, .5   . 5, .4   . 4, .6   . 3, .5   . 4, .5  

𝜹𝟐  . 3, .5   . 2, .4   . 1, .2   . 1, .2   . 4, .5   . 1, .3   . 2, .7   . 1, .8  

𝜹𝟑  . 3, .7   . 4, .5   . 2, .8   . 3, .4   . 2 .3   . 3, .4   . 1, .2   . 7, .2  

𝜹𝟒  . 5, .4   . 1, .6   . 2, .3   . 2, .3   . 1, .2   . 2, .4   . 4, .6   . 5, .5  

Table 3. Decision matrix for alternative ℵ(3). 

ℵ(𝟑) 𝒂 𝟏 𝒂 𝟐 𝒂 𝟑 𝒂 𝟒 𝒂 𝟓 𝒂 𝟔 𝒂 𝟕 𝒂 𝟖 

𝜹𝟏  . 4, .5   . 3, .5   . 4, .5   . 3, .4   . 2, .4   . 4, .5   . 3, .4   . 3, .5  

𝜹𝟐  . 3, .4   . 1, .3   . 1, .8   . 1, .2   . 4, .6   . 3, .7   . 6, .1   . 8, .1  

𝜹𝟑  . 6, .2   . 3, .4   . 7, .3   . 3, .4   . 1, .2   . 4, .5   . 3, .5   . 6, .3  

𝜹𝟒  . 5, .4   . 2, .3   . 4, .6   . 3, .4   . 3, .6   . 7, .2   . 4, .2   . 5, .2  

 

 

 



2746 

AIMS Mathematics  Volume 6, Issue 3, 2732–2755. 

Table 4. Decision matrix for alternative ℵ(4). 

ℵ(𝟒) 𝒂 𝟏 𝒂 𝟐 𝒂 𝟑 𝒂 𝟒 𝒂 𝟓 𝒂 𝟔 𝒂 𝟕 𝒂 𝟖 

𝜹𝟏  . 2, .7   . 4, .5   . 2, .4   . 4, .3   . 1, .2   . 2, .4   . 3, .4   . 2, .4  

𝜹𝟐  . 3, .5   . 2, .4   . 8, .1   . 5, .2   . 4, .3   . 4, .5   . 7, .2   . 6, .3  

𝜹𝟑  . 6, .3   . 4, .5   . 6, .2   . 6, .4   . 1, .2   . 3, .4   . 5, .3   . 4 .5  

𝜹𝟒  . 5, .4   . 1, .3   . 3, .5   . 5, .3   . 3, .5   . 8, .1   . 3, .5   . 2, .5  

4.2.2. Algorithm 1 

Step 1. Develop the Intuitionistic fuzzy hypersoft matrix for each alternative. 

Step 2. Aggregate the IFHSNs for each alternative into a collective decision matrix ∆𝑘  by using the 

IFHSWA or IFHSWG operators. 

Step 3. Compute the score values ∆𝑘  for each alternative by using Eq 4.5. 

Step 4. Choose the alternative with the maximum score value. 

Step 5. Analyze the ranking. 

5. TOPSIS approach on IFHSS based on the correlation coefficient for solving DM problems  

TOPSIS is one of the traditional approaches to deal with MADM complications. It is used to 

sort the priority order of feasible choices and use the most suitable choice by considering complete 

information. Using a collective assessment of a group of professionals, the results' overall credibility 

can be expanded in the decision-making process due to the increase in the sub-attribute of the given 

parameters. The TOPSIS technique under the IHFSS environment explains the uncertainty in 

real-world problems more effectively than the existing IFSs model. In this section, we will develop a 

mechanism for dealing with the complexities of decision-making by expanding the TOPSIS approach 

according to the rules of correlation coefficients under IFHSS Information. Hwang and Yoon [26] 

developed the TOPSIS approach and used it to encourage the evaluation of positive and negative 

ideal solutions to decision-making issues. Using the TOPSIS method, we can find the best 

alternatives with minimum and maximum PIS and NIS distances, respectively. TOPSIS technique 

proves that correlation measures are used to distinguish positive ideals from negative ideals by 

selecting rankings. In most cases, researchers use the TOPSIS method to discover closeness 

coefficients with different distance types and comparable measures. The TOPSIS technique with the 

correlation coefficient is more suitable for finding the closeness coefficient than distance and 

similarity measures. Because the correlation measure retains the linear relationship between the 

factors considered. By using the developed CC, an algorithm based on the TOPSIS method will be 

introduced to select the most suitable option. 

5.1. Algorithm 2. TOPSIS method based on CC for IFHSS to solve MADM problem 

Assume a set of “s” alternatives such as ℵ =  ℵ1, ℵ2, ℵ3, … , ℵs  for assessment under the team 
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of experts 𝒰 =  δ1 , δ2 , δ3, … , δn  with weights Ω =  Ω1, Ω1, … , Ωn 
T  and Ωi >0,  Ωi

n
i=1 = 1. 

Let 𝔏  =  a1, a2, … , am  be a set of attributes and 𝔏′  =   a1ρ × a2ρ × …× amρ  for all ρ ∈

 1, 2, … , t    be a collection of their corresponding sub-attributes, with weights γ = 

 γ1ρ , γ2ρ , γ3ρ , … , γmρ 
T

 such as γρ  >  0,  γρ
t
ρ=1  = 1. The elements in the collection of 

sub-attributes are multi-valued; for the sake of convenience, the elements of 𝔏′  can be expressed as 

𝔏′  =  a ∂ : ∂ ∈  1, 2, … , k  . The team of experts {δi: i = 1, 2,…, n} evaluate the alternatives {ℵ(z): 

z = 1, 2, …, s} under the considered sub-attributes {a ∂: ∂ = 1, 2, …, k} given in the form of 

IFHSNs such as ℒij
(z)

 =  σij
(z)

, τij
(z)
 , where 0 ≤ σij

(z)
, τij

(z)
 ≤ 1 and σij

(z)
+ τij

(z)
 ≤ 1 for all i, j. A 

flowchart for the method is presented in Figure 1. 

Step 1. Construct a matrix for each alternative {ℵ(𝑧): 𝑧 = 1, 2, …, 𝑠} in the form of IFHSNs 

under-considered multi-valued sub-attributes such as follows: 

     𝑎 1     𝑎 2 … . . 𝑎 𝜕  

 ℵ(𝑧), 𝔏′ 
𝑛×𝜕

= 

𝛿1

𝛿2

⋮
𝛿𝑛

 

 

 
 

ℒ11
(𝑧)

ℒ12
(𝑧)

⋯ ℒ1𝜕
(𝑧)

ℒ21
(𝑧)

ℒ22
(𝑧)

⋯ ℒ2𝜕
(𝑧)

⋮ ⋮ ⋮ ⋮

ℒ𝑛1
(𝑧)

ℒ𝑛2
(𝑧)

⋯ ℒ𝑛𝜕
(𝑧)
 

 
 

 

Step 2. Construct the weighted decision matrix for each alternative ℵ (𝑧) =  ℒ 𝑖𝑗
(𝑧)
 
𝑛×𝜕

, where 

ℒ 𝑖𝑗
(𝑧)

 = γ𝑗Ω𝑖ℒ𝑖𝑗
(𝑧)

 =  1 −   1 − 𝜎𝑖𝑗
(𝑧)
 
Ω𝑖
 
γ𝑗

,   𝜏𝑖𝑗
(𝑧)
 
Ω𝑖
 
γ𝑗

  =  𝜎 𝑖𝑗
(𝑧)

, 𝜏 𝑖𝑗
(𝑧)
       (5.1) 

Here Ω𝑖  and γ𝑗  are the weights for the 𝑖𝑡𝑕  expert and 𝑗𝑡𝑕  sub-attribute respectively. 

Step 3. Find the indices 𝒽𝑖𝑗  = arg 𝑚𝑎𝑥𝑧 𝜃𝑖𝑗
(𝑧)
  and 𝑔𝑖𝑗  = arg 𝑚𝑖𝑛𝑧 𝜃𝑖𝑗

(𝑧)
  for each expert 𝛿𝑖  and 

sub-attribute 𝑎 𝑗  from CC matrices, and determine the PIA and NIA based on indices such as 

follows: 

ℒ+ =  𝜎+, 𝜏+ 𝑛×𝜕  =  𝜎 
𝑖𝑗

(𝒽𝑖𝑗 )
, 𝜏 

𝑖𝑗

(𝒽𝑖𝑗 )
                     (5.2) 

and 

ℒ− =  𝜎−, 𝜏− 𝑛×𝜕  =  𝜎 
𝑖𝑗

(𝑔𝑖𝑗 )
, 𝜏 

𝑖𝑗

(𝑔𝑖𝑗 )
                     (5.3) 

Step 4. Compute the CC between each alternative of weighted decision matrices ℵ (𝑧) and PIA ℒ+ 

such as follows: 

𝑝(𝑧) = 𝛿𝐼𝐹𝐻𝑆𝑆(ℵ (𝑧), ℒ+) = 
𝒞𝐼𝐹𝐻𝑆𝑆 (ℵ (𝑧),ℒ+) 

 Ϛ𝐼𝐹𝐻𝑆𝑆 ℵ
(𝑧)∗Ϛ𝐼𝐹𝐻𝑆𝑆 ℒ

+
  

= 
   𝜎 𝑖𝑗

(𝑧)
 ∗ 𝜎++ 𝜏 𝑖𝑗

(𝑧)
∗ 𝜏+ 𝑛

𝑖=1
𝑚
𝑗=1

     𝜎 
𝑖𝑗
(𝑧)

 
2

+  𝜏 
𝑖𝑗
(𝑧)

 
2
 𝑛

𝑖=1
𝑚
𝑗=1      𝜎+ 2+  𝜏+ 2 𝑛

𝑖=1
𝑚
𝑗=1

               (5.4) 

Step 5. Compute the CC between each alternative of weighted decision matrix ℵ (𝑧) and NIA ℒ− 

such as follows: 

𝑞(𝑧) = 𝛿𝐼𝐹𝐻𝑆𝑆(ℵ (𝑧), ℒ−) = 
𝒞𝐼𝐹𝐻𝑆𝑆 (ℵ (𝑧),ℒ−) 

 Ϛ𝐼𝐹𝐻𝑆𝑆 ℵ 
(𝑧)∗Ϛ𝐼𝐹𝐻𝑆𝑆 ℒ

−
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= 
   𝜎 𝑖𝑗

(𝑧)
 ∗ 𝜎−+ 𝜏 𝑖𝑗

(𝑧)
∗ 𝜏− 𝑛

𝑖=1
𝑚
𝑗=1

     𝜎 
𝑖𝑗
(𝑧)

 
2

+  𝜏 
𝑖𝑗
(𝑧)

 
2
 𝑛

𝑖=1
𝑚
𝑗=1      𝜎− 2+  𝜏− 2 𝑛

𝑖=1
𝑚
𝑗=1

             (5.5) 

Step 6. The closeness coefficient for each alternative can be found as follows: 

ℛ(𝑧) = 
𝒦 ℵ (𝑧),ℒ− 

𝒦 ℵ (𝑧),ℒ+ +𝒦 ℵ (𝑧),ℒ− 
                         (5.6) 

Where 𝒦 ℵ (𝑧), ℒ−  = 1 − 𝑞(𝑧) and 𝒦 ℵ (𝑧), ℒ+  = 1 − 𝑝(𝑧). 

Step 7. Choose the alternative with a maximum value of closeness coefficient 

Step 8. Analyze the ranking of the alternatives. 

The graphical representation of the above-presented algorithm can be seen in Figure 1. 

 

Figure 1. Flowchart of presented TOPSIS method. 

5.2. Application of proposed TOPSIS technique and aggregation operators for decision making 

A university requires the appointment of a teacher. After a preliminary review, there are still 

four candidates (alternatives) that need further evaluation, such as ℵ  =  ℵ1, ℵ2 , ℵ3 , ℵ4 . The 

president of the university chooses a team of four experts 𝒰 =  𝛿1 , 𝛿2, 𝛿3, 𝛿4  having weights 

 0.2 0.3, 0.4, 0.1 𝑇 to evaluate the remaining alternatives. The team of experts decides the criteria 

(attributes) for the selection of teacher such as 𝔏 =  ℓ1 = Publications, ℓ2 = Subjects, ℓ3 =

Qualification  be a collection of attributes and their corresponding sub-attribute are given as 

Publications = ℓ1  =  𝑎11 = 𝑚𝑜𝑟𝑒 𝑡𝑕𝑎𝑛 10, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡𝑕𝑎𝑛 10 , Subjects = ℓ2  =  𝑎21 =

𝑀𝑎𝑡𝑕𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒 , and Qualification = ℓ3  =  𝑎31 = 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 =

 𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙 . Let 𝔏′  = ℓ1 × ℓ2 × ℓ3 be a set of sub-attributes 

𝔏′  = ℓ1 × ℓ2 × ℓ3 =  𝑎11 , 𝑎12  ×  𝑎21 , 𝑎22  ×  𝑎31 , 𝑎32  

=  
 𝑎11 , 𝑎21 , 𝑎31 ,  𝑎11 , 𝑎21 , 𝑎32 ,  𝑎11 , 𝑎22 , 𝑎31 ,  𝑎11 , 𝑎22 , 𝑎32 ,
 𝑎12 , 𝑎21 , 𝑎31 ,  𝑎12 , 𝑎21 , 𝑎32 ,  𝑎12 , 𝑎22 , 𝑎31 ,  𝑎12 , 𝑎22 , 𝑎32  

 ,  
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𝔏′  =  𝑎 1 , 𝑎 2, 𝑎 3, 𝑎 4, 𝑎 5, 𝑎 6, 𝑎 7, 𝑎 8  be a set of all multi sub-attributes with weights 

 0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1 𝑇. Each expert will evaluate each alternative's ratings in the 

form of IFHSNs under the considered multi-valued sub-attributes. The developed method to find the 

best alternative is as follows. 

Step 1. Develop the decision matrices for each alternative under defined multi sub-attributes according 

to each decision-maker's ratings in terms of IFHSNs. 

Step 2. Construct the weighted decision matrix for each alternative ℵ (𝑧) =  ℒ 𝑖𝑗
(𝑧)
 
𝑛×𝜕

 given in 

Tables 5–8, such as follows: 

Table 5. Weighted decision matrix for ℵ (1). 

ℵ(𝟏) 𝒂 𝟏 𝒂 𝟐 𝒂 𝟑 𝒂 𝟒 𝒂 𝟓 𝒂 𝟔 𝒂 𝟕 𝒂 𝟖 

𝜹𝟏  . 7354, .9835   . 5691, .9576   . 6791, .9762   . 6694, .9848   . 8551, .9909   . 5021, .9778   . 8491, .9854   . 6791, .9762  

𝜹𝟐  . 7200, .9872   . 7038, .9728   . 7955, .9729   . 9009, .9301   . 8407, .9761   . 5476, .9413   . 8033, .9835   . 8227, .9794  

𝜹𝟑  . 7443, .9438   . 6422, .9513   . 7270, .9798   . 7386, .9465   . 9190 .9898   . 4959, .9225   . 8213, .9622   . 7819, .9727  

𝜹𝟒  . 6328, .9891   . 5034, .9786   . 6829, .9909   . 6377, .9863   . 8457, .9965   . 4784, .9888   . 7866, .9945   . 6339, .9880  

Table 6. Weighted decision matrix for ℵ (2). 

ℵ(𝟐) 𝒂 𝟏 𝒂 𝟐 𝒂 𝟑 𝒂 𝟒 𝒂 𝟓 𝒂 𝟔 𝒂 𝟕 𝒂 𝟖 

𝜹𝟏  . 6867, .9878   . 6178, .9676   . 7920, .9862   . 6694, .9794   . 9028, .9909   . 5987, .9778   . 8073, .9889   . 7920, .9862  

𝜹𝟐  . 7599, .9754   . 6109, .9517   . 7068, .9529   . 9009, .9301   . 9070, .9897   . 4661, .9236   . 8033, .9915   . 7068, .9933  

𝜹𝟑  . 7849, .9513   . 7379, .9513   . 7819, .9911   . 7386, .9465   . 8842 .9762   . 6415, .9225   . 7749, .9498   . 9083, .9377  

𝜹𝟒  . 7229, .9891   . 4402, .9908   . 6829, .9880   . 5644, .9821   . 9995, .9919   . 4321, .9800   . 7866, .9959   . 7631, .9931  

Table 7. Weighted decision matrix for ℵ (3). 

ℵ(𝟑) 𝒂 𝟏 𝒂 𝟐 𝒂 𝟑 𝒂 𝟒 𝒂 𝟓 𝒂 𝟔 𝒂 𝟕 𝒂 𝟖 

𝜹𝟏  . 7559, .9835   . 6178, .9754   . 7920, .9862   . 6694, .9729   . 8551, .9909   . 5987, .9699   . 8073, .9854   . 7652, .9862  

𝜹𝟐  . 7599, .9754   . 6109, .9517   . 7068, .9529   . 9009, .9301   . 9070, .9893   . 4661, .9236   . 8033, .9915   . 7068, .9933  

𝜹𝟑  . 8678, .9257   . 6955, .9362   . 9083, .9529   . 7386, .9465   . 8527, .9683   . 6897, .9408   . 8509, .9781   . 8886, .9529  

𝜹𝟒  . 7229, .9891   . 5034, .9786   . 7408, .9949   . 6049, .9863   . 8457, .9974   . 6195, .9919   . 7866, .9872   . 7631, .9840  
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Table 8. Weighted decision matrix ℵ (4). 

ℵ(𝟒) 𝒂 𝟏 𝒂 𝟐 𝒂 𝟑 𝒂 𝟒 𝒂 𝟓 𝒂 𝟔 𝒂 𝟕 𝒂 𝟖 

𝜹𝟏  . 6867, .9915   . 6572, .9754   . 7311, .9818   . 7048, .9645   . 8241, .9840   . 5021, .9605   . 8073, .9854   . 7311, .9818  

𝜹𝟐  . 7599, .9754   . 6109, .9517   . 9085, .9333   . 7781, .9301   . 9070, .9821   . 6509, .9553   . 9089, .9621   . 8671, .9645  

𝜹𝟑  . 8678, .9438   . 7379, .9513   . 8886, .9377   . 8376, .9465   . 8527, .9683   . 6415, .9225   . 8927, .9622   . 8446 .9727  

𝜹𝟒  . 7229, .9891   . 4402, .9786   . 7152, .9931   . 6667, .9821   . 8457, .9965   . 6575, .9506   . 7648, .9945   . 6829, .9931  

Step 3. Determine the PIA and NIA based on indices by using Eqs 5.2 and 5.3 such as follows: 

ℒ+ =  

 . 6867, .9915  . 5691, .9576  . 6791, .9762  . 6694, .9848  . 8241, .9840  . 5021, .9778  . 8073, .9889  . 6791, .9762 
 . 7200, .9872  . 6109, .9517  . 7068, .9529  . 7781, .9301  . 9070, .9821  . 6509, .9553  . 8033, .9915  . 7068, .9933 
 . 7443, .9438  . 6422, .9513  . 7270, .9798  . 7386, .9465  . 8527, .9683  . 4959, .9225  . 7749, .9498  . 7819, .9727 
 . 6328, .9891  . 4402, .9908  . 6829, .9909  . 5644, .9821  . 8457, .9974  . 4321, .9800  . 7648, .9945  . 6339, .9880 

  

ℒ− =  

 . 7559, .9835  . 6572, .9754  . 7920, .9862  . 7048, .9645  . 9028, .9909  . 5987, .9699  . 8491, .9854  . 7920, .9862 
 . 7599, .9754  . 7038, .9728  . 9085, .9333  . 9009, .9301  . 9070, .9897  . 4661, .9236  . 9089, .9621  . 8671, .9645 
 . 8678, .9257  . 7379, .9513  . 9083, .9529  . 8376, .9465  . 9190 .9898  . 6897, .9408  . 8509, .9781  . 9083, .9377 
 . 7229, .9891  . 5034, .9786  . 7408, .9949  . 6667, .9821  . 9995, .9919  . 6575, .9506  . 7866, .9872  . 7631, .9840 

  

Step 4. Compute the CC between ℵ (𝐳) and PIA ℒ+ by using Eq 5.4, given as 𝑝(1) = .99915, 𝑝(2) = 

.99811, 𝑝(3) = .99746, 𝑝(4) = .99787. 

Step 5. Compute the CC between ℵ (𝐳) and NIA ℒ− by using Eq 5.5, given as 𝑞(1) = .99742, 𝑞(2) = 

.99806, 𝑞(3) = .99870, 𝑞(4) = .99870. 

Step 6. Compute the closeness coefficient by using Eq 5.6. 

ℛ(1) = .75219, ℛ(2) = .50653, ℛ(3) = .33854, and ℛ(4) = .37901. 

Step 7. Choose the alternative with maximum closeness coefficient ℛ(1) = .75219, so ℵ(1) be the best 

alternative. 

Step 8. Analyze the ranking of the alternatives, we can see ℛ(1) > ℛ(2)  > ℛ(4) > ℛ(3), so the 

ranking of the alternatives is ℵ(1) > ℵ(2)  > ℵ(4) > ℵ(3). 

Graphical representation of the ranking of the alternatives can be seen in Figure 2.  

5.3. Selection of best alternative by using proposed IFHSWA operator 

Step 1. The experts will evaluate the condition in the case of IFHSNs; there are just four alternatives; 

sub-attributes and a summary of their scores given in Tables 1–4. 

Step 2. Experts’ opinions on each alternative are summarized by using Eq 4.2. Therefore, we get 

∆1 =  . 4296, .5670 , ∆2 =  . 4956, .3391 , ∆3 =  . 3303, .4884 , and ∆4 =  . 3547, .5695 . 
Step 3. Score values by using Equation 4.5 for each alternative. 

𝕊(∆1) = .4983, 𝕊(∆2) = .41735, 𝕊(∆3) = .40935, and 𝕊(∆4) = .46175. 

Step 4. Therefore, the ranking of the alternatives is as follows 𝕊(∆1) > 𝕊(∆4) > 𝕊(∆2) > 𝕊(∆3). 

So, ℵ(1) > ℵ(4)  > ℵ(2) > ℵ(3), hence, the alternative ℵ(1) is the most suitable alternative. 
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5.4. Selection of best alternative by using proposed IFHSWG operator 

Step 1. The experts will evaluate the condition in the case of IFHSNs; there are just four alternatives; 

sub-attributes and a summary of their scores given in Tables 1–4. 

Step 2. Experts’ opinions on each alternative are summarized by using Eq 4.4. Therefore, we get 

∆1 =  . 3144, .5379 , ∆2 =  . 2815, .4420 , ∆3 =  . 2904, .4223 , and ∆4 =  . 2713, .5445 . 
Step 3. Score values by using Eq 4.5 for each alternative. 

𝕊(∆1) = .42615, 𝕊(∆2) = .36175, 𝕊(∆3) = .35635, and 𝕊(∆4) = .40790. 

Step 4. Therefore, the ranking of the alternatives is as follows 𝕊(∆1) > 𝕊(∆4) > 𝕊(∆2) > 𝕊(∆3). 

So, ℵ(1) > ℵ(4)  > ℵ(2) > ℵ(3), hence, the alternative ℵ(1) is the most suitable alternative. 

 

Figure 2. Ranking of alternatives by using proposed techniques. 

6. Discussion and comparative analysis 

In the following section, we will discuss the effectiveness, naivety, flexibility, and advantages of 

the proposed methods and algorithms. We also conducted a brief comparative analysis of the 

following: suggested methods and existing methods. 

6.1. Advantages and flexibility of proposed approach 

The recommended techniques are practical and applicable to all forms of input data. Here we 

introduce two novel algorithms based on IHFSS; TOPSIS; the other is IFHSWA and IFHSWG. Both 

algorithms are practical and can provide the best results in MADM problems. The recommended 

algorithms are simple and easy to understand, can deepen the understanding, and apply to many 

types of choices and measures. Both algorithms are flexible and easy to change to suit different 

situations, input, and output. There are subtle differences between the suggested methods' rankings 

because different techniques have different ranking methods so that they can be affordable according 

to their considerations. 
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6.2. Superiority of the proposed method 

Through this research and comparative analysis, we have concluded that the proposed methods' 

results are more general than prevailing techniques. However, in the decision-making process, 

compared with the existing decision-making methods, it contains more information to deal with the 

data's uncertainty. Moreover, many of FS's mixed structure has become a special case of IFHSS, add 

some suitable conditions. In it, the information related to the object can be expressed more accurately 

and empirically, so it is a convenient tool for combining inaccurate and uncertain information in the 

decision-making process. Therefore, our proposed method is effective, flexible, simple, and superior 

to other hybrid structures of fuzzy sets. 

Table 9. Comparative analysis between some existing techniques and the proposed approach. 

 Set Truthiness Falsity Attributes Sub-attributes Loss of information 

Zadeh [1] FS ✓ × ✓ × × 

Zhang et al. [53] IFS ✓ ✓ ✓ × ✓ 

Xu et al. [52] IFS ✓ ✓  ✓ × × 

Proposed approach IFHSS ✓ ✓ ✓ ✓ × 

6.3. Comparative analysis 

By using the technique of Zadeh [1], we deal with the true information of the alternatives, but 

this method cannot deal with falsity objects and multi sub-attributes of the alternatives. By utilizing 

the Xu et al. [52] and Zhang et al. [53] methodologies, we cannot deal with the alternatives' 

multi-sub-attribute information. But our proposed method can easily solve these obstacles and 

provide more effective results for the MADM problem. Instead of this, our developed method is an 

advanced technique that can handle alternatives with multi-sub-attributes information. A comparison 

can be seen in the above-listed Table 9. However, on the other hand, the methodology we have 

established deals with the truthiness and falsity of alternatives with multi sub-attributes. Therefore, 

the technique we developed is more efficient and can provide better results for decision-makers 

through a variety of information comparative to existing techniques. 

7. Conclusion 

The investigated study utilizes the IFHSS to address the insufficient, ambiguous, and 

inconsistent data by considering membership degree and non-membership degree over the 

parameters' set. The novel concept of CC and WCC under the IFHSS environment with their 

properties are proposed in the present research. Based on the developed correlation measures, an 

extended TOPSIS method has been introduced by considering the set of attributes with their 

corresponding sub-attributes and the decision-makers. We also developed the correlation indices to 

find the PIA and NIA. To find the ranking of the alternatives, we define the closeness coefficient 

under the established TOPSIS method. Moreover, the IFHSWA and IFHSWG operators also defined 

and presented the decision-making techniques based on developed operators. Finally, a numerical 

illustration has been described to solve the MADM problem by using the proposed TOPSIS method 

and other developed techniques. Furthermore, A comparative analysis is presented to verify the 

validity and demonstration of the proposed method. Finally, based on the results obtained, it is 
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concluded that the suggested techniques showed higher stability and practicality for decision-makers 

in the decision-making process. In the future, we plan to extend our work to (i) CC for multipolar 

Intuitionistic fuzzy hypersoft set, (ii) CC for the interval-valued intuitionistic fuzzy hypersoft set, and 

(iii) CC for the multipolar interval-valued intuitionistic fuzzy hypersoft set. 
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