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1. Introduction and Preliminaries

Let (X, d) be a metric space and T be a self mapping on X. A point x is said to be a fixed point
of T , if T x = x. Fixed point theory is one of the most important theory in mathematics. It has
many applications to very different type of problems arise in different branches. Also uniqueness
and existence problems of fixed points are important. One of the fixed point theorems is Geraghty-
type fixed point theorem. In 1973, Geraghty [17] proved a fixed point result, generalizing the Banach
contraction principle. Several authors have proved later various results using Geraghty-type conditions.
Fixed point results of this kind in b-metric spaces were obtained by Dukić et al. in [12].

It is well known that metric spaces are very important tool for all branches of mathematics. So
mathematicians have been tried to generalize this space and transform their studies to more generalized
metric spaces. As one of the most famous generalized metric spaces, in 1989, b-metric spaces was
introduced by the following way.

Definition 1.1. [7] LetX be a nonempty set and s ≥ 1 be a real number. A function d : X×X → [0,∞)
is a b-metric if, for all x, y, z ∈ X, the following conditions are satisfied
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(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

It is important to notice that b-metric spaces are also not metrizable. In particular, a b-metric might
not be a continuous function of its variables (see [18, Ex. 2]).

In fact a b-metric space for s = 1 is exactly a metric space. After this definition, many authors
proved fixed point theorems for different type mappings in this space (see [3, 4, 5, 8, 9, 14, 15, 16, 19,
20, 22, 23, 29]) and the references cited therein.

Following b-metric spaces, some generalized version of this space such as extended b-metric space,
dislocated b-metric space, rectangular b-metric space [13], partial b-metric space, partial ordered b-
metric space, etc. were introduced. The latest generalized b-metric space was introduced by Mitrovic
and Radenovic [24] in 2017 by the following way.

Definition 1.2. [24] Let X be a nonempty set, d : X × X → [0,∞) a function and v ∈ N. d is called a
bv(s)-metric space if there exists a real number s ≥ 1 such that for all x, z ∈ X and for all distinct points
y1, y2, . . . , yv ∈ X, each of them different from x and z the following conditions are satisfied

(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ≤ s[d(x, y1) + d(y1, y2) + . . . + d(yv, z)].

The pair (X, d) is called a bv(s)-metric space.

Definition 1.3. [24] Let (X, d) be a bv(s)-metric space, {xn} be a sequence in X and x ∈ X. Then
(i) The sequence {xn} is called convergent in (X, d) and converges to x, if for every ε > 0 there exists

n0 ∈ N such that d(xn, x) < ε for all n > n0 and this fact is represented by limn→∞ xn = x or xn → x as
n→ ∞.

(ii) The sequence {xn} is called a Cauchy sequence in (X, d) if for every ε > 0 there exists n0 ∈ N

such that d(xn, xn+p) < ε for all n > n0, p > 0 or equivalently, if limn→∞ d(xn, xn+p) = 0 for all p > 0.
(iii) (X, d) is said to be a complete bv(s)-metric space if every Cauchy sequence in X converges to

some x ∈ X.

Example 1.4. [28] Consider the set X = { 1n | n ∈ N, n ≥ 2}. Define d : X × X → [0,∞) by

d(
1
k
,

1
m

) =


|k − m|, if |k − m| , 1

1
2 , if |k − m| = 1.

Then (X, d) is a b3(3)-metric space.

bv(s)-metric space generalizes not only b-metric space but also rectangular metric space, v-
generalized metric space and rectangular b-metric space. Also, Mitrovic and Radenovic prove Banach
contraction principle and Reich fixed point theorem in this space. Aleksic et al. [2] prove the common
fixed point theorem of Jungck in bv(s)-metric spaces.

Abdullahi and Kumam [1] present the notion of partial bv(s)-metric space. They obtain some
topological properties and prove some fixed point theorems in this space with supporting examples.
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Mitrovic et al. [25] prove Khan type and Dass-Gupta type fixed point theorems in bv(s)-metric spaces.
Aydi et al. [6] obtain some common fixed point theorems in partial bv(s)-metric spaces. For other
related studies, see [11, 21, 26, 27].

In this paper, using ideas from [10, 30] we prove some common fixed point theorems in bv(s)-metric
space. Moreover, we give some examples to support our new results. Thus, we obtain generalizations
of several known fixed point results from the literature.

2. Main results

In this section, we give some common fixed point results. Following [12], for a real number s > 1 ,
let Fs be the collection of all functions β : [0,∞)→ [0, 1

s ) satisfying the following condition:

lim sup
n→∞

β(tn) =
1
s

implies lim
n→∞

tn = 0.

As an example of a function in Fs may be given by β(t) = e−2t, for t > 0 and β(0) ∈ [0, 1
2 ). Let (X, d̂)

be a complete bv(s)-metric space and let B be the collection of all bounded functions f defined on X
with metric d( f , g) = sup {d̂( f (x), g(y)) : x, y ∈ X}. Recall that a function f on X is said to be bounded
if f (X) is a bounded subset in X.
Remark 2.1. The metric d defined as above is a bv(s)-metric on B because d( f , g) = 0 if and only if
d̂( f (x), g(y)) = 0, for all x, y ∈ X, and so f = g. Also for all f , g, h1, · · · , hn ∈ B and x, y ∈ X, we have

d̂ ( f (x), g(y)) ≤s
[
d̂ ( f (x), h1(y)) + d̂ (h1(y), h2(y)) + · · · + d̂ (hn(y), g(y))

]
≤s

[
sup{d̂ ( f (x), h1(y)) : x, y ∈ X} + sup{d̂ (h1(y), h2(y)) : x, y ∈ X}

+ · · · + sup{d̂ (hn(y), g(y) : x, y ∈ X)}
]
,

and so

sup{d̂ ( f (x), g(y)) : x, y ∈ X} ≤s
[
sup{d̂ ( f (x), h1(y)) : x, y ∈ X} + sup{d̂ (h1(y), h2(y)) : x, y ∈ X}

+ · · · + sup{d̂ (hn(y), g(y) : x, y ∈ X)}
]
.

Therefore
d( f , g) ≤ s

[
d( f , h1) + d(h1, h2) + · · · + d(hn, g)

]
.

Theorem 2.2. Let (X, d̂) be a complete bv(s)-metric space. Let B be the collection of all bounded
functions f defined on X with metric

d( f , g) = sup {d̂( f (x), g(y)) : x, y ∈ X}.

Also, let T and I be the commuting mappings (i.e., T (I( f )) = I(T ( f )) for all f in B) defined on B in
which T (B) ⊆ I(B), I be a continuous mapping satisfying the following contraction

d(T f ,Tg) ≤ β(d( f , g))M( f , g), (2.1)

where β ∈ Fs and

M( f , g) = max
{
d(I f , Ig),

d(I f ,T f )d(Ig,Tg)
1 + d(T f ,Tg)

,
d(I f ,T f )d(Ig,Tg)

1 + d(I f , Ig)
,

d(I f ,T f )d(Ig,Tg)
1 + d(I f ,Tg) + d(Ig,T f )

}
,

for all f , g ∈ B. Then T and I have a unique common fixed point.
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Proof. Let f0 ∈ B be arbitrary. Then T f0 and I f0 are well defined. Since T f0 ∈ I(B), there exists a
function f1 ∈ B such that I f1 = T f0. In general, if fn is chosen, then we can choose a point fn+1 in B
such that I fn+1 = T fn. If for some n, I fn = I fn+1 = T fn, then I fn = u is a function such that Tu = Iu,
because we have

Tu = T (I fn) = (T I fn) = (IT fn) = I(T fn) = I(I fn) = Iu.

Now let d(u,Tu) > 0, then we get

d(u,Tu) = d(T fn,Tu) ≤β(d( fn, u))M( fn, u)

=β(d( fn, u)) max
{
d(I fn, Iu),

d(I fn,T fn)d(Iu,Tu)
1 + d(T fn,Tu)

,

d(I fn,T fn)d(Iu,Tu)
1 + d(I fn, Iu)

,
d(I fn,T fn)d(Iu,Tu)

1 + d(I fn,Tu) + d(Iu,T fn)

}
=β(d( fn, u)) max

{
d(u, Iu),

d(u, u)d(Iu,Tu)
1 + d(u,Tu)

,

d(u, u)d(Iu,Tu)
1 + d(u, Iu)

,
d(u, u)d(Iu,Tu)

1 + d(u,Tu) + d(Iu, u)

}
=β(d( fn, u))d(u, Iu)
=β(d( fn, u))d(u,Tu)
<d(u,Tu),

but it is a contradiction. Hence Tu = Iu = u, and so the proof of this case is completed.
Now, let I fn , I fn+1, for all n ≥ 0. We show that {I fn} is a Cauchy sequence.

Step I. First we prove that limn→∞ d(I fn+1, I fn) = l = 0. From (2.1) for all m, n ∈ N we get

d(I fn+1, I fn) =d(T fn,T fn−1)
≤β(d( fn, fn−1))M( fn, fn−1)
<M( fn, fn−1)

= max
{
d(I fn, I fn−1),

d(I fn,T fn)d(I fn−1,T fn−1)
1 + d(T fn,T fn−1)

,

d(I fn,T fn)d(I fn−1,T fn−1)
1 + d(I fn, I fn−1)

,
d(I fn,T fn)d(I fn,T fn−1)

1 + d(I fn,T fn−1) + d(I fn−1,T fn)

}
= max

{
d(I fn, I fn−1),

d(I fn, I fn−1)d(T fn,T fn−1)
1 + d(T fn,T fn−1)

,

d(I fn, I fn+1)d(I fn−1, I fn)
1 + d(I fn, I fn−1)

,
d(I fn, I fn−1)d(I fn, I fn−2)

1 + d(I fn, I fn−2) + d(I fn−1, I fn−1)

}
≤max

{
d(I fn, I fn−1), d(I fn, I fn−1), d(I fn, I fn+1), d(I fn, I fn−1)

}
= max

{
d(I fn, I fn−1), d(I fn, I fn+1)

}
.

If max
{
d(I fn, I fn−1)), d(I fn, I fn+1)

}
= d(I fn, I fn+1), then

d(I fn+1, I fn) = d(T fn,T fn−1) ≤ β(d( fn, fn−1))M( fn, fn−1) < d(I fn, I fn+1),
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which is a contradiction. Hence max
{
d(I fn, I fn−1)), d(I fn, I fn+1)

}
= d(I fn, I fn−1), so

d(I fn+1, I fn) ≤ β(d( fn, fn−1))M( fn, fn−1) < d(I fn, I fn−1). (2.2)

Therefore the sequence {d(I fn+1, I fn)} is decreasing. So there exists l ≥ 0 such that

lim
n→∞

d(I fn+1, I fn) = l.

If l > 0, then letting n→ ∞ in (2.1) we obtain l ≤ β(d( fn, fn−1))l, which is impossible. Therefore

lim
n→∞

d(I fn+1, I fn) = 0. (2.3)

Step II. Suppose that I fn = I fm, for some n > m. Hence I fn+1 = T fn = T fm = I fm+1, and by continuing
this process we get I fn+i = I fm+i, for each i ∈ N. Then

d(I fm, I fm+1) = d(I fn, I fn+1)
= d(T fn−1,T fn)
≤ β(d( fn−1, fn))M( fn−1, fn)
≤ max

{
d(I fn−1, I fn), d(I fn, I fn+1)

}
.

If max
{
d(I fn−1, I fn), d(I fn, I fn+1)

}
= d(I fn, I fn+1), then d(I fn, I fn+1) < d(I fn, I fn+1) which is a

contradiction. If max
{
d(I fn−1, I fn), d(I fn, I fn+1)

}
= d(I fn−1, I fn), then we have

d(I fm, I fm+1) = d(I fn, I fn+1)
= d(T fn−1,T fn)
≤ β(d( fn−1, fn))M( fn−1, fn) < d(I fn−1, I fn)
≤ β(d( fn−1, fn))M( fn−2, fn−1)
≤ max

{
d(I fn−2, I fn−1), d(I fn−1, I fn)

}
< d(I fn−2, I fn−1)
...

< d(I fm, I fm+1),

which is impossible. Therefore, we can assume that I fn , I fm for n , m. Since d is a bv(s)-metric
space we have

d(I fn, I fm) ≤ s (d(I fn, I fn+1) + d(I fn+1, I fm+1) + d(I fm+1, I fm))

≤ s (d(I fn, I fn+1) + β(d( fn, fm))M( fn, fm) + d(I fm+1, I fm)) . (2.4)

Moreover

d(I fn, I fm) ≤ M( fn, fm) = max
{
d(I fn, I fm),

d(I fn,T fn)d(I fm,T fm)
1 + d(T fn,T fm)

,

d(I fn,T fn)d(I fm,T fm)
1 + d(I fn, I fm)

,
d(I fn,T fn)d(I fm,T fm)

1 + d(I fn,T fm) + d(I fm,T fn)

}
.
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Taking the upper limit as n,m→ ∞ and using (2.3), we get

lim sup
n,m→∞

M( fn, fm) = lim sup
n,m→∞

d(I fn, I fm).

Using (2.4), we conclude that

lim sup
n,m→∞

d(I fn, I fm) ≤ sβ(d( fn, fm)) lim sup
n,m→∞

M( fn, fm) = sβ(d( fn, fm)) lim sup
n,m→∞

d(I fn, I fm),

since β(d( fn, fm)) < 1
s , this is impossible elsewhere lim supn,m→∞ d(I fn, I fm) = 0. Hence the sequence

{I fn} is a Cauchy sequence in B. As B is the family of bounded functions defined on the complete
metric space (X, d∗), so (B, d) is a complete metric space and thus the sequence {I fn} is convergent to
f ∈ B, that is limn→∞ I fn = limn→∞ T fn−1 = f .
Step III. In this step, we show that f is a common fixed point of T and I. Since T and I commute, we
obtain

I( f ) = I( lim
n→∞

T fn) = lim
n→∞

IT fn = lim
n→∞

T I fn = T f .

Let T f = I f = g, then we get Tg = T I f = IT f = Ig. If T f , Tg, then by (2.1), we obtain

d(T f ,Tg) ≤β(d( f , g))M( f , g)

=β(d( f , g)) max
{
d(I f , Ig),

d(I f ,Tg)d(Ig,Tg)
1 + d(T f ,Tg)

,

d(I f ,T f )d(Ig,Tg)
1 + d(I f , Ig)

,
d(I f ,T f )d(Ig,Tg)

1 + d(I f ,Tg) + d(Ig,T f )

}
<d(I f , Ig) = d(T f ,Tg),

a contradiction. So we have g = T f = Tg, and so Tg = Ig = g, i.e., g is a common fixed point for T
and I. Condition (2.1) implies that g is the unique common fixed point. �

If in Theorem 2.2 we set β(t) = λ < 1
s for t ≥ 0, then we get the following result.

Corollary 2.3. Let (X, d̂) be a complete bv(s)-metric space. Let B be the collection of all bounded
functions f defined on X with metric d( f , g) = sup {d̂( f (x), g(y)) : x, y ∈ X}. Also, let T and I be the
commuting mappings defined on B in which T (B) ⊆ I(B), I be a continuous mapping satisfying the
following contraction

d(T f ,Tg) ≤ λM( f , g),

where 0 ≤ λ < 1
s and M( f , g) is as in Theorem 2.2, for all f , g ∈ B. Then T and I have a unique

common fixed point.

Observe that

αd(I f , Ig)+γ
d(I f ,Tg)d(Ig,Tg)

1 + d(T f ,Tg)
+ δ

d(I f ,T f )d(Ig,Tg)
1 + d(I f , Ig)

+ ζ
d(I f ,T f )d(Ig,Tg)

1 + d(I f ,Tg) + d(Ig,T f )

≤(α + γ + δ + ζ) max
{
d(I f , Ig),

d(I f ,Tg)d(Ig,Tg)
1 + d(T f ,Tg)

,

d(I f ,T f )d(Ig,Tg)
1 + d(I f , Ig)

,
d(I f ,T f )d(Ig,Tg)

1 + d(I f ,Tg) + d(Ig,T f )

}
=(α + γ + δ + ζ)M( f , g).

Hence, putting β(t) = α + γ + δ + ζ in (2.1) we get the following corollary.
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Corollary 2.4. Let (X, d̂) be a complete bv(s)-metric space. Let B be the collection of all bounded
functions defined on X with metric d( f , g) = sup {d̂( f (x), g(y))) : x, y ∈ X}. Also, let T and I be
commuting mappings defined on B in which T (B) ⊆ I(B), I be a continuous mapping satisfying the
following contraction

d(T f ,Tg) ≤ αd(I f , Ig) + γ
d(I f ,Tg)d(Ig,Tg)

1 + d(T f ,Tg)
+ δ

d(I f ,T f )d(Ig,Tg)
1 + d(I f , Ig)

+ ζ
d(I f ,T f )d(Ig,Tg)

1 + d(I f ,Tg) + d(Ig,T f )
,

for all f , g ∈ B, where α, γ, δ, ζ ≥ 0 and α + γ + δ + ζ < 1
s . Then T and I have a unique common fixed

point.

In following, we give two examples to support these results.

Example 2.5. Let X = [0, 1] and d̂ be a bv(s)-metric on X and B = C[0, 1], the set of all real-
valued continuous functions on [0, 1]. Define the mappings T and I on B as T ( f )(x) = 2

3 f (x) and
I( f )(x) = f (x), for all f ∈ C[0, 1] and x ∈ [0, 1]. Then for 2

3 < λ < 1 we have

d(T f ,Tg) = d(
2
3

f ,
2
3

g)

= sup{d̂
(2
3

f (x),
2
3

g(y)
)

: x, y ∈ X}

=
2
3

sup{d̂( f (x), g(y)) : x, y ∈ X}

< λd( f , g) ≤ λM( f , g),

where

M( f , g) = max
{
d( f , g),

d( f , 2
3 f )d(g, 2

3g)

1 + d( 2
3 f , 2

3g)
,

d( f , 2
3 f )d(g, 2

3g)
1 + d( f , g)

,
d( f , 2

3 f )d(g, 2
3g)

1 + d( f , 2
3g) + d(g, 2

3 f )

}
.

Since all the conditions required for Corollary 2.3 are satisfied, there exists a unique common fixed
function of T and I. In fact, null function is a unique common fixed function.

Example 2.6. Let X = [0, 2] and d̂(x, y) = |x − y|, and B = { f , g}, where f , g are bounded functions on
[0, 2] defined as follows.

f (x) =

{
1, x ∈ [0, 1]
0, otherwise

, g(x) =

{
−1, x ∈ [0, 1]

0, otherwise

and

β(t) =

{ 1
2 , t ∈ [0, 2]
0, otherwise.

Define the mappings T, I on B as T ( f ) = f 2 and I( f ) = f , for all f ∈ B and let d be the metric defined
on B as

d( f , g) =

∫ 2

0
| f (x) − g(x)|dx.
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It is clear that (X, d̂) is a complete b1(s)-metric space and T, I are continuous mappings. Also, f and g
are bounded functions. T and I satisfy (2.1) because

d(T f ,Tg) = d( f 2, g2) =

∫ 2

0
| f 2(x) − g2(x)|dx = 0.

Moreover M( f , g) = 2 and so we have

d(T f ,Tg) = 0 < β(d( f , g))M( f , g) = 1.

Hence, all of conditions of Theorem 2.2 are fulfilled, and so there exists a common fixed function in
B. In fact, f is a common fixed function of T and I.
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