
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(12): 13845–13886.
DOI:10.3934/math.2021803
Received: 05 May 2021
Accepted: 05 September 2021
Published: 27 September 2021

Research article

Miscellaneous reverse order laws and their equivalent facts for generalized
inverses of a triple matrix product

Yongge Tian∗

College of Business and Economics, Shanghai Business School, Shanghai, China

* Correspondence: Email: yongge.tian@gmail.com; Tel: +862131790567; Fax: +862131790567.

Abstract: Reverse order laws for generalized inverses of products of matrices are a class of algebraic
matrix equalities that are composed of matrices and their generalized inverses, which can be used to
describe the links between products of matrix and their generalized inverses and have been widely used
to deal with various computational and applied problems in matrix analysis and applications. ROLs
have been proposed and studied since 1950s and have thrown up many interesting but challenging
problems concerning the establishment and characterization of various algebraic equalities in the
theory of generalized inverses of matrices and the setting of non-commutative algebras. The aim of this
paper is to provide a family of carefully thought-out research problems regarding reverse order laws
for generalized inverses of a triple matrix product ABC of appropriate sizes, including the preparation
of lots of useful formulas and facts on generalized inverses of matrices, presentation of known groups
of results concerning nested reverse order laws for generalized inverses of the product AB, and the
derivation of several groups of equivalent facts regarding various nested reverse order laws and matrix
equalities. The main results of the paper and their proofs are established by means of the matrix rank
method, the matrix range method, and the block matrix method, so that they are easy to understand
within the scope of traditional matrix algebra and can be taken as prototypes of various complicated
reverse order laws for generalized inverses of products of multiple matrices.
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1. Introduction

Throughout this paper, let Cm×n denote the collection of all m× n matrices over the field of complex
numbers; A∗ denote the conjugate transpose; r(A) denote the rank of A, i.e., the maximum order of the
invertible submatrix of A; R(A) = {Ax | x ∈ Cn} denote the range (column space) of a matrix A ∈ Cm×n.
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An A ∈ Cm×m is said to be idempotent if A2 = A; to be Hermitian if A = A∗; to be an orthogonal
projector if A2 = A = A∗; to be EP (range-Hermitian) if R(A) = R(A∗); to be normal if AA∗ = A∗A.
The Moore–Penrose generalized inverse of A ∈ Cm×n, denoted by A†, is the unique matrix X ∈ Cn×m

satisfying the four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA. (1.1)

A matrix X is called a {i, . . . , j}-generalized inverse of A, denoted by A(i,..., j), if it satisfies the ith,
. . ., jth equations in (1.1). The collection of all {i, . . . , j}-generalized inverses of A is denoted by
{A(i,..., j)}. There can be found many different kinds of definitions of generalized inverses for a matrix. In
comparison, generalized inverses that are defined by the four Penrose equations are most popular and
well developed. It can be seen that there are all 15 types of {i, . . . , j}-generalized inverses of A by the
above definition. All these generalized inverses have rich structures and occur in various theoretical and
applied problems, yet A†, A(1,3,4), A(1,2,4), A(1,2,3), A(1,4), A(1,3), A(1,2), and A(1) are usually called the eight
commonly-used types of generalized inverses of A in the literature. In particular, the Moore–Penrose
generalized inverse of a matrix A was specially studied and recognized because AA†, A†A, Im − AA†,
and In − A†A are four orthogonal projectors onto the ranges and kernels of A and A∗, respectively.
Hence, it optimizes a number of interesting properties, and thus has extraordinary values in theoretical
and computational mathematics with applications. For brief, we denote PA = AA† and EA = Im −

AA† in the sequel. It can also be used to represent other generalized inverses by means of certain
algebraic operations of A and A†. The four matrix equations in (1.1) were proposed by Sir Penrose
in his seminal paper [17]. It is obvious that generalized inverses of a matrix are fully determined by
the four equations in (1.1), which are direct extensions to singular matrix of the four fundamental
inverse operation properties AA−1A = A, A−1AA−1 = A−1, (AA−1)∗ = AA−1, and (A−1A)∗ = A−1A for a
nonsingular matrix A, and thus the algebraic connotations and characteristics of generalized inverses
of a matrix are consistent with these equalities and their variations when computing and utilizing
generalized inverses of matrices under various situations. In fact, generalized inverses, as an important
branch of current matrix algebra, have been already developed as an independent theoretical system
and analysis method in mathematics and applications. It, however, would still be of great practical
and theoretical significance to deepen the study of generalized inverses from the perspective of many
conceptual and fundamental problems. We refer the reader to the traditional reference books [1, 2] for
more expositions on generalized inverses of matrices with a century’s history.

Notice that generalized inverses of a matrix are defined to be certain common solutions of the four
Penrose matrix equations. Hence it is natural to conduct various operations of matrices and generalized
inverses and to establish various equalities for matrices and their generalized inverses from theoretical
and applied points of view. As usual, the theory of generalized inverses processes its own lists of
(more or less celebrated) problems and open questions, sometimes they are hard to appreciate or just
to understand if one does not work in this field. We begin with a simple case to illustrate. Assume
that A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the pair of matrix products AB and ABC are defined
accordingly. If they are all square matrices of the same size and assume that they are invertible matrices,
then the following two best-known matrix equalities for the ordinary inverses of the pair of matrix
products

(AB)−1 = B−1A−1, (ABC)−1 = C−1B−1A−1 (1.2)

hold, which are usually called the reverse order laws (ROLs) for the ordinary inverses of the matrix
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products AB and ABC, respectively. As fundamental properties of inverse operations of matrices, they
can be used to simplify various matrix expressions that involve the inverses of products of matrices.
If these matrices and their products are singular, then A†, B†, C†, (AB)† and (ABC)† do exist. In these
cases, it is also necessary to describe the relations among these matrices. In particular, it is easy to
propose the following two ROLs for the Moore–Penrose generalized inverses of AB and ABC:

(AB)† = B†A†, (ABC)† = C†B†A† (1.3)

as natural extensions of the ROLs for the ordinary inverses of matrix products in (1.2). It is not until
in 1960s that mathematicians paid attention to the study of ROLs for generalized inverses of matrix
products due to the non-commutativity of matrix algebra and the lack of methodologies for dealing with
complicated matrix expressions and matrix equalities that involve generalized inverses. Since then,
there has been a long-term interest in the research of the two ROLs in (1.3), and there are many classic
and profound results that have been obtained on the two ROLs and their variations; see e.g., some
earlier and recent work [5,6,8–10,12,18,20,25–27]. In addition to these standard ROLs for the Moore–
Penrose generalized inverses, it may be useful to examine further other kinds of reasonable expressions
composed of generalized inverses of matrix products according to the conventional algebraic operations
of matrices. Surprisingly, there exist many kinds of matrix equalities that are composed of nested
products of matrices and their generalized inverses. Here we mention a group of well-known nested
ROLs:

(AB)† = (A†AB)†A†, (1.4)
(AB)† = B†(ABB†)†, (1.5)
(AB)† = B†(A†ABB†)†A†, (1.6)
(AB)† = (A†AB)†(ABB†)†, (1.7)
(AB)† = (A†AB)†(A†ABB†)†(ABB†)†, (1.8)
(AB)† = B†(ABB†)†AB(A†AB)†A† (1.9)

for the Moore–Penrose generalized inverse of AB, and two groups of nested ROLs:

(ABC)† = (A†ABC)†A†, (1.10)
(ABC)† = C†(ABCC†)†, (1.11)
(ABC)† = C†(A†ABCC†)†A†, (1.12)
(ABC)† = (A†ABC)†B(ABCC†)†, (1.13)
(ABC)† = (A†ABC)†B(A†ABCC†)†B(ABCC†)†, (1.14)
(ABC)† = C†(ABCC†)†ABC(A†ABC)†A†, (1.15)

and

(ABC)† = ((AB)†ABC)†(AB)†, (1.16)
(ABC)† = (BC)†(ABC(BC)†)†, (1.17)
(ABC)† = (BC)†((AB)†ABC(BC)†)†(AB)†, (1.18)
(ABC)† = ((AB)†ABC)†B†(ABC(BC)†)†, (1.19)
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(ABC)† = ((AB)†ABC)†B†((AB)†ABC(BC)†)†B†(ABC(BC)†)†, (1.20)
(ABC)† = (BC)†(ABC(BC)†)†ABC((AB)†ABC)†(AB)† (1.21)

for the Moore–Penrose generalized inverse of the triple matrix product ABC. It should be pointed
out that the common feature of the matrix equalities in (1.4)–(1.21) is: they involve the orthogonal
projectors A†A, BB†, CC†, (AB)†AB, and BC(BC)† in different places in the nested products of matrices
on the right-hand sides, respectively, rather than the straightforward reverse order products B†A† and
C†B†A†. Therefore, they provide a mixture of multiple expressions of the Moore–Penrose generalized
inverses of AB and ABC from the standpoint of orthogonal projectors. On the other hand, they all agree
with (1.2) when A, B, and C are invertible matrices. To understand the motivation and reasonability of
(1.4)–(1.21), it is instructive to rewrite AB and ABC as the following multiple matrix products:

AB = A(A†AB) = (ABB†)B = A(A†ABB†)B, (1.22)
ABC = A(A†ABC) = (ABCC†)C = A(A†ABCC†)C (1.23)

according to the definition of the Moore–Penrose generalized inverse of matrix. In these situations,
applying (1.3) to the nested products in (1.22) and (1.23), respectively, we obtain (1.4)–(1.6) and
(1.10)–(1.12). Equations (1.13)–(1.15) and (1.19)–(1.21) result from the products of the right-hand
sides of (1.4), (1.5), (1.10), and (1.11) with AB and ABC, respectively, and simplification. Moreover,
it is worth noting that the triple matrix product ABC can be written as

ABC = AB(AB)†ABB†BC(BC)†BC = AB((AB)†ABC(BC)†)BC, (1.24)

which is in fact a special situation of (1.23) by replacing A, B, and C by AB, B†, and BC, respectively.
Applying (1.10)–(1.15) to (1.24) leads to (1.16)–(1.21), respectively. So that there is reasonable
discourse for suggesting the ROLs in (1.4)–(1.21). This kind of consideration was first given in [5],
see also [7, 11, 21–23] for some similar work. It should be pointed out that nested ROLs in
(1.4)–(1.21) are different from the two ROLs in (1.3) and also they are not necessarily equivalent to
the two ROLs in (1.3). However, there is solid reason for deriving various necessary and sufficient
conditions for all these matrix equalities to hold by means of various usual algebraic operations of
matrices. In fact, people approached the ROLs in (1.4)–(1.21) respectively for matrices, as well as
elements in rings, Hilbert spaces, and C∗-algebras in the literature, such as, parts of (1.4)–(1.9) were
formulated and approached in [3, 7, 11, 14, 15, 21, 22] and parts of (1.10)–(1.21) were considered
in [4, 12, 23, 26, 28, 29] among others. It has been realized that ROLs may have millions of reasonable
forms and thus they have become one of the fruitful research fields in the matrix algebra.

Because of important roles of generalized inverses in dealing with singular matrices and the
reasonability of construction of ROLs, people have paid great attention to the research of ROLs under
various general assumptions since 1960s. In fact, ROLs have been being conceptually amongst the
most pleasant research topics concerning algebraic equalities composed of generalized inverses of
matrices for people to work with. Recall that equalities and equations of matrices can be constructed
arbitrarily through various conventional algebraic operations of matrices. But it is not easy to
adequately address the challenges identified in determining consistency conditions of a given matrix
equation and finding general solutions of the equation under general assumptions. It can be seen from
(1.3)–(1.21) that reverse order laws problems are mainly concerned with establishing various
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reasonable equalities for products of singular matrices and their generalized inverses. Because of the
non-commutativity of matrix algebra, (1.3)–(1.21) do not necessarily hold. On the other hand,
observe that the right-hand sides of (1.4)–(1.9), and (1.10)–(1.21) have different structures of matrix
operations. Hence the matrix equalities in (1.4)–(1.9), and (1.10)–(1.21) are not necessarily equivalent
to the two ROLs in (1.3). Thus it is natural to seek conditions under which (1.4)–(1.21) hold,
respectively. In the past several decades, people noticed many fundamental facts regarding the
equivalences of equalities composed of matrices and their generalized inverses, some of them were
discovered during the investigation of reverse order laws for generalized inverses of matrix products.
During the formulation and characterization of matrix equalities, people have realized that the rank of
matrix (one of the basic concepts in linear algebra, which can be calculated by counting the number of
leading 1s in any row-echelon matrix to which a matrix can be carried by row operations) and various
traditional algebraic and symbolical methods for calculating ranks of matrices (called the matrix rank
method), can well be used to deal with various simple and complicated matrix equalities and matrix
set inclusions. Now it is possible to derive identifying conditions for various ROLs for generalized
inverses of matrix products to hold by means of various ordinary and effective matrix analysis tools,
including the matrix rank method, the matrix range method, and the block matrix method.

A main focus of this paper is to present a full approach to the nested ROLs in (1.10)–(1.21) and
their variations. The work contains the preparations of lots of useful formulas and facts on generalized
inverses of matrices, and derivations of many necessary and sufficient conditions for the nested ROLs
to hold through use of the matrix rank method and the block matrix method. The results obtained
show essential equivalences among various matrix equalities that are composed of products of matrices
and their generalized inverses. The paper is organized as follows. In Section 2, we present some
preliminary formulas and results regarding operations of generalized inverses, ranks and ranges of
matrices, as well as two groups of known results on ROLs of generalized inverses of products of
two matrices and their variations. In Sections 3 and 4, we present miscellaneous equalities that are
composed of the triple matrix products and their generalized inverses, and give detailed derivations of
the main results. Conclusions and some open problems on ROLs for generalized inverses of multiple
matrix products are given in Section 5.

2. Some preliminaries

We begin with presenting an assortment of necessary preliminary results, which will be used as
tools in the derivations of the main results in the sequel. The formulas and facts in the following eight
lemmas are well recognized and scattered in the literatures [1, 2, 13, 16, 19, 24] or easy to prove by the
definitions of ranks, ranges, and generalized inverses of matrices.

Lemma 2.1. Let A ∈ Cm×n. Then the following results hold

(A†)∗ = (A∗)†, (A†)† = A, (2.1)
A† = A∗(AA∗)† = (A∗A)†A∗ = A∗(A∗AA∗)†A∗, (2.2)
(A∗)†A∗ = (AA†)∗ = AA†, A∗(A∗)† = (A†A)∗ = A†A, (2.3)
(AA∗)† = (A†)∗A†, (A∗A)† = A†(A†)∗, (AA∗A)† = A†(A†)∗A†, (2.4)
R(A) = R(AA∗) = R(AA∗A) = R(AA†) = R((A†)∗), (2.5)
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R(A∗) = R(A∗A) = R(A∗AA∗) = R(A†) = R(A†A), (2.6)
r(A) = r(A∗) = r(AA∗) = r(A∗A) = r(AA∗A) = r(A∗AA∗) = r(A†) = r(AA†) = r(A†A). (2.7)

Lemma 2.2. Let A ∈ Cm×n and B ∈ Cm×k. Then the following results

r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.8)
r[ A, B ] = r(A) + r(B) − r(PAPB) − r(PBPA) + r[PAPB, PBPA], (2.9)
2r[A, B] = r(A) + r(B) + r(PA − PB) (2.10)

hold. In particular, the following results hold.

(a) r[ A, B ] = r(A) ⇔ R(B) ⊆ R(A) ⇔ AA†B = B ⇔ EAB = 0 ⇔ r(EBA) = r(A) − r(B) ⇔
r(PA − PB) = r(A) − r(B).

(b) R(A) = R(B) ⇔ r[A, B] = r(A) = r(B) ⇔ 2r[A, B] = r(A) + r(B) ⇔ 2r[PAPB, PBPA] =

2r(PAPB) + 2r(PBPA) − r(A) − r(B)⇔ AA† = BB†.

Lemma 2.3. Let M ∈ Cm×n and assume that A, B ∈ {M(2)}. Then the following rank equality

r(A − B) = r
[
A
B

]
+ r[A, B] − r(A) − r(B) (2.11)

holds. In consequence,

A = B⇔ r
[
A
B

]
+ r[A, B] = r(A) + r(B)⇔ R(A) = R(B) and R(A∗) = R(B∗). (2.12)

Lemma 2.4. Let A1 ∈ C
m×n1 , A2 ∈ C

m×n2 , B1 ∈ C
m×p1 , and B2 ∈ C

m×p2 , and assume that R(A1) = R(B1)
and R(A2) = R(B2). Then

R[A1, A2] = R[B1, B2] and r[A1, A2] = r[B1, B2]. (2.13)

Lemma 2.5. Let A ∈ Cm×n and G ∈ Cn×m. Then

G ∈ {A(1)}⇔ AGA = A, (2.14)
G ∈ {A(1,2)}⇔ AGA = A and r(G) = r(A), (2.15)
G ∈ {A(1,3)}⇔ AG = AA† ⇔ A∗AG = A∗, (2.16)
G ∈ {A(1,4)}⇔GA = A†A⇔ GAA∗ = A∗, (2.17)

G ∈ {A(1,2,3)}⇔ A∗AG = A∗ and r(G) = r(A)
⇔ A∗AG = A∗ and GEA = 0, (2.18)

G ∈ {A(1,2,4)}⇔GAA∗ = A∗ and r(G) = r(A)
⇔GAA∗ = A∗ and FAG = 0, (2.19)

G ∈ {A(1,3,4)}⇔ A∗AG = A∗ and GAA∗ = A∗, (2.20)
G = A†⇔G ∈ {A(1,3)}, G ∈ {A(1,4)}, and r(G) = r(A)

⇔ AG = AA†, GA = A†A, and r(G) = r(A)
⇔ A∗AG = A∗, GAA∗ = A∗, and r(G) = r(A)
⇔ AG = AA†, GA = A†A, GEA = 0, and FAG = 0. (2.21)
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Lemma 2.6. Let A ∈ Cm×n, B ∈ Cm×p, P ∈ Cp×m, and Q ∈ Cq×n. Then the following results hold

R(A) ⊆ R(B) and r(A) = r(B)⇒ R(A) = R(B), (2.22)
R(A) ⊆ R(B)⇒ R(PA) ⊆ R(PB), (2.23)
R(A) = R(B)⇒ R(PA) = R(PB), (2.24)
R(AQ†Q) = R(AQ†) = R(AQ∗Q) = R(AQ∗). (2.25)

Lemma 2.7. Let A ∈ Cm×n and B ∈ Cn×p, M ∈ Cn×n. Then the following range equalities

R(ABB∗A∗) = R(ABB∗) = R(AB), (2.26)
R(B∗A∗AB) = R(B∗A∗A) = R(B∗A∗), (2.27)
R(ABB†A†AB) = R(ABB†A†) = R(AB), (2.28)
R(B†A†ABB†A†) = R(B†A†AB) = R(B†A†) = R(B†A∗) (2.29)

hold, and the following rank equalities hold

r(AA∗ABB∗B) = r(A∗ABB∗) = r(ABB∗A∗) = r(B∗A∗AB) = r(AB), (2.30)
r(B†A†) = r(B∗A†) = r(B†A∗) = r(AB), (2.31)
r((A†)∗(B†)∗) = r((A†)∗B) = r(A(B†)∗) = r(AB), (2.32)
r(BB†A†A) = r(BB†A∗A) = r(BB∗A†A) = r(AB), (2.33)
r(A†ABB†) = r(A†ABB∗) = r(A∗ABB†) = r(AB), (2.34)
r(ABB†A†) = r(ABB†A∗) = r(ABB∗A†) = r(AB), (2.35)
r(B†A†AB) = r(B†A∗AB) = r(B∗A†AB) = r(AB), (2.36)
r(ABB†A†AB) = r(ABB†A∗AB) = r(ABB∗A†AB) = r(AB), (2.37)
r((BB∗)†(A∗A)†)) = r((BB∗)†(A∗A)) = r(BB∗)(A∗A)†)) = r(AB), (2.38)
r(B†(A∗A)†) = r(B†A∗A) = r((B∗(A∗A)†)) = r(AB), (2.39)
r((BB∗)†A†) = r((BB∗)†A∗) = r((BB∗A†) = r(AB), (2.40)
r(B†MA†) = r(B∗MA†) = r(B†MA∗) = r(B∗MA∗), (2.41)
r(BB†MA†A) = r(BB∗MA†) = r(BB†MA∗A) = r(BB∗MA∗A) = r(B∗MA∗). (2.42)

Lemma 2.8. Let A ∈ Cm×n, B ∈ Cp×n, C ∈ Cm×q, and P, Q ∈ Cs×t. Then the following results hold.

(a) AB∗ = 0⇔ BA∗ = 0⇔ AB† = 0⇔ BA† = 0.

(b) A∗C = 0⇔ C∗A = 0⇔ A†C = 0⇔ C†A = 0.

(c) PQ∗ = 0 and Q∗P = 0⇒ (P ± Q)† = P† ± Q†.

Lemma 2.9. Let M ∈ Cm×n and assume that P ∈ Cm×m and Q ∈ Cn×n are two orthogonal projectors,
and denote P̂ = Im − P and Q̂ = In − Q. Then the following matrix equalities hold

(PMQ̂)† + (P̂MQ)† = (PM + MQ − 2PMQ)†, (2.43)
(PMQ̂)† − (P̂MQ)† = (PM − MQ)†, (2.44)
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(P̂MQ̂)† + (PMQ)† = (M − PM − MQ + 2PMQ)†, (2.45)
(P̂MQ̂)† − (PMQ)† = (M − PM − MQ)†, (2.46)

and the following matrix equalities hold

Q(PM + MQ − 2PMQ)†P = 0, (2.47)
Q(PM − MQ)†P = 0, (2.48)
(PMQ)† = Q(M − PM − MQ + 2PMQ)†P, (2.49)
(PMQ)† = Q(PM + MQ − M)†P. (2.50)

Proof. It is easy to verify that

PMQ̂ + P̂MQ = PM + MQ − 2PMQ, (2.51)
PMQ̂ − P̂MQ = PM − MQ, (2.52)
P̂MQ̂ + PMQ = M − PM − MQ + 2PMQ, (2.53)
P̂MQ̂ − PMQ = M − PM − MQ (2.54)

hold by expanding the left-hand sides of (2.51)–(2.54). In these cases, applying Lemma 2.8 (c) to both
sides of (2.51)–(2.54) yields (2.43)–(2.46). Pre- and post-multiplying both sides of (2.43)–(2.46) with
Q and P, respectively, and simplifying lead to (2.47)–(2.50). �

Finally, we give a summary of known solutions (with some modifications) established in [27] to the
two nested ROLs in (1.4) and (1.5), which will directly be used to derive the main results in Section 3.

Lemma 2.10. Let A ∈ Cm×n and B ∈ Cn×p. Then the following 62 statements are equivalent:

〈1〉 {(AB)(1,2,3)} 3 (A†AB)†A†.
〈2〉 {(AB)(1,2,3)} 3 (A∗AB)†A∗.
〈3〉 {(A†AB)(1,2,3)} 3 (AB)†A.
〈4〉 {(A∗AB)(1,2,3)} 3 (AB)†(A†)∗.
〈5〉 {(AB)(1,2,3)} 3 B†(A†ABB†)†A†.
〈6〉 {(AB)(1,2,3)} 3 B∗(A∗ABB∗)†A∗.
〈7〉 {(A†ABB†)(1,2,3)} 3 B(AB)†A.
〈8〉 {(A∗ABB∗)(1,2,3)} 3 (B†)∗(AB)†(A†)∗.
〈9〉 (AB)† = (A†AB)†A†.
〈10〉 AB = ((A†AB)†A†)†.
〈11〉 AB = A((AB)†A)†.
〈12〉 (AB)†A = (A†AB)†.
〈13〉 B(AB)†A = B(A†AB)†.
〈14〉 AB(AB)† = AB(A†AB)†A†.
〈15〉 AB(AB)†A = AB(A†AB)†.
〈16〉 B†A†AB(AB)† = B†A†.
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〈17〉 (B†A†)†B†A†AB = AB.
〈18〉 AB(AB)† = (B†A†)†B†A†.
〈19〉 (AB)† = (A∗AB)†A∗.
〈20〉 AB = ((A∗AB)†A∗)†.
〈21〉 AB = (A†)∗((AB)†(A†)∗)†.
〈22〉 (AB)†(A†)∗ = (A∗AB)†.
〈23〉 B(AB)†(A†)∗ = B(A∗AB)†.
〈24〉 AB(AB)† = AB(A∗AB)†A∗.
〈25〉 AB(AB)†(A†)∗ = AB(A∗AB)†.
〈26〉 (ABB†A†)† = (B†A†)†(AB)†.
〈27〉 AB(A†AB)†A† is an orthogonal projector.
〈28〉 AB(A∗AB)†A∗ is an orthogonal projector.
〈29〉 A†(AB)(AB)†A is an orthogonal projector.
〈30〉 A(A†ABB†)†A† is an orthogonal projector.
〈31〉 ABB∗(A∗ABB∗)†A∗ is an orthogonal projector.
〈32〉 AB(AB)† and AA∗ commute.
〈33〉 AB(A†AB)†A† and AA∗ commute.
〈34〉 AB(A∗AB)†A∗ and AA∗ commute.
〈35〉 A†(AB)(AB)†A and A∗A commute.
〈36〉 ABB†A† is EP.
〈37〉 {((A†)∗B)(1,2,3)} 3 (A†AB)†A∗.
〈38〉 {((A†)∗B)(1,2,3)} 3 ((A∗A)†B)†A†.
〈39〉 {(A†AB)(1,2,3)} 3 ((A†)∗B)†(A†)∗.
〈40〉 {((A∗A)†B)(1,2,3)} 3 ((A†)∗B)†A.
〈41〉 {((A†)∗B)(1,2,3)} 3 B†(A†ABB†)†A∗.
〈42〉 {((A†)∗B)(1,2,3)} 3 B∗((A∗A)†BB∗)†A†.
〈43〉 {(A†ABB†)(1,2,3)} 3 B((A†)∗B)†(A†)∗.
〈44〉 {((A∗A)†BB∗)(1,2,3)} 3 (B†)∗((A†)∗B)†A.
〈45〉 ((A†)∗B)† = (A†AB)†A∗.
〈46〉 ((A†)∗B)† = ((A∗A)†B)†A†.
〈47〉 (A†AB)† = ((A†)∗B)†(A†)∗.
〈48〉 ((A∗A)†B)† = ((A†)∗B)†A.
〈49〉 A(B†A†A)†B†A† is an orthogonal projector.
〈50〉 (A†)∗(B†(A∗A)†)†B†A† is an orthogonal projector.
〈51〉 A†(B†A†)†(B†A†)A is an orthogonal projector.
〈52〉 A(BB†A†A)†A† is an orthogonal projector.
〈53〉 (A†)∗(BB∗)†((A∗A)†(BB∗)†)†A† is an orthogonal projector.
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〈54〉 (B†A†)†(B†A†) and (AA∗)† commute.

〈55〉 A(B†A†A)†B†A† and (AA∗)† commute.

〈56〉 (A†)∗(B†(A∗A)†)†B†A† and (AA∗)† commute.

〈57〉 A†(B†A†)†(B†A†)A and (A∗A)† commute.

〈58〉 R(AA∗AB) = R(AB).

〈59〉 R((A†)∗(B†)∗) = R(AB).

〈60〉 r[AA∗AB, AB] = r(AB).

〈61〉 r[(A†)∗(B†)∗, AB] = r(AB).

〈62〉 r[(A∗AA∗)†B, (A†)∗B] = r((A†)∗B).

Lemma 2.11. Let A ∈ Cm×n and B ∈ Cn×p. Then the following 62 statements are equivalent:

〈1〉 {(AB)(1,2,4)} 3 B†(ABB†)†.

〈2〉 {(AB)(1,2,4)} 3 B∗(ABB∗)†.

〈3〉 {(ABB†)(1,2,4)} 3 B(AB)†.

〈4〉 {(ABB∗)(1,2,4)} 3 (B†)∗(AB)†.

〈5〉 {(AB)(1,2,4)} 3 B†(A†ABB†)†A†.

〈6〉 {(AB)(1,2,4)} 3 B∗(A∗ABB∗)†A∗.

〈7〉 {(A†ABB†)(1,2,4)} 3 B(AB)†A.

〈8〉 {(A∗ABB∗)(1,2,4)} 3 (B†)∗(AB)†(A†)∗.

〈9〉 (AB)† = B†(ABB†)†.

〈10〉 AB = (B†(ABB†)†)†.

〈11〉 AB = (B(AB)†)†B.

〈12〉 B(AB)† = (ABB†)†.

〈13〉 B(AB)†A = (ABB†)†A.

〈14〉 (AB)†AB = B†(ABB†)†AB.

〈15〉 B(AB)†AB = (ABB†)†AB.

〈16〉 (AB)†ABB†A† = B†A†.

〈17〉 ABB†A†(B†A†)† = AB.

〈18〉 (AB)†AB = B†A†(B†A†)†.

〈19〉 (AB)† = B∗(ABB∗)†.

〈20〉 AB = (B∗(ABB∗)†)†.

〈21〉 AB = ((B†)∗(AB)†)†(B†)∗.

〈22〉 (B†)∗(AB)† = (ABB∗)†.

〈23〉 (B†)∗(AB)†A = (ABB∗)†A.

〈24〉 (AB)†AB = B∗(ABB∗)†AB.

〈25〉 (B†)∗(AB)†AB = (ABB∗)†AB.

〈26〉 (B†A†AB)† = (AB)†(B†A†)†.
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〈27〉 B†(ABB†)†AB is an orthogonal projector.

〈28〉 B∗(ABB∗)†AB is an orthogonal projector.

〈29〉 B(AB)†(AB)B† is an orthogonal projector.

〈30〉 B†(A†ABB†)†B is an orthogonal projector.

〈31〉 B∗(A∗ABB∗)†A∗AB is an orthogonal projector.

〈32〉 (AB)†AB and B∗B commute.

〈33〉 B†(ABB†)†AB and B∗B commute.

〈34〉 B∗(ABB∗)†AB and B∗B commute.

〈35〉 B(AB)†(AB)B† and BB∗ commute.

〈36〉 B†A†AB is EP.

〈37〉 {(A(B†)∗)(1,2,4)} 3 B∗(ABB†)†.

〈38〉 (A(B†)∗)(1,2,4) 3 B†(A(BB∗)†)†.

〈39〉 {(ABB†)(1,2,4)} 3 (B†)∗(A(B†)∗)†.

〈40〉 {(A(BB∗)†)(1,2,4)} 3 B(A(B†)∗)†.

〈41〉 {(A(B†)∗)(1,2,4)} 3 B∗(A†ABB†)†A†.

〈42〉 {(A(B†)∗)(1,2,4)} 3 B†(A∗A(BB∗)†)†A∗.

〈43〉 {(A†ABB†)(1,2,4)} 3 (B†)∗(A(B†)∗)†A.

〈44〉 {(A∗A(BB∗)†)(1,2,4)} 3 B(A(B†)∗)†(A†)∗.

〈45〉 (A(B†)∗)† = B∗(ABB†)†.

〈46〉 (A(B†)∗) = B†(A(BB∗)†)†.

〈47〉 (ABB†)† = (B†)∗(A(B†)∗)†.

〈48〉 (A(B†)∗)† = B(A(BB∗)†)†.

〈49〉 B†A†(BB†A†)†B is an orthogonal projector.

〈50〉 B†A†((BB∗)†A†)†(B†)∗ is an orthogonal projector.

〈51〉 B(B†A†)(B†A†)†B† is orthogonal projector.

〈52〉 B†(BB†A†A)†B is an orthogonal projector.

〈53〉 B†((A∗A)†(BB∗)†)†(A∗A)†(B†)∗ is an orthogonal projector.

〈54〉 (B†A†)(B†A†)† and (B∗B)† commute.

〈55〉 B†A†(BB†A†)†B and (B∗B)† commute.

〈56〉 B†A†((BB∗)†A†)†(B†)∗ and (B∗B)† commute.

〈57〉 B(B†A†)(B†A†)†B† and (BB∗)† commute.

〈58〉 R(B∗BB∗A∗) = R(B∗A∗).

〈59〉 R(B†A†) = R(B∗A∗).

〈60〉 r[B∗BB∗A∗, B∗A∗] = r(AB).

〈61〉 r[B†A†, B∗A∗] = r(AB).

〈62〉 r[(BB∗B)†A†, B†A†] = r(B†A†).
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3. Main results I

In this section, we are primarily concerned with the nested ROLs in (1.10)–(1.15). To begin, we
present a group of known results in [26] on ROLs for {1}- and {1, 2}-generalized inverses of matrices
associated with (1.10)–(1.15).

Lemma 3.1. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q.

〈1〉 The following 3 matrix set inclusions always hold

{(ABC)(1)} ⊇ {(A(1)ABC)(1)A(1)}, (3.1)
{(ABC)(1)} ⊇ {C(1)(ABCC(1))(1)}, (3.2)
{(ABC)(1)} ⊇ {C(1)(A(1)ABCC(1))(1)A(1)}. (3.3)

〈2〉 The following 3 matrix set inclusions always hold

{(ABC)(1,2)} ⊇ {(A(1,2)ABC)(1,2)A(1,2)}, (3.4)
{(ABC)(1,2)} ⊇ {C(1,2)(ABCC(1,2))(1,2)}, (3.5)
{(ABC)(1,2)} ⊇ {C(1,2)(A(1,2)ABCC(1,2))(1,2)A(1,2)}. (3.6)

〈3〉 The following 4 results always hold

{(ABC)(1,2)} 3 (A†ABC)†A†, (3.7)
{(ABC)(1,2)} 3 C†(ABCC†)†, (3.8)
{(ABC)(1,2)} 3 C†(A†ABCC†)†A†, (3.9)
{(ABC)(1,2)} 3 C†(ABCC†)†ABC(A†ABC)†A†. (3.10)

〈4〉 The two matrix equalities in (1.13) and (1.14) always hold. In particular, if A†ABC = BC and
ABCC† = AB, then (ABC)† = (BC)†B(AB)†.

The correctness of (3.1)–(3.10) can directly be verified by the definitions of the generalized
inverses and ordinary operations of the given matrices. Given Lemmas 2.10 and 2.11, we are now
ready to establish a wide coverage of necessary and sufficient conditions for (1.10) and (1.11) to hold,
respectively.

Theorem 3.2. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following 62 statements are equivalent:

〈1〉 {(ABC)(1,2,3)} 3 (A†ABC)†A†.
〈2〉 {(ABC)(1,2,3)} 3 (A∗ABC)†A∗.
〈3〉 {(A†ABC)(1,2,3)} 3 (ABC)†A.
〈4〉 {(A∗ABC)(1,2,3)} 3 (ABC)†(A†)∗.
〈5〉 {(ABC)(1,2,3)} 3 (BC)†(A†ABC(BC)†)†A†.
〈6〉 {(ABC)(1,2,3)} 3 (BC)∗(A∗ABC(BC)∗)†A∗.
〈7〉 {(A†ABC(BC)†)(1,2,3)} 3 BC(ABC)†A.
〈8〉 {(A∗ABC(BC)∗)(1,2,3)} 3 ((BC)†)∗(ABC)†(A†)∗.
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〈9〉 (ABC)† = (A†ABC)†A†.
〈10〉 ABC = ((A†ABC)†A†)†.
〈11〉 ABC = A((ABC)†A)†.
〈12〉 (ABC)†A = (A†ABC)†.
〈13〉 BC(ABC)†A = BC(A†ABC)†.
〈14〉 ABC(ABC)† = ABC(A†ABC)†A†.
〈15〉 ABC(ABC)†A = ABC(A†ABC)†.
〈16〉 (BC)†A†ABC(ABC)† = (BC)†A†.
〈17〉 ((BC)†A†)†(BC)†A†ABC = ABC.
〈18〉 ABC(ABC)† = ((BC)†A†)†(BC)†A†.
〈19〉 (ABC)† = (A∗ABC)†A∗.
〈20〉 ABC = ((A∗ABC)†A∗)†.
〈21〉 ABC = (A†)∗((ABC)†(A†)∗)†.
〈22〉 (ABC)†(A†)∗ = (A∗ABC)†.
〈23〉 BC(ABC)†(A†)∗ = BC(A∗ABC)†.
〈24〉 ABC(ABC)† = ABC(A∗ABC)†A∗.
〈25〉 ABC(ABC)†(A†)∗ = ABC(A∗ABC)†.
〈26〉 (ABC(BC)†A†)† = ((BC)†A†)†(ABC)†.
〈27〉 ABC(A†ABC)†A† is an orthogonal projector.
〈28〉 ABC(A∗ABC)†A∗ is an orthogonal projector.
〈29〉 A†(ABC)(ABC)†A is an orthogonal projector.
〈30〉 A(A†ABC(BC)†)†A† is an orthogonal projector.
〈31〉 ABC(BC)∗(A∗ABC(BC)∗)†A∗ is an orthogonal projector.
〈32〉 ABC(ABC)† and AA∗ commute.
〈33〉 ABC(A†ABC)†A† and AA∗ commute.
〈34〉 ABC(A∗ABC)†A∗ and AA∗ commute.
〈35〉 A†(ABC)(ABC)†A and A∗A commute.
〈36〉 ABC(BC)†A† is EP.
〈37〉 {((A†)∗BC)(1,2,3)} 3 (A†ABC)†A∗.
〈38〉 {((A†)∗BC)(1,2,3)} 3 ((A∗A)†BC)†A†.
〈39〉 {(A†ABC)(1,2,3)} 3 ((A†)∗BC)†(A†)∗.
〈40〉 {((A∗A)†BC)(1,2,3)} 3 ((A†)∗BC)†A.
〈41〉 {(((AB)†)∗B†BC)(1,2,3)} 3 (B†BC)†((AB)†ABC(B†BC)†)†(AB)∗.
〈42〉 {((A†)∗BC)(1,2,3)} 3 (BC)∗((A∗A)†BC(BC)∗)†A†.
〈43〉 {(A†ABC(BC)†)(1,2,3)} 3 BC((A†)∗BC)†(A†)∗.
〈44〉 {((A∗A)†BC(BC)∗)(1,2,3)} 3 ((BC)†)∗((A†)∗BC)†A.
〈45〉 ((A†)∗BC)† = (A†ABC)†A∗.
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〈46〉 ((A†)∗BC)† = ((A∗A)†BC)†A†.
〈47〉 (A†ABC)† = ((A†)∗BC)†(A†)∗.
〈48〉 ((A∗A)†BC)† = ((A†)∗BC)†A.
〈49〉 A((BC)†A†A)†(BC)†A† is an orthogonal projector.

〈50〉 (A†)∗((BC)†(A∗A)†)†(BC)†A† is an orthogonal projector.

〈51〉 A†((BC)†A†)†((BC)†A†)A is an orthogonal projector.

〈52〉 A(BC(BC)†A†A)†A† is an orthogonal projector.

〈53〉 (A†)∗(BC(BC)∗)†((A∗A)†(BC(BC)∗)†)†A† is an orthogonal projector.

〈54〉 ((BC)†A†)†((BC)†A†) and (AA∗)† commute.

〈55〉 A((BC)†A†A)†(BC)†A† and (AA∗)† commute.

〈56〉 (A†)∗((BC)†(A∗A)†)†(BC)†A† and (AA∗)† commute.

〈57〉 A†((BC)†A†)†((BC)†A†)A and (A∗A)† commute.

〈58〉 R(AA∗ABC) = R(ABC).
〈59〉 R((A†)∗BC) = R(ABC).
〈60〉 r[AA∗ABC, ABC] = r(ABC).
〈61〉 r[(A†)∗BC, ABC] = r(ABC).
〈62〉 r[(A∗AA∗)†BC, (A†)∗BC] = r((A†)∗BC).

Proof. It follows immediately from replacing B by BC in Lemma 2.10. �

Theorem 3.3. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following 62 statements are equivalent:

〈1〉 {(ABC)(1,2,4)} 3 C†(ABCC†)†.
〈2〉 {(ABC)(1,2,4)} 3 C∗(ABCC∗)†.
〈3〉 {(ABCC†)(1,2,4)} 3 C(ABC)†.
〈4〉 {(ABCC∗)(1,2,4)} 3 (C†)∗(ABC)†.
〈5〉 {(ABC)(1,2,4)} 3 C†((AB)†ABCC†)†(AB)†.
〈6〉 {(ABC)(1,2,4)} 3 C∗((AB)∗ABCC∗)†(AB)∗.
〈7〉 {((AB)†ABCC†)(1,2,4)} 3 C(ABC)†AB.

〈8〉 {(AB)∗ABCC∗)(1,2,4)} 3 (C†)∗(ABC)†((AB)†)∗.
〈9〉 (ABC)† = C†(ABCC†)†.
〈10〉 ABC = (C†(ABCC†)†)†.
〈11〉 ABC = (C(ABC)†)†C.
〈12〉 C(ABC)† = (ABCC†)†.
〈13〉 C(ABC)†AB = (ABCC†)†AB.

〈14〉 (ABC)†ABC = C†(ABCC†)†ABC.

〈15〉 C(ABC)†ABC = (ABCC†)†ABC.

〈16〉 (ABC)†ABCC†(AB)† = C†(AB)†.
〈17〉 ABCC†(AB)†(C†(AB)†)† = ABC.
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〈18〉 (ABC)†ABC = C†(AB)†(C†(AB)†)†.
〈19〉 (ABC)† = C∗(ABCC∗)†.
〈20〉 ABC = (C∗(ABCC∗)†)†.
〈21〉 ABC = ((C†)∗(ABC)†)†(C†)∗.
〈22〉 (C†)∗(ABC)† = (ABCC∗)†.
〈23〉 (C†)∗(ABC)†AB = (ABCC∗)†AB.
〈24〉 (ABC)†ABC = C∗(ABCC∗)†ABC.
〈25〉 (C†)∗(ABC)†ABC = (ABCC∗)†ABC.
〈26〉 (C†(AB)†ABC)† = (ABC)†(C†(AB)†)†.
〈27〉 C†(ABCC†)†ABC is an orthogonal projector.
〈28〉 C∗(ABCC∗)†ABC is an orthogonal projector.
〈29〉 C(ABC)†(ABC)C† is an orthogonal projector.
〈30〉 C†((AB)†ABCC†)†C is an orthogonal projector.
〈31〉 C∗((AB)∗ABCC∗)†(AB)∗ABC is an orthogonal projector.
〈32〉 (ABC)†ABC and C∗C commute.
〈33〉 C†(ABCC†)†ABC and C∗C commute.
〈34〉 C∗(ABCC∗)†ABC and C∗C commute.
〈35〉 C(ABC)†(ABC)C† and CC∗ commute.
〈36〉 C†(AB)†ABC is EP.
〈37〉 {(AB(C†)∗)(1,2,4)} 3 C∗(ABCC†)†.
〈38〉 {(AB(C†)∗)(1,2,4)} 3 C†(AB(CC∗)†)†.
〈39〉 {(ABCC†)(1,2,4)} 3 (C†)∗(AB(C†)∗)†.
〈40〉 {(AB(CC∗)†)(1,2,4)} 3 C(AB(C†)∗)†.
〈41〉 {(AB(C†)∗)(1,2,4)} 3 C∗((AB)†ABCC†)†(AB)†.
〈42〉 {((AB)∗AB(C†)∗)(1,2,4)} 3 C†(AB(CC∗)†)†(AB)∗.
〈43〉 {((AB)†ABCC†)(1,2,4)} 3 (C†)∗(AB(C†)∗)†AB.
〈44〉 {(AB)∗AB(CC∗)†)(1,2,4)} 3 C(AB(C†)∗)†((AB)†)∗.
〈45〉 (AB(C†)∗)† = C∗(ABCC†)†.
〈46〉 (AB(C†)∗) = C†(AB(CC∗)†)†.
〈47〉 (ABCC†)† = (C†)∗(AB(C†)∗)†.
〈48〉 (AB(C†)∗)† = C(AB(CC∗)†)†.
〈49〉 C†(AB)†(CC†(AB)†)†C is an orthogonal projector.
〈50〉 C†(AB)†((CC∗)†(AB)†)†(C†)∗ is an orthogonal projector.
〈51〉 C(C†(AB)†)(C†(AB)†)†C† is an orthogonal projector.
〈52〉 C†(CC†(AB)†AB)†C is an orthogonal projector.
〈53〉 C†(((AB)∗AB)†(CC∗)†)†((AB)∗AB)†(C†)∗ is an orthogonal projector.
〈54〉 (C†(AB)†)(C†(AB)†)† and (C∗C)† commute.
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〈55〉 C†(AB)†(CC†(AB)†)†C and (C∗C)† commute.

〈56〉 C†(AB)†((CC∗)†(AB)†)†(C†)∗ and (C∗C)† commute.

〈57〉 C(C†(AB)†)(C†(AB)†)†C† and (CC∗)† commute.

〈58〉 R(C∗CC∗(AB)∗) = R((ABC)∗).
〈59〉 R(C†(AB)†) = R(C∗(AB)∗).
〈60〉 r[(ABCC∗C)∗, (ABC)∗] = r(ABC).
〈61〉 r[C†(AB)†, C∗(AB)∗] = r(ABC).
〈62〉 r[(CC∗C)†(AB)†, C†(AB)†] = r(C†(AB)†).

Proof. It follows immediately from replacing A by AB and B by C in Lemma 2.11. �

We next derive a family of statements that are equivalent to the nested ROL in (1.12).

Theorem 3.4. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following 137 statements are
equivalent:

〈1〉 (ABC)† = C†(A†ABCC†)†A†.
〈2〉 C(ABC)†A = (A†ABCC†)†.
〈3〉 A(C(ABC)†A)†C = ABC.

〈4〉 C(A(C(ABC)†A)†C)†A = C(ABC)†A.
〈5〉 A†ABCC† = A†(C†(A†ABCC†)†A†)†C†.
〈6〉 (ABC)† = C†(ABCC†)†ABC(A†ABC)†A†.
〈7〉 C(ABC)†A = (ABCC†)†ABC(A†ABC)†.
〈8〉 {(ABC)(1,2,3)} 3 (A†ABC)†A† and {(ABC)(1,2,4)} 3 C†(ABCC†)†.
〈9〉 {(ABC)(1,2,3)} 3 (A∗ABC)†A∗ and {(ABC)(1,2,4)} 3 C∗(ABCC∗)†.
〈10〉 {(A†ABC)(1,2,3)} 3 (ABC)†A and {(ABCC†)(1,2,4)} 3 C(ABC)†.
〈11〉 {(A∗ABC)(1,2,3)} 3 (ABC)†(A†)∗ and {(ABCC∗)(1,2,4)} 3 (C†)∗(ABC)†.
〈12〉 {(ABC)(1,2,3)} 3 (BC)†(A†ABC(BC)†)†A† and {(ABC)(1,2,4)} 3 C†((AB)†ABCC†)†(AB)†.
〈13〉 {(ABC)(1,2,3)} 3 (BC)∗(A∗ABC(BC)∗)†A∗ and {(ABC)(1,2,4)} 3 C∗((AB)∗ABCC∗)†(AB)∗.
〈14〉 {(A†ABC(BC)†)(1,2,3)} 3 BC(ABC)†A and {((AB)†ABCC†)(1,2,4)} 3 C(ABC)†AB.

〈15〉 {(A∗ABC(BC)∗)(1,2,3)} 3 ((BC)†)∗(ABC)†(A†)∗ and {(A∗ABCC∗)(1,2,4)} 3 (C†)∗(ABC)†((AB)†)∗.
〈16〉 (ABC)† = (A†ABC)†A† and (ABC)† = C†(ABCC†)†.
〈17〉 (A†ABC)† = (ABC)†A and (ABCC†)† = C(ABC)†.
〈18〉 ABC(ABC)† = ABC(A†ABC)†A† and (ABC)†ABC = C†(ABCC†)†ABC.

〈19〉 ABC(ABC)†A = ABC(A†ABC)† and C(ABC)†ABC = (ABCC†)†ABC.

〈20〉 (BC)†A†ABC(ABC)† = (BC)†A† and (ABC)†ABCC†(AB)† = C†(AB)†.
〈21〉 ((BC)†A†)†(BC)†A†ABC = ABC and ABCC†(AB)†(C†(AB)†)† = ABC.

〈22〉 ABC(ABC)† = ((BC)†A†)†(BC)†A† and (ABC)†ABC = C†(AB)†(C†(AB)†)†.
〈23〉 (A†ABCC†)† = (ABCC†)†A and (A†ABCC†)† = C(A†ABC)†.
〈24〉 (ABCC†)† = (A†ABCC†)†A† and (A†ABC)† = C†(A†ABCC†)†.
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〈25〉 (A†ABC)†A† = C†(ABCC†)†.
〈26〉 (ABCC†)†A = C(A†ABC)†.
〈27〉 ((A†)∗B(C†)∗)† = C∗(A†ABCC†)†A∗.
〈28〉 (C†)∗((A†)∗B(C†)∗)†(A†)∗ = (A†ABCC†)†.
〈29〉 (A†)∗((C†)∗((A†)∗B(C†)∗)†(A†)∗)†(C†)∗ = (A†)∗B(C†)∗.
〈30〉 (C†)∗((A†)∗((C†)∗(ABC)†(A†)∗)†(C†)∗)†(A†)∗ = (C†)∗((A†)∗B(C†)∗)†(A†)∗.
〈31〉 A†ABCC† = A∗(C∗(A†ABCC†)†A∗)†C∗.
〈32〉 ((A†)∗B(C†)∗)† = C∗((A†)∗BCC†)†(A†)∗B(C†)∗(A†AB(C†)∗)†A∗.
〈33〉 (C†)∗((A†)∗B(C†)∗)†(A†)∗ = ((A†)∗BCC†)†(A†)∗B(C†)∗(A†AB(C†)∗)†.
〈34〉 ((A†)∗BC)† = (A†ABC)†A∗ and (AB(C†)∗)† = C∗(ABCC†)†.
〈35〉 (A†ABC)† = ((A†)∗BC)†(A†)∗ and (ABCC†)† = (C†)∗(AB(C†)∗)†.
〈36〉 ABC(ABC)† = AB(C†)∗(A†AB(C†)∗)†A† and (ABC)†ABC = C†((A†)∗BCC†)†(A†)∗BC.
〈37〉 ABC(ABC)†A = AB(C†)∗(A†AB(C†)∗)† and C(ABC)†ABC = ((A†)∗BCC†)†(A†)∗BC.
〈38〉 ABC(ABC)† = ((B(C†)∗)†A†)†(B(C†)∗)†A† and (ABC)†ABC = C†((A†)∗B)†(C†((A†)∗B)†)†.
〈39〉 (BC)†A†ABC((A†)∗BC)† = (BC)†A∗ and (AB(C†)∗)†ABCC†(AB)† = C∗(AB)†.
〈40〉 ((BC)†A∗)†(BC)†A†ABC = (A†)∗BC and ABCC†(AB)†(C∗(AB)†)† = AB(C†)∗.
〈41〉 (A†ABCC†)† = ((A†)∗BCC†)†(A†)∗ and (A†ABCC†)† = (C†)∗(A†AB(C†)∗)†.
〈42〉 ((A†)∗BCC†)† = (A†ABCC†)†A∗ and (A†AB(C†)∗)† = C∗(A†ABCC†)†.
〈43〉 (A†AB(C†)∗)†A∗ = C∗((A†)∗BCC†)†.
〈44〉 ((A†)∗BCC†)†(A†)∗ = (C†)∗(A†AB(C†)∗)†.
〈45〉 C∗((A†)∗BCC†)† = (A†AB(C†)∗)†A∗.
〈46〉 (ABC)† = C∗(A∗ABCC∗)†A∗.
〈47〉 (A∗ABCC∗)† = (C†)∗(ABC)†(A†)∗.
〈48〉 (ABC)† = C∗(ABCC∗)†ABC(A∗ABC)†A∗.
〈49〉 (C†)∗(ABC)†(A†)∗ = (ABCC∗)†ABC(A∗ABC)†.
〈50〉 (ABC)† = (A∗ABC)†A∗ and (ABC)† = C∗(ABCC∗)†.
〈51〉 (A∗ABC)† = (ABC)†(A†)∗ and (ABCC∗)† = (C†)∗(ABC)†.
〈52〉 ((A†)∗BC)† = ((A∗A)†BC)†A† and (AB(C†)∗)† = C†(AB(CC∗)†)†.
〈53〉 ((A∗A)†BC)† = ((A†)∗BC)†A and (AB(CC∗)†)† = C(AB(C†)∗)†.
〈54〉 ((A†)∗B(C†)∗)† = ((A∗A)†B(C†)∗)†A† and ((A†)∗B(C†)∗)† = C†((A†)∗B(CC∗)†)†.
〈55〉 ((A∗A)†B(C†)∗)† = ((A†)∗B(C†)∗)†A and ((A†)∗B(CC∗)†)† = C((A†)∗B(C†)∗)†.
〈56〉 ((A†)∗B(C†)∗)† = C†((A∗A)†B(CC∗)†)†A†.
〈57〉 ((A∗A)†B(CC∗)†)† = C((A†)∗B(C†)∗)†A.
〈58〉 (A∗ABCC∗)† = (ABCC∗)†(A†)∗ and (A∗ABCC∗)† = (C†)∗(A∗ABC)†.
〈59〉 (ABCC∗)† = (A∗ABCC∗)†A∗ and (A∗ABC)† = C∗(A∗ABCC∗)†.
〈60〉 (A∗ABC)†A∗ = C∗(ABCC∗)†.
〈61〉 (ABCC∗)†(A†)∗ = (C†)∗(A∗ABC)†.
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〈62〉 (AB(CC∗)†)† = (A∗AB(CC∗)†)†A∗ and ((A∗A)†BC)† = C∗((A∗A)†BCC∗)†.
〈63〉 (A∗AB(CC∗)†)† = (AB(CC∗)†)†(A†)∗ and ((A∗A)†BCC∗)† = (C†)∗((A∗A)†BC)†.
〈64〉 ((A†)∗B(CC∗)†)†A = C((A∗A)†B(C†)∗)†.
〈65〉 ((A∗A)†B(C†)∗)†A† = C†((A†)∗B(CC∗)†)†.
〈66〉 (A∗ABC)† = (AA∗ABC)†A and (ABCC∗)† = C(ABCC∗C)†.
〈67〉 (AA∗ABC)† = (A∗ABC)†A† and (ABCC∗C)† = C†(ABCC∗)†.
〈68〉 ((A∗A)†BC)† = ((A∗AA∗)†BC)†(A†)∗ and (AB(CC∗)†)† = (C†)∗(AB(C∗CC∗)†)†.
〈69〉 ((A∗A)†BC)†A∗ = ((A∗AA∗)†BC)† and C∗(AB(CC∗)†)† = (AB(C∗CC∗)†)†.
〈70〉 ((A∗A)†B(C†)∗)† = ((A∗AA∗)†B(C†)∗)†(A†)∗ and ((A†)∗B(CC∗)†)† = (C†)∗((A†)∗B(C∗CC∗)†)†.
〈71〉 ((A∗AA∗)†B(C†)∗)† = ((A∗A)†B(C†)∗)†A∗ and ((A†)∗B(C∗CC∗)†)† = C∗((A†)∗B(CC∗)†)†.
〈72〉 (A∗ABCC∗)† = C(A∗ABCC∗C)† and (A∗ABCC∗)† = (AA∗ABCC∗)†A.
〈73〉 (A∗ABCC∗C)† = C†(A∗ABCC∗)† and (AA∗ABCC∗)† = (A∗ABCC∗)†A†.
〈74〉 ((A∗A)†BCC∗)† = C((A∗A)†BCC∗C)† and (A∗AB(CC∗)†)† = (AA∗AB(CC∗)†)†A.
〈75〉 ((A∗A)†BCC∗C)† = C†((A∗A)†BCC∗)† and (A∗AB(CC∗)†)†A† = (AA∗AB(CC∗)†)†.
〈76〉 (A∗AB(CC∗)†)† = (C†)∗(A∗AB(C∗CC∗)†)† and ((A∗A)†BCC∗)† = ((A∗AA∗)†BCC∗)†(A†)∗.
〈77〉 (A∗AB(C∗CC∗)†)† = C∗(A∗AB(CC∗)†)† and (AA∗AB(CC∗)†)† = (A∗AB(CC∗)†)†A∗.
〈78〉 ((A∗A)†B(CC∗)†)† = (C†)∗((A∗A)†B(C∗CC∗)†)† and

((A∗A)†B(CC∗)†)† = ((A∗AA∗)†B(CC∗)†)†(A†)∗.
〈79〉 ((A∗A)†B(C∗CC∗)†)† = C∗((A∗A)†B(CC∗)†)† and ((A∗AA∗)†B(CC∗)†)† = ((A∗A)†B(CC∗)†)†A∗.
〈80〉 C(A∗ABCC∗C)† = (AA∗ABCC∗)†A.
〈81〉 (A∗ABCC∗C)†A† = C†(AA∗ABCC∗)†.
〈82〉 C((A∗A)†BCC∗C)† = ((A∗AA∗)†BCC∗)†(A†)∗.
〈83〉 ((A∗A)†BCC∗C)†A∗ = C†((A∗AA∗)†BCC∗)†.
〈84〉 (C†)∗(A∗AB(C∗CC∗)†)† = (AA∗AB(CC∗)†)†A.
〈85〉 (A∗AB(C∗CC∗)†)†A† = C∗(AA∗AB(CC∗)†)†.
〈86〉 ((CC∗C)†B∗(A∗A)†)†C† = A†((CC∗)†B∗(AA∗A)†)†.
〈87〉 A((CC∗C)†B∗(A∗A)†)† = ((CC∗)†B∗(AA∗A)†)†C.
〈88〉 (A∗ABCC∗)† = C(AA∗ABCC∗C)†A.
〈89〉 (AA∗ABCC∗C)† = C†(A∗ABCC∗)†A†.
〈90〉 ((A∗A)†BCC∗)† = C((A∗AA∗)†BCC∗C)†(A†)∗.
〈91〉 ((A∗AA∗)†BCC∗C)† = C†((A∗A)†BCC∗)†A∗.
〈92〉 (A∗AB(CC∗)†)† = (C†)∗(AA∗AB(C∗CC∗)†)†A.
〈93〉 (AA∗AB(C∗CC∗)†)† = C∗(A∗AB(CC∗)†)†(A†)∗.
〈94〉 ((A∗A)†B(CC∗)†)† = (C†)∗((A∗AA∗)†B(C∗CC∗)†)†(A†)∗.
〈95〉 ((A∗AA∗)†B(C∗CC∗)†)† = C∗((A∗A)†B(CC∗)†)†A∗.
〈96〉 (AA∗ABCC∗C)† = ((A∗A)2BCC∗C)†A∗ and (AA∗ABCC∗C)† = C∗(AA∗AB(CC∗)2)†.
〈97〉 ((A∗A)2BCC∗C)† = (AA∗ABCC∗C)†(A†)∗ and (AA∗AB(CC∗)2)† = (C†)∗(AA∗ABCC∗C)†.
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〈98〉 ((A∗A)2BCC∗C)†A∗ = C∗(AA∗AB(CC∗)2)†.

〈99〉 (AA∗ABCC∗C)†(A†)∗ = (C†)∗(AA∗ABCC∗C)†.

〈100〉 (AA∗ABCC∗C)† = C∗((A∗A)2B(CC∗)2)†A∗.

〈101〉 ((A∗A)2B(CC∗)2)† = (C†)∗(AA∗ABCC∗C)†(A†)∗.

〈102〉 (CC†B∗A†A)† = (C†B∗A†A)†C† and (CC†B∗A†A)† = A†(CC†B∗A†)†.

〈103〉 (C†B∗A†A)† = (CC†B∗A†A)†C and (CC†B∗A†)† = A(CC†B∗A†A)†.

〈104〉 (A∗ABCC†)† = C(A∗ABC)† and (A†ABCC∗)† = (ABCC∗)†A.

〈105〉 (A∗ABC)† = C†(A∗ABCC†)† and (ABCC∗)† = (A†ABCC∗)†A†.

〈106〉 (C†B∗(A∗A)†)† = ((CC∗)†B∗(A∗A)†)†(C†)∗ and ((CC∗)†B∗A†)† = (A†)∗((CC∗)†B∗(A∗A)†)†.

〈107〉 ((A∗A)†B(C†)∗)† = C†((A∗A)†B(CC∗)†)† and ((A†)∗B(CC∗)†)† = ((A∗A)†B(CC∗)†)†A†.

〈108〉 ((A∗A)†B(CC∗)†)† = C((A∗A)†B(C†)∗)† and ((A∗A)†B(CC∗)†)† = ((A†)∗B(CC∗)†)†A.

〈109〉 (ABC(BC)†A†)† = ((BC)†A†)†(ABC)† and (C†(AB)†ABC)† = (ABC)†(C†(AB)†)†.

〈110〉 ABC(A†ABC)†A† and C†(ABCC†)†ABC are orthogonal projectors.

〈111〉 ABC(A∗ABC)†A∗ and C∗(ABCC∗)†ABC are orthogonal projectors.

〈112〉 A†(ABC)(ABC)†A and C(ABC)†(ABC)C† orthogonal projectors.

〈113〉 ABC(ABC)† and AA∗ commute, and (ABC)†ABC and C∗C commute.

〈114〉 ABC(A†ABC)†A† and AA∗ commute, and C†(ABCC†)†ABC and C∗C commute.

〈115〉 ABC(A∗ABC)†A∗ and AA∗ commute, and C∗(ABCC∗)†ABC and C∗C commute.

〈116〉 A†(ABC)(ABC)†A and A∗A commute, and C(ABC)†(ABC)C† and CC∗ commute.

〈117〉 A((BC)†A†A)†(BC)†A† and C†(AB)†(CC†(AB)†)†C are orthogonal projectors.

〈118〉 (A†)∗((BC)†(A∗A)†)†(BC)†A† and C†(AB)†((CC∗)†(AB)†)†(C†)∗ are orthogonal projectors.

〈119〉 A†((BC)†A†)†((BC)†A†)A and C(C†(AB)†)(C†(AB)†)†C† are orthogonal projectors.

〈120〉 ((BC)†A†)†((BC)†A†) and (AA∗)† commute, and (C†(AB)†)(C†(AB)†)† and (C∗C)† commute.

〈121〉 A((BC)†A†A)†(BC)†A† and (AA∗)† commute, and C†(AB)†(CC†(AB)†)†C and (C∗C)† commute.

〈122〉 (A†)∗((BC)†(A∗A)†)†(BC)†A† and (AA∗)† commute, and C†(AB)†((CC∗)†(AB)†)†(C†)∗ and
(C∗C)† commute.

〈123〉 A†((BC)†A†)†((BC)†A†)A and (A∗A)† commute, and C(C†(AB)†)(C†(AB)†)†C† and (CC∗)†

commute.

〈124〉 ABC(BC)†A† and C†(AB)†ABC are EP.

〈125〉 {((A†)∗BC)(1,2,3)} 3 (A†ABC)†A∗ and {(AB(C†)∗)(1,2,4)} 3 C∗(ABCC†)†.

〈126〉 {((A†)∗BC)(1,2,3)} 3 ((A∗A)†BC)†A† and {(AB(C†)∗)(1,2,4)} 3 C†(AB(CC∗)†)†.

〈127〉 {(A†ABC)(1,2,3)} 3 ((A†)∗BC)†(A†)∗ and {(ABCC†)(1,2,4)} 3 (C†)∗(AB(C†)∗)†.

〈128〉 {((A∗A)†BC)(1,2,3)} 3 ((A†)∗BC)†A and {(AB(CC∗)†)(1,2,4)} 3 C(AB(C†)∗)†.

〈129〉 {((A†)∗BC)(1,2,3)} 3 (BC)†(A†ABC(BC)†)†A∗ and {(AB(C†)∗)(1,2,4)} 3 C∗((AB)†ABCC†)†(AB)†.

〈130〉 {((A†)∗BC)(1,2,3)} 3 (BC)∗((A∗A)†BC(BC)∗)†A† and {(AB(C†)∗)(1,2,4)} 3 C†(A∗AB(CC∗)†)†(AB)∗.

〈131〉 {(A†ABC(BC)†)(1,2,3)} 3 BC((A†)∗BC)†(A†)∗ and {((AB)†ABCC†)(1,2,4)} 3 (C†)∗(AB(C†)∗)†AB.
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〈132〉 {((A∗A)†BC(BC)∗)(1,2,3)} 3 ((BC)†)∗((A†)∗BC)†A
and {((AB)∗AB(CC∗)†)(1,2,4)} 3 C(AB(C†)∗)†((AB)†)∗.

〈133〉 (AA∗ABC)(AA∗ABC)† = (ABC)(ABC)† and (ABCC∗C)†(ABCC∗C) = (ABC)†(ABC).

〈134〉 R((ABC)†) = R(C†(A†ABCC†)†A†) and R(((ABC)†)∗) = R((C†(A†ABCC†)†A†)∗).

〈135〉 R(AA∗ABC) = R(ABC) and R((ABCC∗C)∗) = R((ABC)∗).

〈136〉 r[AA∗ABC, ABC] = r[(ABCC∗C)∗, (ABC)∗] = r(ABC).

〈137〉 r[(A∗AA∗)†BC, (A†)∗BC] = r((A†)∗BC) and r[(CC∗C)†(AB)∗, C†(AB)∗] = r(C†(AB)∗).

Proof. It is easy to verify by the definition of Moore–Penrose generalized inverse and (3.9) that the two
facts (ABC)† ∈ {(ABC)(2)} and C†(A†ABCC†)†A† ∈ {(ABC)(2)} hold. In this case, applying (2.12) to
(ABC)† and C†(A†ABCC†)†A† leads to the equivalence of 〈1〉 and 〈134〉. Furthermore, applying (2.11)
to the difference (ABC)† −C†(A†ABCC†)†A† and simplifying by (2.13) and Lemma 2.7, we obtain the
following rank equalities

r((ABC)† −C†(A†ABCC†)†A†)

= r
[

(ABC)†

C†(A†ABCC†)†A†

]
+ r[(ABC)†, C†(A†ABCC†)†A†] − r((ABC)†) − r(C†(A†ABCC†)†A†)

= r
[

(ABC)∗

(A†ABCC†)∗A†

]
+ r[(ABC)∗, C†(A†ABCC†)∗] − r((ABC)†) − r(A†ABCC†)

= r
[
(ABC)∗

C∗B∗A†

]
+ r[(ABC)∗, C†B∗A∗] − 2r(ABC)

= r
[
(ABC)∗AA∗

C∗B∗A∗

]
+ r[C∗C(ABC)∗, C∗B∗A∗] − 2r(ABC)

= r
[

ABC
ABCC∗C

]
+ r[ABC, AA∗ABC] − 2r(ABC). (3.11)

Setting all sides of (3.11) equal to zero and noticing that r
[

ABC
ABCC∗C

]
≥ r(ABC) and

r[ABC, AA∗ABC] ≥ r(ABC) leads to

r
[

ABC
ABCC∗C

]
= r[ABC, AA∗ABC] = r(AA∗ABC) = r(ABCC∗C) = r(ABC), thus establishing the

equivalences of 〈1〉, 〈135〉, and 〈136〉 by Lemma 2.2.
The equivalence of 〈136〉 and 〈137〉 follows from Theorem 3.2 〈61〉 and 〈62〉 and Theorem 3.3 〈61〉

and 〈62〉.
Pre- and post-multiplying the equality in 〈1〉 with C and A, respectively, yield the equality in 〈2〉.

Conversely, pre- and post-multiplying the equality in 〈2〉 with C† and A†, respectively, and simplifying
yield the equality in 〈1〉.

We first take the Moore–Penrose generalized inverses of both sides of the equality in 〈2〉 to yield
(C(ABC)†A)† = A†ABCC†. We then pre- and post-multiplying the equality with A and C, respectively,
to obtain the equality in 〈3〉. Conversely, pre- and post-multiplying the equality in 〈3〉 with A† and C†,
respectively, and simplifying yield (C(ABC)†A)† = A†ABCC†, which is equivalent to 〈2〉 by taking the
Moore–Penrose generalized inverses of both sides of the equality.
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Result 〈3〉 obviously implies 〈4〉 by substitution. Conversely, pre- and post-multiplying the equality
in 〈4〉 with C† and A†, respectively, and simplifying yield the equality in 〈3〉.

Taking the Moore–Penrose generalized inverses of both sides of the equality in 〈1〉, and then pre-
and post-multiplying the equality with A† and C†, respectively, we obtain the equality in 〈5〉.
Conversely, pre- and post-multiplying the equality in 〈5〉 with A and C, respectively, and then taking
the Moore–Penrose generalized inverses of both sides of the equality, we obtain 〈1〉.

Notice by (3.10) that C†(ABCC†)†ABC(A†ABC)†A† ∈ {(ABC)(2)} holds. Then applying (2.11) to
the difference (ABC)† − C†(ABCC†)†ABC(A†ABC)†A† and simplifying by (2.13) and Lemma 2.7, we
obtain

r((ABC)† −C†(ABCC†)†ABC(A†ABC)†A†)

= r
[

(ABC)†

C†(ABCC†)†ABC(A†ABC)†A†

]
+ r[(ABC)†, C†(ABCC†)†ABC(A†ABC)†A†]

− r((ABC)†) − r(C†(ABCC†)†ABC(A†ABC)†A†)

= r
[

(ABC)∗

(A†ABC)∗A†

]
+ r[(ABC)∗, C†(ABCC†)∗] − 2r(ABC)

= r
[

(ABC)∗

(BC)∗A†

]
+ r[(ABC)∗, C†(AB)∗] − 2r(ABC)

= r
[

ABC
ABCC∗C

]
+ r[ABC, AA∗ABC] − 2r(ABC). (3.12)

Setting all sides of (3.12) equal to zero leads to the equivalence of 〈6〉 and 〈136〉.
Pre- and post-multiplying the equality in 〈6〉 with A and C, respectively, and simplifying we obtain

the equality in 〈7〉. Conversely, pre- and post-multiplying the equality in 〈7〉 with A† and C†,
respectively, we obtain 〈6〉.

Combining Theorem 3.2 〈1〉–〈8〉 and 〈60〉 with Theorem 3.3 〈1〉–〈8〉 and 〈60〉 leads to the
equivalences of 〈8〉–〈16〉 and 〈136〉.

Combining Theorem 3.2 〈13〉–〈18〉 and 〈60〉 with Theorem 3.3 〈13〉–〈18〉 and 〈60〉 leads to the
equivalences of 〈17〉–〈22〉 and 〈136〉.

It is easy to verify that (ABCC†)†A ∈ {(A†ABCC†)(1,2)} and C(A†ABC)† ∈ {(A†ABCC†)(1,2)} hold.
In this case, applying (2.11) to the two differences (A†ABCC†)† − (ABCC†)†A and (A†ABCC†)† −
C(A†ABC)† and simplifying by (2.13) and Lemma 2.7 yield

r((A†ABCC†)† − (ABCC†)†A)

= r
[
(A†ABCC†)†

(ABCC†)†A

]
+ r[(A†ABCC†)†, (ABCC†)†A] − r((A†ABCC†)†) − r((ABCC†)†A)

= r
[
(A†ABCC†)∗

(ABCC†)∗A

]
+ r[(A†ABCC†)∗, (ABCC†)∗] − 2r(ABC)

= r
[
A†ABCC†

ABCC†

]
+ r[A†ABCC†, A∗ABCC†] − 2r(ABC)

= r[ABC, AA∗ABC] − r(ABC), (3.13)

and
r((A†ABCC†)† −C(A†ABC)†) = r[C∗C(ABC)∗, (ABC)∗] − r(ABC). (3.14)
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Setting all sides of (3.13) and (3.14) equal to zero leads to the equivalence of 〈23〉 and 〈136〉.
Post- and pre-multiplying the two equalities in 〈20〉 with A† and C†, respectively, and simplifying

yield the two equalities in 〈24〉. Conversely, post- and pre-multiplying the two equalities in 〈24〉 with
A and C, respectively, and simplifying yield the two equalities in 〈23〉.

Notice by (3.7) and (3.8) that (A†ABC)†A† ∈ {(ABC)(2)} and C†(ABCC†)† ∈ {(ABC)(2)} hold. Hence
applying (2.11) to (A†ABC)†A† −C†(ABCC†)† and simplifying by (2.13) and Lemma 2.7 yield

r((A†ABC)†A† −C†(ABCC†)†)

= r
[
(A†ABC)†A†

C†(ABCC†)†

]
+ r[(A†ABC)†A†, C†(ABCC†)†] − r((A†ABC)†A†) − r(C†(ABCC†)†)

= r
[
(A†ABC)∗A†

(ABCC†)†

]
+ r[(A†ABC)†, C†(ABCC†)∗] − 2r(ABC)

= r
[

(BC)∗A†

(ABCC†)∗

]
+ r[(A†ABC)∗, C†(AB)∗] − 2r(ABC)

= r
[

(BC)∗A†

CC†(AB)∗

]
+ r[(BC)∗A†A, C†(AB)∗] − 2r(ABC)

= r
[
(BC)∗A†

C∗(AB)∗

]
+ r[(BC)∗A∗, C†(AB)∗] − 2r(ABC)

= r
[

ABC
ABCC∗C

]
+ r[ABC, AA∗ABC] − 2r(ABC). (3.15)

Setting all sides of (3.15) equal to zero leads to the equivalence of 〈25〉 and 〈136〉.
Post- and pre-multiplying the equality in 〈25〉 with A and C, respectively, yield the equality in 〈26〉.

Conversely, post- and pre-multiplying the equality in 〈26〉with A† and C†, respectively, and simplifying
yield the equality in 〈25〉.

Replacing A and C by (A†)∗ and (C†)∗, respectively, in 〈1〉–〈7〉 and 〈16〉–〈26〉 leads to the
equivalences of these results and 〈27〉–〈45〉 through 〈136〉 and 〈137〉.

It is easy to verify by the definition of Moore–Penrose generalized inverse that
C∗(A∗ABCC∗)†A∗ ∈ {(ABC)(2)} holds. In this case, applying (2.11) to the difference
(ABC)† −C∗(A∗ABCC∗)†A∗ and simplifying by (2.13) and Lemma 2.7, we obtain

r((ABC)† −C∗(A∗ABCC∗)†A∗)

= r
[

(ABC)†

C∗(A∗ABCC∗)†A∗

]
+ r[(ABC)†, C∗(A∗ABCC∗)†A∗] − r((ABC)†) − r(C∗(A∗ABCC∗)†A∗)

= r
[

(ABC)∗

C∗(A∗ABCC∗)∗

]
+ r[(ABC)∗, C∗(A∗ABCC∗)∗] − 2r(ABC)

= r
[

ABC
ABCC∗C

]
+ r[ABC, AA∗ABC] − 2r(ABC). (3.16)

Setting all sides of (3.16) equal to zero leads to the equivalence of 〈46〉 and 〈136〉.
Pre- and post-multiplying the equality in 〈46〉 with (C†)∗ and (A†)∗, respectively, and simplifying

yield the equality in 〈47〉. Conversely, pre- and post-multiplying the equality in 〈47〉 with C† and A†,
respectively, and simplifying yield the equality in 〈46〉.
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It is easy to verify by the definition of Moore–Penrose generalized inverse that
C∗(ABCC∗)†ABC(A∗ABC)†A∗ ∈ {(ABC)(2)} holds. Then applying (2.11) to the difference
(ABC)† −C∗(ABCC∗)†ABC(A∗ABC)†A∗ and simplifying by (2.13) and Lemma 2.7, we obtain

r((ABC)† −C∗(ABCC∗)†ABC(A∗ABC)†A∗)

= r
[

(ABC)†

C∗(ABCC∗)†ABC(A∗ABC)†A∗

]
+ r[(ABC)†, C∗(ABCC∗)†ABC(A∗ABC)†A∗]

− r((ABC)†) − r(C∗(ABCC∗)†ABC(A∗ABC)†A∗)

= r
[

(ABC)∗

C∗(ABCC∗)†ABC(A∗ABC)†A∗

]
+ r[(ABC)∗, C∗(ABCC∗)†ABC(A∗ABC)†A∗] − 2r(ABC)

= r
[

(ABC)∗

C∗(ABCC∗)∗

]
+ r[(ABC)∗, C∗(ABCC∗)∗] − 2r(ABC)

= r
[

ABC
ABCC∗C

]
+ r[ABC, AA∗ABC] − 2r(ABC). (3.17)

Setting all sides of (3.17) equal to zero leads to the equivalence of 〈48〉 and 〈136〉.
Pre- and post-multiplying the equality in 〈48〉 with (C†)∗ and (A†)∗, respectively, and simplifying

yield the equality in 〈49〉. Conversely, pre- and post-multiplying the equality in 〈49〉 with C† and A†,
respectively, and simplifying yield the equality in 〈48〉.

The equivalence of 〈1〉 and 〈50〉 follows from combining Theorem 3.2 〈1〉 and 〈19〉 and Theorem
3.3 〈1〉 and 〈19〉.

Post- and pre-multiplying the equality in 〈50〉 with (A†)∗ and (C†)∗, respectively, and simplifying
yield the equality in 〈51〉. Conversely, post- and pre-multiplying the equality in 〈51〉 with ∗ and C∗,
respectively, and simplifying yield the equality in 〈50〉.

Replacing A and C with (A†)∗ and (C†)∗ in 〈50〉 and 〈51〉, respectively, and simplifying yield the
equivalences 〈1〉 with 〈52〉 and 〈53〉 through equivalence of 〈136〉 and 〈137〉.

Replacing A and C with (A†)∗ and (C†)∗ in 〈50〉 and 〈51〉, simultaneously, and simplifying yield the
equivalences 〈1〉 with 〈54〉 and 〈55〉 through equivalence of 〈136〉 and 〈137〉.

Replacing A and C with (A†)∗ and (C†)∗ in 〈46〉 and 〈47〉, simultaneously, and simplifying yield the
equivalences 〈1〉 with 〈56〉 and 〈57〉 through equivalence of 〈136〉 and 〈137〉.

It is easy to verify that (ABCC∗)†(A†)∗ ∈ {(A∗ABCC∗)(2)} and (C†)∗(A∗ABC)† ∈ {(A∗ABCC∗)(2)}

hold. In this case, applying (2.11) to the difference (A∗ABCC∗)† − (ABCC∗)†(A†)∗ and (A∗ABCC∗)† −
(C†)∗(A∗ABC)† and simplifying by (2.13) and Lemma 2.7 yields

r((A∗ABCC∗)† − (ABCC∗)†(A†)∗)

= r
[

(A∗ABCC∗)†

(ABCC∗)†(A†)∗

]
+ r[(A∗ABCC∗)†, (ABCC∗)†(A†)∗] − r((A∗ABCC∗)†) − r((ABCC∗)†(A†)∗)

= r
[

(A∗ABCC∗)∗

(ABCC∗)∗(A†)∗

]
+ r[(A∗ABCC∗)∗, (ABCC∗)∗] − 2r(ABC)

= r
[
(A∗ABCC∗)∗A∗

(BC)∗A∗

]
− r(ABC)

= r[ABC, AA∗ABC] − r(ABC), (3.18)
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and

r((A∗ABCC∗)† − (C†)∗(A∗ABC)†)

= r
[

(A∗ABCC∗)†

(C†)∗(A∗ABC)†

]
+ r[(A∗ABCC∗)†, (C†)∗(A∗ABC)†] − r((A∗ABCC∗)†) − r((C†)∗(A∗ABC)†)

= r
[
(A∗ABCC∗)∗

C(A∗ABC)∗

]
+ r[(A∗ABCC∗)∗, (C†)∗(A∗ABC)∗] − 2r(ABC)

= r[C∗(A∗ABCC∗)∗, (A∗ABC)∗] − r(ABC)

= r
[

ABC
ABCC∗C

]
− r(ABC). (3.19)

Setting all sides of (3.18) and (3.19) equal to zero leads to the equivalence of 〈58〉 and 〈136〉.
Post- and pre-multiplying the equality in 〈58〉 with A∗ and C∗, respectively, and simplifying yield

the equality in 〈59〉. Conversely, post- and pre-multiplying the equality in 〈58〉 with (A†)∗ and (C†)∗,
respectively, and simplifying yield the equality in 〈59〉.

It is easy to verify that (A∗ABC)†A∗ ∈ {(ABC)(2)} and C∗(ABCC∗)† ∈ {(ABC)(2)} hold. Then applying
(2.11), (2.13), and Lemma 2.7,

r((A∗ABC)†A∗ −C∗(ABCC∗)†)

= r
[
(A∗ABC)†A∗

C∗(ABCC∗)†

]
+ r[(A∗ABC)†A∗, C∗(ABCC∗)†] − r((A∗ABC)†A∗) − r(C∗(ABCC∗)†)

= r
[
(A∗ABC)∗A∗

(ABCC∗)∗

]
+ r[(A∗ABC)∗, C∗(ABCC∗)∗] − 2r(ABC)

= r
[

ABC
ABCC∗C

]
+ r[ABC, AA∗ABC] − 2r(ABC). (3.20)

Setting all sides of (3.20) equal to zero leads to the equivalence of 〈60〉 and 〈136〉.
Pre- and post-multiplying the equality in 〈60〉 with (C†)∗ and (A†)∗, respectively, and simplifying

yield the equality in 〈61〉. Conversely, post- and pre-multiplying the equality in 〈61〉 with C∗ and A∗,
respectively, and simplifying yield the equality in 〈61〉.

Replacing C and A with (C†)∗ and (A†)∗ in the two equalities in 〈58〉, respectively, and simplifying
yield the equivalence of 〈1〉 with 〈62〉 through the equivalence of 〈136〉 and 〈137〉.

Post- and pre-multiplying the two equalities in 〈62〉 with (A†)∗ and (C†)∗, respectively, and
simplifying yield the two equalities in 〈63〉. Conversely, post- and pre-multiplying the equality in 〈61〉
with A∗ and C∗, respectively, and simplifying yield the equality in 〈62〉.

Replacing A and C with (A†)∗ and (C†)∗ in the equality in 〈61〉, respectively, and simplifying yield
the equivalence 〈1〉 with 〈64〉 through the equivalence of 〈136〉 and 〈137〉.

Replacing A and C with (A†)∗ and (C†)∗ in the equality in 〈60〉, respectively, and simplifying yield
the equivalence 〈1〉 with 〈65〉 through the equivalence of 〈136〉 and 〈137〉.

The derivations of (3.11)–(3.20) present typical steps of establishing and simplifying matrix rank
equalities associated with nested ROLs in the corresponding statements. The equivalences of 〈66〉–
〈108〉 with 〈136〉 and 〈137〉 can be established by similar approaches, and the routine verifications are
left to the reader.
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Combining Theorem 3.2 〈26〉 and 〈60〉 and Theorem 3.3 〈26〉 and 〈60〉, and comparing them with
〈136〉, we obtain the equivalence of 〈109〉 and 〈136〉.

Combining Theorem 3.2 〈27〉–〈29〉 and 〈60〉 with Theorem 3.3 〈27〉–〈29〉 and 〈60〉, and comparing
them with 〈136〉, we obtain the equivalences of 〈110〉–〈112〉 and 〈136〉.

Combining Theorem 3.2 〈32〉–〈35〉 and 〈60〉 with Theorem 3.3 〈32〉–〈35〉 and 〈60〉, and comparing
them with 〈136〉, we obtain the equivalences of 〈113〉–〈116〉 and 〈136〉.

Combining Theorem 3.2 〈49〉–〈51〉 and 〈60〉 and Theorem 3.3 〈49〉–〈51〉 and 〈60〉, and comparing
them with 〈136〉, we obtain the equivalences of 〈117〉–〈119〉 and 〈136〉.

Combining Theorem 3.2 〈54〉–〈57〉 and 〈60〉 with Theorem 3.3 〈54〉–〈57〉 and 〈60〉, and comparing
them with 〈136〉, we obtain the equivalences of 〈120〉–〈123〉 and 〈136〉.

Combining Theorem 3.2 〈36〉 and 〈60〉 and Theorem 3.3 〈36〉 and 〈60〉, and comparing them with
〈136〉, we obtain the equivalence of 〈124〉 and 〈136〉.

Combining Theorem 3.2 〈37〉–〈44〉 and 〈60〉 with Theorem 3.3 〈37〉–〈44〉 and 〈60〉, and comparing
them with 〈136〉, we obtain the equivalences of 〈125〉–〈132〉 and 〈136〉.

The equivalence of 〈133〉 and 〈135〉 follows from Lemma 2.2 (b). �

With a bit more work we can also obtain the following result.

Theorem 3.5. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following 3 statements are equivalent:

〈1〉 (ABC)† = C†(A†ABCC†)†A†.
〈2〉 (ABC)† = C†(A†AB + BCC† − B)†A†.
〈3〉 ((A†)∗B(C†)∗)† = C∗(A†AB + BCC† − B)†A∗.

Proof. Since A†A and CC† are orthogonal projectors, we obtain by Lemma 2.9 the following matrix
identity

(A†ABCC†)† = (FABEC)† − (B − A†AB − BCC†)†.

Substituting it into the equality in 〈1〉 and simplifying lead to the equivalence of 〈1〉 and 〈2〉. Replacing
A and C in 〈1〉 by (A†)∗ and (C†)∗, respectively, yields 〈3〉. �

Finally, we present a pair of equivalent facts associated with (1.12).

Corollary 3.6. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following 2 statements are equivalent:

〈1〉 (ABC)† = C†(A†ABCC†)†A†.
〈2〉 ((A∗A)1/2B(CC∗)1/2)† = ((CC∗)1/2)†(A†ABCC†)†((A∗A)1/2)†.

Proof. It is well recognized in matrix theory that the two products A∗A and CC∗ are positive semi-
definite matrices, and the two square roots (A∗A)1/2 and (CC∗)1/2 make sense and are unique. In this
situation,

R((A∗A)1/2) = R(A∗A) = R(A∗) and R(CC∗)1/2) = R(CC∗) = R(C)

hold, so that
((A∗A)1/2)†((A∗A)1/2) = A†A and (CC∗)1/2((CC∗)1/2)† = CC†

Hold. Now applying Theorem 3.4 〈1〉 and 〈136〉 to the matrix product (A∗A)1/2B(CC∗)1/2, we obtain

((A∗A)1/2B(CC∗)1/2)† = ((CC∗)1/2)†(((A∗A)1/2)†((A∗A)1/2)B(CC∗)1/2((CC∗)1/2)†)†((A∗A)1/2)†
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⇔ ((A∗A)1/2B(CC∗)1/2)† = ((CC∗)1/2)†(A†ABCC†)†((A∗A)1/2)†

⇔ r[(A∗A)3/2B(CC∗)1/2, (A∗A)1/2B(CC∗)1/2]
= r[(CC∗)3/2B∗(A∗A)1/2, (CC∗)1/2B∗(A∗A)1/2] = r((A∗A)1/2B(CC∗)1/2),

where by Lemmas 2.4 and 2.7,

r[(A∗A)3/2B(CC∗)1/2, (A∗A)1/2B(CC∗)1/2] = r[(A∗A)2BCC∗, A∗ABCC∗]
= r[AA∗ABC, ABC],

r[(CC∗)3/2B∗(A∗A)1/2, (CC∗)1/2B∗(A∗A)1/2] = r[(CC∗)2B∗A∗A, CC∗B∗A∗A]
= r[C∗C(ABC)∗, (ABC)∗],

r((A∗A)1/2B(CC∗)1/2) = r(A∗ABCC∗) = r(ABC).

Combining the above two groups of equalities with Theorem 3.4 〈1〉 and 〈136〉 leads to the equivalence
of 〈1〉 and 〈2〉 in the theorem. �

Various consequences can be derived form Theorems 3.2–3.4. For example, (1.12) is reduced to the
second equality in (1.3) if A†ABCC† = B, which includes A†A = In and CC† = Ip as its special case.
Thus we obtain the following results from Theorem 3.4.

Corollary 3.7. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q, and assume that A†ABCC† = B holds, i.e.,
R(B) ⊆ R(A∗) and R(B∗) ⊆ R(C). Then the following 137 statements are equivalent:

〈1〉 (ABC)† = C†B†A†.

〈2〉 C(ABC)†A = B†.

〈3〉 A(C(ABC)†A)†C = ABC.

〈4〉 C(A(C(ABC)†A)†C)†A = C(ABC)†A.
〈5〉 B = A†(C†B†A†)†C†.
〈6〉 (ABC)† = C†(AB)†ABC(BC)†A†.
〈7〉 C(ABC)†A = (AB)†ABC(BC)†.
〈8〉 {(ABC)(1,2,3)} 3 (BC)†A† and {(ABC)(1,2,4)} 3 C†(AB)†.
〈9〉 {(ABC)(1,2,3)} 3 (A∗ABC)†A∗ and {(ABC)(1,2,4)} 3 C∗(ABCC∗)†.
〈10〉 {(BC)(1,2,3)} 3 (ABC)†A and {(AB)(1,2,4)} 3 C(ABC)†.
〈11〉 {(A∗ABC)(1,2,3)} 3 (ABC)†(A†)∗ and {(ABCC∗)(1,2,4)} 3 (C†)∗(ABC)†.
〈12〉 {(ABC)(1,2,3)} 3 (BC)†(BC(BC)†)†A† and {(ABC)(1,2,4)} 3 C†((AB)†AB)†(AB)†.
〈13〉 {(ABC)(1,2,3)} 3 (BC)∗(A∗ABC(BC)∗)†A∗ and {(ABC)(1,2,4)} 3 C∗((AB)∗ABCC∗)†(AB)∗.
〈14〉 {(BC(BC)†)(1,2,3)} 3 BC(ABC)†A and {((AB)†AB)(1,2,4)} 3 C(ABC)†AB.

〈15〉 {(A∗ABC(BC)∗)(1,2,3)} 3 ((BC)†)∗(ABC)†(A†)∗ and {(A∗ABCC∗)(1,2,4)} 3 (C†)∗(ABC)†((AB)†)∗.
〈16〉 (ABC)† = (BC)†A† and (ABC)† = C†(AB)†.
〈17〉 (BC)† = (ABC)†A and (AB)† = C(ABC)†.
〈18〉 ABC(ABC)† = ABC(BC)†A† and (ABC)†ABC = C†(AB)†ABC.

〈19〉 ABC(ABC)†A = ABC(BC)† and C(ABC)†ABC = (AB)†ABC.
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〈20〉 (BC)†BC(ABC)† = (BC)†A† and (ABC)†AB(AB)† = C†(AB)†.
〈21〉 ((BC)†A†)†(BC)†BC = ABC and AB(AB)†(C†(AB)†)† = ABC.
〈22〉 ABC(ABC)† = ((BC)†A†)†(BC)†A† and (ABC)†ABC = C†(AB)†(C†(AB)†)†.
〈23〉 B† = (AB)†A and B† = C(BC)†.
〈24〉 (AB)† = B†A† and (BC)† = C†B†.
〈25〉 (BC)†A† = C†(AB)†.
〈26〉 (AB)†A = C(BC)†.
〈27〉 ((A†)∗B(C†)∗)† = C∗B†A∗.
〈28〉 (C†)∗((A†)∗B(C†)∗)†(A†)∗ = B†.
〈29〉 (A†)∗((C†)∗((A†)∗B(C†)∗)†(A†)∗)†(C†)∗ = (A†)∗B(C†)∗.
〈30〉 (C†)∗((A†)∗((C†)∗(ABC)†(A†)∗)†(C†)∗)†(A†)∗ = (C†)∗((A†)∗B(C†)∗)†(A†)∗.
〈31〉 B = A∗(C∗B†A∗)†C∗.
〈32〉 ((A†)∗B(C†)∗)† = C∗((A†)∗B)†(A†)∗B(C†)∗(B(C†)∗)†A∗.
〈33〉 (C†)∗((A†)∗B(C†)∗)†(A†)∗ = ((A†)∗B)†(A†)∗B(C†)∗(B(C†)∗)†.
〈34〉 ((A†)∗BC)† = (BC)†A∗ and (AB(C†)∗)† = C∗(AB)†.
〈35〉 (BC)† = ((A†)∗BC)†(A†)∗ and (AB)† = (C†)∗(AB(C†)∗)†.
〈36〉 ABC(ABC)† = AB(C†)∗(B(C†)∗)†A† and (ABC)†ABC = C†((A†)∗B)†(A†)∗BC.
〈37〉 ABC(ABC)†A = AB(C†)∗(B(C†)∗)† and C(ABC)†ABC = ((A†)∗B)†(A†)∗BC.
〈38〉 ABC(ABC)† = ((B(C†)∗)†A†)†(B(C†)∗)†A† and (ABC)†ABC = C†((A†)∗B)†(C†((A†)∗B)†)†.
〈39〉 (BC)†BC((A†)∗BC)† = (BC)†A∗ and (AB(C†)∗)†AB(AB)† = C∗(AB)†.
〈40〉 ((BC)†A∗)†(BC)†BC = (A†)∗BC and AB(AB)†(C∗(AB)†)† = AB(C†)∗.
〈41〉 B† = ((A†)∗B)†(A†)∗ and B† = (C†)∗(B(C†)∗)†.
〈42〉 ((A†)∗B)† = B†A∗ and (B(C†)∗)† = C∗B†.
〈43〉 (B(C†)∗)†A∗ = C∗((A†)∗B)†.
〈44〉 ((A†)∗B)†(A†)∗ = (C†)∗(B(C†)∗)†.
〈45〉 C∗((A†)∗B)† = (B(C†)∗)†A∗.
〈46〉 (ABC)† = C∗(A∗ABCC∗)†A∗.
〈47〉 (A∗ABCC∗)† = (C†)∗(ABC)†(A†)∗.
〈48〉 (ABC)† = C∗(ABCC∗)†ABC(A∗ABC)†A∗.
〈49〉 (C†)∗(ABC)†(A†)∗ = (ABCC∗)†ABC(A∗ABC)†.
〈50〉 (ABC)† = (A∗ABC)†A∗ and (ABC)† = C∗(ABCC∗)†.
〈51〉 (A∗ABC)† = (ABC)†(A†)∗ and (ABCC∗)† = (C†)∗(ABC)†.
〈52〉 ((A†)∗BC)† = ((A∗A)†BC)†A† and (AB(C†)∗)† = C†(AB(CC∗)†)†.
〈53〉 ((A∗A)†BC)† = ((A†)∗BC)†A and (AB(CC∗)†)† = C(AB(C†)∗)†.
〈54〉 ((A†)∗B(C†)∗)† = ((A∗A)†B(C†)∗)†A† and ((A†)∗B(C†)∗)† = C†((A†)∗B(CC∗)†)†.
〈55〉 ((A∗A)†B(C†)∗)† = ((A†)∗B(C†)∗)†A and ((A†)∗B(CC∗)†)† = C((A†)∗B(C†)∗)†.
〈56〉 ((A†)∗B(C†)∗)† = C†((A∗A)†B(CC∗)†)†A†.
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〈57〉 ((A∗A)†B(CC∗)†)† = C((A†)∗B(C†)∗)†A.
〈58〉 (A∗ABCC∗)† = (ABCC∗)†(A†)∗ and (A∗ABCC∗)† = (C†)∗(A∗ABC)†.
〈59〉 (ABCC∗)† = (A∗ABCC∗)†A∗ and (A∗ABC)† = C∗(A∗ABCC∗)†.
〈60〉 (A∗ABC)†A∗ = C∗(ABCC∗)†.
〈61〉 (ABCC∗)†(A†)∗ = (C†)∗(A∗ABC)†.
〈62〉 (AB(CC∗)†)† = (A∗AB(CC∗)†)†A∗ and ((A∗A)†BC)† = C∗((A∗A)†BCC∗)†.
〈63〉 (A∗AB(CC∗)†)† = (AB(CC∗)†)†(A†)∗ and ((A∗A)†BCC∗)† = (C†)∗((A∗A)†BC)†.
〈64〉 ((A†)∗B(CC∗)†)†A = C((A∗A)†B(C†)∗)†.
〈65〉 ((A∗A)†B(C†)∗)†A† = C†((A†)∗B(CC∗)†)†.
〈66〉 (A∗ABC)† = (AA∗ABC)†A and (ABCC∗)† = C(ABCC∗C)†.
〈67〉 (AA∗ABC)† = (A∗ABC)†A† and (ABCC∗C)† = C†(ABCC∗)†.
〈68〉 ((A∗A)†BC)† = ((A∗AA∗)†BC)†(A†)∗ and (AB(CC∗)†)† = (C†)∗(AB(C∗CC∗)†)†.
〈69〉 ((A∗A)†BC)†A∗ = ((A∗AA∗)†BC)† and C∗(AB(CC∗)†)† = (AB(C∗CC∗)†)†.
〈70〉 ((A∗A)†B(C†)∗)† = ((A∗AA∗)†B(C†)∗)†(A†)∗ and ((A†)∗B(CC∗)†)† = (C†)∗((A†)∗B(C∗CC∗)†)†.
〈71〉 ((A∗AA∗)†B(C†)∗)† = ((A∗A)†B(C†)∗)†A∗ and ((A†)∗B(C∗CC∗)†)† = C∗((A†)∗B(CC∗)†)†.
〈72〉 (A∗ABCC∗)† = C(A∗ABCC∗C)† and (A∗ABCC∗)† = (AA∗ABCC∗)†A.
〈73〉 (A∗ABCC∗C)† = C†(A∗ABCC∗)† and (AA∗ABCC∗)† = (A∗ABCC∗)†A†.
〈74〉 ((A∗A)†BCC∗)† = C((A∗A)†BCC∗C)† and (A∗AB(CC∗)†)† = (AA∗AB(CC∗)†)†A.
〈75〉 ((A∗A)†BCC∗C)† = C†((A∗A)†BCC∗)† and (A∗AB(CC∗)†)†A† = (AA∗AB(CC∗)†)†.
〈76〉 (A∗AB(CC∗)†)† = (C†)∗(A∗AB(C∗CC∗)†)† and ((A∗A)†BCC∗)† = ((A∗AA∗)†BCC∗)†(A†)∗.
〈77〉 (A∗AB(C∗CC∗)†)† = C∗(A∗AB(CC∗)†)† and (AA∗AB(CC∗)†)† = (A∗AB(CC∗)†)†A∗.
〈78〉 ((A∗A)†B(CC∗)†)† = (C†)∗((A∗A)†B(C∗CC∗)†)†

and ((A∗A)†B(CC∗)†)† = ((A∗AA∗)†B(CC∗)†)†(A†)∗.
〈79〉 ((A∗A)†B(C∗CC∗)†)† = C∗((A∗A)†B(CC∗)†)† and ((A∗AA∗)†B(CC∗)†)† = ((A∗A)†B(CC∗)†)†A∗.
〈80〉 C(A∗ABCC∗C)† = (AA∗ABCC∗)†A.
〈81〉 (A∗ABCC∗C)†A† = C†(AA∗ABCC∗)†.
〈82〉 C((A∗A)†BCC∗C)† = ((A∗AA∗)†BCC∗)†(A†)∗.
〈83〉 ((A∗A)†BCC∗C)†A∗ = C†((A∗AA∗)†BCC∗)†.
〈84〉 (C†)∗(A∗AB(C∗CC∗)†)† = (AA∗AB(CC∗)†)†A.
〈85〉 (A∗AB(C∗CC∗)†)†A† = C∗(AA∗AB(CC∗)†)†.
〈86〉 ((CC∗C)†B∗(A∗A)†)†C† = A†((CC∗)†B∗(AA∗A)†)†.
〈87〉 A((CC∗C)†B∗(A∗A)†)† = ((CC∗)†B∗(AA∗A)†)†C.
〈88〉 (A∗ABCC∗)† = C(AA∗ABCC∗C)†A.
〈89〉 (AA∗ABCC∗C)† = C†(A∗ABCC∗)†A†.
〈90〉 ((A∗A)†BCC∗)† = C((A∗AA∗)†BCC∗C)†(A†)∗.
〈91〉 ((A∗AA∗)†BCC∗C)† = C†((A∗A)†BCC∗)†A∗.
〈92〉 (A∗AB(CC∗)†)† = (C†)∗(AA∗AB(C∗CC∗)†)†A.
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〈93〉 (AA∗AB(C∗CC∗)†)† = C∗(A∗AB(CC∗)†)†(A†)∗.
〈94〉 ((A∗A)†B(CC∗)†)† = (C†)∗((A∗AA∗)†B(C∗CC∗)†)†(A†)∗.
〈95〉 ((A∗AA∗)†B(C∗CC∗)†)† = C∗((A∗A)†B(CC∗)†)†A∗.
〈96〉 (AA∗ABCC∗C)† = ((A∗A)2BCC∗C)†A∗ and (AA∗ABCC∗C)† = C∗(AA∗AB(CC∗)2)†.
〈97〉 ((A∗A)2BCC∗C)† = (AA∗ABCC∗C)†(A†)∗ and (AA∗AB(CC∗)2)† = (C†)∗(AA∗ABCC∗C)†.
〈98〉 ((A∗A)2BCC∗C)†A∗ = C∗((AA∗AB(CC∗)2)†.
〈99〉 (AA∗ABCC∗C)†(A†)∗ = (C†)∗(AA∗ABCC∗C)†.
〈100〉 (AA∗ABCC∗C)† = C∗((A∗A)2B(CC∗)2)†A∗.
〈101〉 ((A∗A)2B(CC∗)2)† = (C†)∗(AA∗ABCC∗C)†(A†)∗.
〈102〉 (B∗)† = A†(B∗A†)† and (B∗)† = (C†B∗)†C†.
〈103〉 (B∗A†)† = A(B∗)† and (C†B∗)† = (B∗)†C.
〈104〉 (A∗AB)† = C(A∗ABC)† and (BCC∗)† = (ABCC∗)†A.
〈105〉 (A∗ABC)† = C†(A∗AB)† and (ABCC∗)† = (BCC∗)†A†.
〈106〉 (C†B∗(A∗A)†)† = ((CC∗)†B∗(A∗A)†)†(C†)∗ and ((CC∗)†B∗A†)† = (A†)∗((CC∗)†B∗(A∗A)†)†.
〈107〉 ((A∗A)†B(C†)∗)† = C†((A∗A)†B(CC∗)†)† and ((A†)∗B(CC∗)†)† = ((A∗A)†B(CC∗)†)†A†.
〈108〉 ((A∗A)†B(CC∗)†)† = C((A∗A)†B(C†)∗)† and ((A∗A)†B(CC∗)†)† = ((A†)∗B(CC∗)†)†A.
〈109〉 (ABC(BC)†A†)† = ((BC)†A†)†(ABC)† and (C†(AB)†ABC)† = (ABC)†(C†(AB)†)†.
〈110〉 ABC(BC)†A† and C†(AB)†ABC are orthogonal projectors.

〈111〉 ABC(A∗ABC)†A∗ and C∗(ABCC∗)†ABC are orthogonal projectors.

〈112〉 A†(ABC)(ABC)†A and C(ABC)†(ABC)C† orthogonal projectors.

〈113〉 ABC(ABC)† and AA∗ commute, and (ABC)†ABC and C∗C commute.

〈114〉 ABC(BC)†A† and AA∗ commute, and C†(AB)†ABC and C∗C commute.

〈115〉 ABC(A∗ABC)†A∗ and AA∗ commute, and C∗(ABCC∗)†ABC and C∗C commute.

〈116〉 A†(ABC)(ABC)†A and A∗A commute, and C(ABC)†(ABC)C† and CC∗ commute.

〈117〉 ABC(BC)†A† and C†(AB)†ABC are orthogonal projectors.

〈118〉 (A†)∗((BC)†(A∗A)†)†(BC)†A† and C†(AB)†((CC∗)†(AB)†)†(C†)∗ are orthogonal projectors.

〈119〉 A†((BC)†A†)†((BC)†A†)A and C(C†(AB)†)(C†(AB)†)†C† are orthogonal projectors.

〈120〉 ((BC)†A†)†((BC)†A†) and (AA∗)† commute, and (C†(AB)†)(C†(AB)†)† and (C∗C)† commute.

〈121〉 A((BC)†)†(BC)†A† and (AA∗)† commute, and C†(AB)†((AB)†)†C and (C∗C)† commute.

〈122〉 (A†)∗((BC)†(A∗A)†)†(BC)†A† and (AA∗)† commute, and C†(AB)†((CC∗)†(AB)†)†(C†)∗ and
(C∗C)† commute.

〈123〉 A†((BC)†A†)†((BC)†A†)A and (A∗A)† commute, and C(C†(AB)†)(C†(AB)†)†C† and (CC∗)†

commute.

〈124〉 ABC(BC)†A† and C†(AB)†ABC are EP.

〈125〉 {((A†)∗BC)(1,2,3)} 3 (BC)†A∗ and {(AB(C†)∗)(1,2,4)} 3 C∗(AB)†.
〈126〉 {((A†)∗BC)(1,2,3)} 3 ((A∗A)†BC)†A† and {(AB(C†)∗)(1,2,4)} 3 C†(AB(CC∗)†)†.
〈127〉 {(BC)(1,2,3)} 3 ((A†)∗BC)†(A†)∗ and {(AB)(1,2,4)} 3 (C†)∗(AB(C†)∗)†.
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〈128〉 {((A∗A)†BC)(1,2,3)} 3 ((A†)∗BC)†A and {(AB(CC∗)†)(1,2,4)} 3 C(AB(C†)∗)†.
〈129〉 {((A†)∗BC)(1,2,3)} 3 (BC)†(BC(BC)†)†A∗ and {(AB(C†)∗)(1,2,4)} 3 C∗((AB)†AB)†(AB)†.
〈130〉 {((A†)∗BC)(1,2,3)} 3 (BC)∗((A∗A)†BC(BC)∗)†A† and {(AB(C†)∗)(1,2,4)} 3 C†(A∗AB(CC∗)†)†(AB)∗.
〈131〉 {(BB†)(1,2,3)} 3 B((A†)∗B)†(A†)∗ and {(B†B)(1,2,4)} 3 (C†)∗(B(C†)∗)†B.
〈132〉 {((A∗A)†BC(BC)∗)(1,2,3)} 3 ((BC)†)∗((A†)∗BC)†A

and {((AB)∗AB(CC∗)†)(1,2,4)} 3 C(AB(C†)∗)†((AB)†)∗.
〈133〉 (A∗AB)(A∗AB)† = BB† and (BCC∗)†(BCC∗) = B†B.

〈134〉 R(((AB)†)∗) = R((B†A†)∗) and R((BC)†) = R(C†B†).
〈135〉 R(A∗AB) = R(B) and R((BCC∗)∗) = R(B∗).
〈136〉 r[A∗AB, B] = r[(BCC∗)∗, B∗] = r(B).
〈137〉 r[(A∗AA∗)†B, (A†)∗B] = r(B) and r[(CC∗C)†B∗, C†B∗] = r(B).

4. Main results II

The analysis carried out above for the nested ROLs in (1.10)–(1.15) can similarly be done for the
nested ROLs in (1.16)–(1.21) by comparing (1.23) and (1.24) and making symbolic replacements of
the results in Lemma 3.1, Theorems 3.2–3.5, and Corollary 3.6. The details are readily presented below
without proofs.

Lemma 4.1. [26] Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q.

〈1〉 The following 3 matrix set inclusions always hold

{(ABC)(1)} ⊇ {((AB)(1)ABC)(1)(AB)(1)}, (4.1)
{(ABC)(1)} ⊇ {(BC)(1)(ABC(BC)(1))(1)}, (4.2)
{(ABC)(1)} ⊇ {(BC)(1)((AB)(1)ABC(BC)(1))(1)(AB)(1)}. (4.3)

〈2〉 The following 3 matrix set inclusions always hold

{(ABC)(1,2)} ⊇ {((AB)(1,2)ABC)(1,2)(AB)(1,2)}, (4.4)
{(ABC)(1,2)} ⊇ {(BC)(1,2)(ABC(BC)(1,2))(1,2)}, (4.5)
{(ABC)(1,2)} ⊇ {(BC)(1,2)((AB)(1,2)ABC(BC)(1,2))(1,2)(AB)(1,2)}. (4.6)

〈3〉 The following 4 matrix set inclusions always hold

{(ABC)(1,2)} 3 ((AB)†ABC)†(AB)†, (4.7)
{(ABC)(1,2)} 3 (BC)†(ABC(BC)†)†, (4.8)
{(ABC)(1,2)} 3 (BC)†((AB)†ABC(BC)†)†(AB)†, (4.9)
{(ABC)(1,2)} 3 (BC)†(ABC(BC)†)†ABC((AB)†ABC)†(AB)†. (4.10)

〈4〉 The two matrix equalities in (1.19) and (1.20) always hold. In particular, if (AB)†ABC = B†BC
and ABC(BC)† = ABB†, then the nested ROL (ABC)† = (B†BC)†B†(ABB†)† holds.

AIMS Mathematics Volume 6, Issue 12, 13845–13886.



13875

Theorem 4.2. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following 62 statements are equivalent:

〈1〉 {(ABC)(1,2,3)} 3 ((AB)†ABC)†(AB)†.
〈2〉 {(ABC)(1,2,3)} 3 ((AB)∗ABC)†(AB)∗.
〈3〉 {((AB)†ABC)(1,2,3)} 3 (ABC)†AB.
〈4〉 {((AB)∗ABC)(1,2,3)} 3 (ABC)†((AB)†)∗.
〈5〉 {(ABC)(1,2,3)} 3 (B†BC)†((AB)†ABC(B†BC)†)†(AB)†.
〈6〉 {(ABC)(1,2,3)} 3 (B†BC)∗((AB)∗ABC(B†BC)∗)†(AB)∗.
〈7〉 {((AB)†ABC(B†BC)†)(1,2,3)} 3 B†BC(ABC)†AB.
〈8〉 {((AB)∗ABC(B†BC)∗)(1,2,3)} 3 ((B†BC)†)∗(ABC)†((AB)†)∗.
〈9〉 (ABC)† = ((AB)†ABC)†(AB)†.
〈10〉 ABC = (((AB)†ABC)†(AB)†)†.
〈11〉 ABC = AB((ABC)†AB)†.
〈12〉 (ABC)†AB = ((AB)†ABC)†.
〈13〉 BC(ABC)†AB = BC((AB)†ABC)†.
〈14〉 ABC(ABC)† = ABC((AB)†ABC)†(AB)†.
〈15〉 ABC(ABC)†AB = ABC((AB)†ABC)†.
〈16〉 (B†BC)†(AB)†ABC(ABC)† = (B†BC)†(AB)†.
〈17〉 ((B†BC)†(AB)†)†(B†BC)†(AB)†ABC = ABC.
〈18〉 ABC(ABC)† = ((B†BC)†(AB)†)†(B†BC)†(AB)†.
〈19〉 (ABC)† = ((AB)∗ABC)†(AB)∗.
〈20〉 ABC = (((AB)∗ABC)†(AB)∗)†.
〈21〉 ABC = ((AB)†)∗((ABC)†((AB)†)∗)†.
〈22〉 (ABC)†((AB)†)∗ = ((AB)∗ABC)†.
〈23〉 BC(ABC)†((AB)†)∗ = BC((AB)∗ABC)†.
〈24〉 ABC(ABC)† = ABC((AB)∗ABC)†(AB)∗.
〈25〉 ABC(ABC)†((AB)†)∗ = ABC((AB)∗ABC)†.
〈26〉 (ABC(B†BC)†(AB)†)† = ((B†BC)†(AB)†)†(ABC)†.
〈27〉 ABC((AB)†ABC)†(AB)† is an orthogonal projector.
〈28〉 ABC((AB)∗ABC)†(AB)∗ is an orthogonal projector.
〈29〉 (AB)†(ABC)(ABC)†AB is an orthogonal projector.
〈30〉 AB((AB)†ABC(B†BC)†)†(AB)† is an orthogonal projector.
〈31〉 ABC(B†BC)∗((AB)∗ABC(B†BC)∗)†(AB)∗ is an orthogonal projector.
〈32〉 ABC(ABC)† and AB(AB)∗ commute.
〈33〉 ABC((AB)†ABC)†(AB)† and AB(AB)∗ commute.
〈34〉 ABC((AB)∗ABC)†(AB)∗ and AB(AB)∗ commute.
〈35〉 (AB)†(ABC)(ABC)†AB and (AB)∗AB commute.
〈36〉 ABC(B†BC)†(AB)† is EP.
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〈37〉 {(((AB)†)∗B†BC)(1,2,3)} 3 ((AB)†ABC)†(AB)∗.

〈38〉 {(((AB)†)∗B†BC)(1,2,3)} 3 (((AB)∗AB)†B†BC)†(AB)†.

〈39〉 {((AB)†ABC)(1,2,3)} 3 (((AB)†)∗B†BC)†((AB)†)∗.

〈40〉 {(((AB)∗AB)†B†BC)(1,2,3)} 3 (((AB)†)∗B†BC)†AB.

〈41〉 {(((ABB†)†)∗BC)(1,2,3)} 3 (BC)†((ABB†)†ABC(BC)†)†(ABB†)∗.

〈42〉 {(((AB)†)∗B†BC)(1,2,3)} 3 (B†BC)∗(((AB)∗AB)†B†BC(B†BC)∗)†(AB)†.

〈43〉 {((AB)†ABC(B†BC)†)(1,2,3)} 3 B†BC(((AB)†)∗BC)†((AB)†)∗.

〈44〉 {(((AB)∗AB)†B†BC(B†BC)∗)(1,2,3)} 3 ((B†BC)†)∗(((AB)†)∗B†BC)†AB.

〈45〉 (((AB)†)∗B†BC)† = ((AB)†ABC)†(AB)∗.

〈46〉 (((AB)†)∗B†BC)† = (((AB)∗AB)†B†BC)†(AB)†.

〈47〉 ((AB)†ABC)† = (((AB)†)∗B†BC)†((AB)†)∗.

〈48〉 (((AB)∗AB)†B†BC)† = (((AB)†)∗B†BC)†AB.

〈49〉 AB((B†BC)†(AB)†AB)†(B†BC)†(AB)† is an orthogonal projector.

〈50〉 ((AB)†)∗((B†BC)†((AB)∗AB)†)†(B†BC)†(AB)† is an orthogonal projector.

〈51〉 (AB)†((B†BC)†(AB)†)†((B†BC)†(AB)†)AB is an orthogonal projector.

〈52〉 AB(B†BC(B†BC)†(AB)†AB)†(AB)† is an orthogonal projector.

〈53〉 ((AB)†)∗(B†BC(B†BC)∗)†(((AB)∗AB)†(B†BC(B†BC)∗)†)†(AB)† is an orthogonal projector.

〈54〉 ((B†BC)†(AB)†)†((B†BC)†(AB)†) and (AB(AB)∗)† commute.

〈55〉 AB((B†BC)†(AB)†(AB))†(B†BC)†(AB)† and (AB(AB)∗)† commute.

〈56〉 ((AB)†)∗((B†BC)†((AB)∗AB)†)†(B†BC)†(AB)† and ((AB)(AB)∗)† commute.

〈57〉 (AB)†((B†BC)†(AB)†)†((B†BC)†(AB)†)AB and ((AB)∗AB)† commute.

〈58〉 R((AB)(AB)∗ABC) = R(ABC).

〈59〉 R((AB)†)∗B†BC) = R(ABC).

〈60〉 r[(AB)(AB)∗ABC, ABC] = r(ABC).

〈61〉 r[((AB)†)∗B†BC, ABC] = r(ABC).

〈62〉 r[((AB)∗AB(AB)∗)†B†BC, ((AB)†)∗B†BC] = r(((AB)†)∗B†BC).

Theorem 4.3. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following 62 statements are equivalent:

〈1〉 {(ABC)(1,2,4)} 3 (BC)†(ABC(BC)†)†.

〈2〉 {(ABC)(1,2,4)} 3 (BC)∗(ABC(BC)∗)†.

〈3〉 {(ABC(BC)†)(1,2,4)} 3 BC(ABC)†.

〈4〉 {(ABC(BC)∗)(1,2,4)} 3 ((BC)†)∗(ABC)†.

〈5〉 {(ABC)(1,2,4)} 3 (BC)†((ABB†)†ABC(BC)†)†(ABB†)†.

〈6〉 {(ABC)(1,2,4)} 3 (BC)∗((ABB†)∗ABC(BC)∗)†(ABB†)∗.

〈7〉 {((ABB†)†ABC(BC)†)(1,2,4)} 3 BC(ABC)†ABB†.

〈8〉 {(ABB†)∗ABC(BC)∗)(1,2,4)} 3 ((BC)†)∗(ABC)†((ABB†)†)∗.

〈9〉 (ABC)† = (BC)†(ABC(BC)†)†.
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〈10〉 ABC = ((BC)†(ABC(BC)†)†)†.
〈11〉 ABC = (BC(ABC)†)†BC.
〈12〉 BC(ABC)† = (ABC(BC)†)†.
〈13〉 BC(ABC)†AB = (ABC(BC)†)†AB.
〈14〉 (ABC)†ABC = (BC)†(ABC(BC)†)†ABC.
〈15〉 BC(ABC)†ABC = (ABC(BC)†)†ABC.
〈16〉 (ABC)†ABC(BC)†(ABB†)† = (BC)†(ABB†)†.
〈17〉 ABC(BC)†(ABB†)†((BC)†(ABB†)†)† = ABC.
〈18〉 (ABC)†ABC = (BC)†(ABB†)†((BC)†(ABB†)†)†.
〈19〉 (ABC)† = (BC)∗(ABC(BC)∗)†.
〈20〉 ABC = ((BC)∗(ABC(BC)∗)†)†.
〈21〉 ABC = (((BC)†)∗(ABC)†)†((BC)†)∗.
〈22〉 ((BC)†)∗(ABC)† = (ABC(BC)∗)†.
〈23〉 ((BC)†)∗(ABC)†AB = (ABC(BC)∗)†AB.
〈24〉 (ABC)†ABC = (BC)∗(ABC(BC)∗)†ABC.
〈25〉 ((BC)†)∗(ABC)†ABC = (ABC(BC)∗)†ABC.
〈26〉 ((BC)†(ABB†)†ABC)† = (ABC)†((BC)†(ABB†)†)†.
〈27〉 (BC)†(ABC(BC)†)†ABC is an orthogonal projector.
〈28〉 (BC)∗(ABC(BC)∗)†ABC is an orthogonal projector.
〈29〉 BC(ABC)†(ABC)(BC)† is an orthogonal projector.
〈30〉 (BC)†((ABB†)†ABC(BC)†)†BC is an orthogonal projector.
〈31〉 (BC)∗((ABB†)∗ABC(BC)∗)†(ABB†)∗ABC is an orthogonal projector.
〈32〉 (ABC)†ABC and (BC)∗BC commute.
〈33〉 (BC)†(ABC(BC)†)†ABC and (BC)∗BC commute.
〈34〉 (BC)∗(ABC(BC)∗)†ABC and (BC)∗BC commute.
〈35〉 BC(ABC)†(ABC)(BC)† and BC(BC)∗ commute.
〈36〉 (BC)†(ABB†)†ABC is EP.
〈37〉 {(ABB†((BC)†)∗)(1,2,4)} 3 (BC)∗(ABC(BC)†)†.
〈38〉 {(ABB†((BC)†)∗)(1,2,4)} 3 (BC)†(ABB†(BC(BC)∗)†)†.
〈39〉 {(ABC(BC)†)(1,2,4)} 3 ((BC)†)∗(ABB†((BC)†)∗)†.
〈40〉 {(ABB†((BC)(BC)∗)†)(1,2,4)} 3 BC(ABB†((BC)†)∗)†.
〈41〉 {(ABB†((BC)†)∗)(1,2,4)} 3 (BC)∗((ABB†)†ABC(BC)†)†(ABB†)†.
〈42〉 {((ABB†)∗ABB†((BC)†)∗)(1,2,4)} 3 (BC)†(ABB†(BC(BC)∗)†)†(ABB†)∗.
〈43〉 {((ABB†)†ABC(BC)†)(1,2,4)} 3 ((BC)†)∗(ABB†((BC)†)∗)†ABB†.
〈44〉 {((ABB†)∗ABB†((BC)(BC)∗)†)(1,2,4)} 3 BC(ABB†((BC)†)∗)†((ABB†)†)∗.
〈45〉 (ABB†((BC)†)∗)† = (BC)∗(ABC(BC)†)†.
〈46〉 (ABB†((BC)†)∗) = (BC)†(ABB†((BC)(BC)∗)†)†.
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〈47〉 (ABC(BC)†)† = ((BC)†)∗(ABB†((BC)†)∗)†.
〈48〉 (ABB†((BC)†)∗)† = BC(ABB†((BC)(BC)∗)†)†.
〈49〉 (BC)†(ABB†)†((BC)(BC)†(ABB†)†)†BC is an orthogonal projector.

〈50〉 (BC)†(ABB†)†(((BC)(BC)∗)†(ABB†)†)†((BC)†)∗ is an orthogonal projector.

〈51〉 BC((BC)†(ABB†)†)((BC)†(ABB†)†)†(BC)† is an orthogonal projector.

〈52〉 (BC)†((BC)(BC)†(ABB†)†ABB†)†BC is an orthogonal projector.

〈53〉 (BC)†(((ABB†)∗ABB†)†((BC)(BC)∗)†)†((ABB†)∗ABB†)†((BC)†)∗ is an orthogonal projector.

〈54〉 ((BC)†(ABB†)†)((BC)†(ABB†)†)† and ((BC)∗BC)† commute.

〈55〉 (BC)†(ABB†)†((BC)(BC)†(ABB†)†)†BC and ((BC)∗BC)† commute.

〈56〉 (BC)†(ABB†)†(((BC)(BC)∗)†(ABB†)†)†((BC)†)∗ and ((BC)∗BC)† commute.

〈57〉 BC((BC)†(ABB†)†)((BC)†(ABB†)†)†(BC)† and ((BC)(BC)∗)† commute.

〈58〉 R((BC)∗BC(BC)∗A∗) = R((BC)∗A∗).
〈59〉 R((BC)†(ABB†)†) = R((BC)∗(ABB†)∗).
〈60〉 r[(BC)∗BC(ABC)∗, (ABC)∗] = r(ABC).
〈61〉 r[(BC)†(ABB†)†, (ABC)∗] = r(ABC).
〈62〉 r[(BC(BC)∗BC)†(ABB†)†, (BC)†(ABB†)†] = r((BC)†(ABB†)†).

Theorem 4.4. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following 137 statements are
equivalent:

〈1〉 (ABC)† = (BC)†((AB)†ABC(BC)†)†(AB)†.
〈2〉 BC(ABC)†AB = ((AB)†ABC(BC)†)†.
〈3〉 AB(BC(ABC)†AB)†BC = ABC.

〈4〉 BC(AB(BC(ABC)†AB)†BC)†AB = BC(ABC)†AB.

〈5〉 (AB)†ABC(BC)† = (AB)†((BC)†((AB)†ABC(BC)†)†(AB)†)†(BC)†.
〈6〉 (ABC)† = (BC)†(ABC(BC)†)†ABC((AB)†ABC)†(AB)†.
〈7〉 BC(ABC)†AB = (ABC(BC)†)†ABC((AB)†ABC)†.
〈8〉 {(ABC)(1,2,3)} 3 ((AB)†ABC)†(AB)† and {(ABC)(1,2,4)} 3 (BC)†(ABC(BC)†)†.
〈9〉 {(ABC)(1,2,3)} 3 ((AB)∗ABC)†(AB)∗ and {(ABC)(1,2,4)} 3 (BC)∗(ABC(BC)∗)†.
〈10〉 {(AB)†ABC)(1,2,3)} 3 (ABC)†AB and {(ABC(BC)†)(1,2,4)} 3 BC(ABC)†.
〈11〉 {((AB)∗ABC)(1,2,3)} 3 (ABC)†((AB)†)∗ and {(ABC(BC)∗)(1,2,4)} 3 ((BC)†)∗(ABC)†.
〈12〉 {(ABC)(1,2,3)} 3 (B†BC)†((AB)†ABC(B†BC)†)†(AB)†

and {(ABC)(1,2,4)} 3 (BC)†((ABB†)†ABC(BC)†)†(ABB†)†.
〈13〉 {(ABC)(1,2,3)} 3 (B†BC)∗((AB)∗ABC(B†BC)∗)†(AB)∗

and {(ABC)(1,2,4)} 3 (BC)∗((ABB†)∗ABC(BC)∗)†(ABB†)∗.
〈14〉 {((AB)†ABC(B†BC)†)(1,2,3)} 3 B†BC(ABC)†AB

and {((ABB†)†ABC(BC)†)(1,2,4)} 3 BC(ABC)†ABB†.

〈15〉 {((AB)∗ABC(B†BC)∗)(1,2,3)} 3 ((B†BC)†)∗(ABC)†((AB)†)∗

and {((AB)∗ABC(BC)∗)(1,2,4)} 3 ((BC)†)∗(ABC)†((ABB†)†)∗.
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〈16〉 (ABC)† = ((AB)†ABC)†(AB)† and (ABC)† = (BC)†(ABC(BC)†)†.

〈17〉 ((AB)†ABC)† = (ABC)†AB and (ABC(BC)†)† = BC(ABC)†.

〈18〉 ABC(ABC)† = ABC((AB)†ABC)†(AB)† and (ABC)†ABC = (BC)†(ABC(BC)†)†ABC.

〈19〉 ABC(ABC)†AB = ABC((AB)†ABC)† and BC(ABC)†ABC = (ABC(BC)†)†ABC.

〈20〉 (B†BC)†(AB)†ABC(ABC)† = (B†BC)†(AB)† and (ABC)†ABC(BC)†(ABB†)† = (BC)†(ABB†)†.

〈21〉 ((B†BC)†(AB)†)†(B†BC)†(AB)†ABC = ABC and ABC(BC)†(ABB†)†((BC)†(ABB†)†)† = ABC.

〈22〉 ABC(ABC)† = ((B†BC)†(AB)†)†(B†BC)†(AB)†

and (ABC)†ABC = (BC)†(ABB†)†((BC)†(ABB†)†)†.

〈23〉 ((AB)†ABC(BC)†)† = (ABC(BC)†)†AB and ((AB)†ABC(BC)†)† = BC((AB)†ABC)†.

〈24〉 (ABC(BC)†)† = ((AB)†ABC(BC)†)†(AB)† and ((AB)†ABC)† = (BC)†((AB)†ABC(BC)†)†.

〈25〉 ((AB)†ABC)†(AB)† = (BC)†(ABC(BC)†)†.

〈26〉 (ABC(BC)†)†AB = BC((AB)†ABC)†.

〈27〉 (((AB)†)∗B†((BC)†)∗)† = (BC)∗((AB)†ABC(BC)†)†(AB)∗.

〈28〉 ((BC)†)∗(((AB)†)∗B†((BC)†)∗)†(AB)†)∗ = ((AB)†ABC(BC)†)†.

〈29〉 ((AB)†)∗(((BC)†)∗(((AB)†)∗B†((BC)†)∗)†((AB)†)∗)†((BC)†)∗ = ((AB)†)∗B†((BC)†)∗.

〈30〉 ((BC)†)∗(((AB)†)∗(((BC)†)∗(ABC)†((AB)†)∗)†((BC)†)∗)†((AB)†)∗

= ((BC)†)∗(((AB)†)∗B†((BC)†)∗)†((AB)†)∗.

〈31〉 (AB)†ABC(BC)† = (AB)∗((BC)∗((AB)†ABC(BC)†)†(AB)∗)†(BC)∗.

〈32〉 (((AB)†)∗B†((BC)†)∗)† = (BC)∗(((AB)†)∗B†BC(BC)†)†((AB)†)∗B†((BC)†)∗

×((AB)†ABB†((BC)†)∗)†(AB)∗.

〈33〉 ((BC)†)∗(((AB)†)∗B†((BC)†)∗)†((AB)†)∗

= (((AB)†)∗B†BC(BC)†)†((ABB†)†)∗B†((BC)†)∗((AB)†ABB†((BC)†)∗)†.

〈34〉 (((AB)†)∗B†BC)† = ((AB)†ABC)†(AB)∗ and (ABB†((BC)†)∗)† = (BC)∗(ABC(BC)†)†.

〈35〉 ((AB)†ABC)† = (((AB)†)∗B†BC)†((AB)†)∗ and (ABC(BC)†)† = ((BC)†)∗(ABB†((BC)†)∗)†.

〈36〉 ABC(ABC)† = ABB†((BC)†)∗((AB)†ABB†((BC)†)∗)†(AB)†

and (ABC)†ABC = (BC)†(((AB)†)∗B†BC(BC)†)†((AB)†)∗B†BC.

〈37〉 ABC(ABC)†AB = ABB†((BC)†)∗((AB)†ABB†((BC)†)∗)†

and BC(ABC)†ABC = (((AB)†)∗B†BC(BC)†)†((AB)†)∗B†BC.

〈38〉 ABC(ABC)† = ((B†((BC)†)∗)†(AB)†)†(B†((BC)†)∗)†(AB)†

and (ABC)†ABC = (BC)†(((AB)†)∗B†)†((BC)†(((AB)†)∗B†)†)†.

〈39〉 (B†BC)†(AB)†ABC(((AB)†)∗B†BC)† = (B†BC)†(AB)∗

and (ABB†((BC)†)∗)†ABC(BC)†(ABB†)† = (BC)∗(ABB†)†.

〈40〉 ((B†BC)†(AB)∗)†(B†BC)†(AB)†ABC = ((AB)†)∗B†BC
and ABC(BC)†(ABB†)†((BC)∗(ABB†)†)† = ABB†((BC)†)∗.

〈41〉 ((AB)†ABC(BC)†)† = (((AB)†)∗B†BC(BC)†)†((AB)†)∗

and ((AB)†ABC(BC)†)† = ((BC)†)∗((AB)†ABB†((BC)†)∗)†.

〈42〉 (((AB)†)∗B†BC(BC)†)† = ((AB)†ABC(BC)†)†(AB)∗

and ((AB)†ABB†((BC)†)∗)† = (BC)∗((AB)†ABC(BC)†)†.
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〈43〉 ((AB)†ABB†((BC)†)∗)†(AB)∗ = (BC)∗(((AB)†)∗B†BC(BC)†)†.
〈44〉 (((AB)†)∗B†BC(BC)†)†((AB)†)∗ = ((BC)†)∗((AB)†ABB†((BC)†)∗)†.
〈45〉 (BC)∗(((AB)†)∗B†BC(BC)†)† = ((AB)†ABB†((BC)†)∗)†(AB)∗.
〈46〉 (ABC)† = (BC)∗((AB)∗ABC(BC)∗)†(AB)∗.
〈47〉 ((AB)∗ABC(BC)∗)† = ((BC)†)∗(ABC)†((AB)†)∗.
〈48〉 (ABC)† = (BC)∗(ABC(BC)∗)†ABC((AB)∗ABC)†(AB)∗.
〈49〉 ((BC)†)∗(ABC)†((AB)†)∗ = (ABC(BC)∗)†ABC((AB)∗ABC)†.
〈50〉 (ABC)† = ((AB)∗ABC)†(AB)∗ and (ABC)† = (BC)∗(ABC(BC)∗)†.
〈51〉 ((AB)∗ABC)† = (ABC)†((AB)†)∗ and (ABC(BC)∗)† = ((BC)†)∗(ABC)†.
〈52〉 (((AB)†)∗B†BC)† = (((AB)∗(AB))†B†BC)†(AB)†

and (ABB†((BC)†)∗)† = (BC)†(ABB†((BC)(BC)∗)†)†.
〈53〉 (((AB)∗(AB))†B†BC)† = (((AB)†)∗B†BC)†AB

and (ABB†((BC)(BC)∗)†)† = BC(ABB†((BC)†)∗)†.
〈54〉 (((AB)†)∗B†((BC)†)∗)† = (((AB)∗AB)†B†((BC)†)∗)†(AB)†

and (((AB)†)∗B†((BC)†)∗)† = (BC)†(((AB)†)∗B†(BC(BC)∗)†)†.
〈55〉 (((AB)∗AB)†B†((BC)†)∗)† = (((AB)†)∗B†((BC)†)∗)†AB

and (((AB)†)∗B†(BC(BC)∗)†)† = BC(((AB)†)∗B†((BC)†)∗)†.
〈56〉 (((AB)†)∗B†((BC)†)∗)† = (BC)†(((AB)∗AB)†B†(BC(BC)∗)†)†(AB)†.
〈57〉 (((AB)∗AB)†B†((BC)(BC)∗)†)† = BC(((AB)†)∗B†((BC)†)∗)†AB.

〈58〉 ((AB)∗ABC(BC)∗)† = (ABC(BC)∗)†((AB)†)∗

and ((AB)∗ABC(BC)∗)† = ((BC)†)∗((AB)∗ABC)†.
〈59〉 ((AB)∗ABC)† = (BC)∗((AB)∗ABC(BC)∗)† and (ABC(BC)∗)† = ((AB)∗ABC(BC)∗)†(AB)∗.
〈60〉 ((AB)∗ABC)†(AB)∗ = (BC)∗(ABC(BC)∗)†.
〈61〉 (ABC(BC)∗)†((AB)†)∗ = ((BC)†)∗((AB)∗ABC)†.
〈62〉 (((AB)∗AB)†B†BC)† = (BC)∗(((AB)∗AB)†B†BC(BC)∗)†

and (ABB†(BC(BC)∗)†)† = ((AB)∗ABB†(BC(BC)∗)†)†(AB)∗.
〈63〉 (((AB)∗AB)†B†BC(BC)∗)† = ((BC)†)∗(((AB)∗AB)†B†BC)†

and ((AB)∗ABB†(BC(BC)∗)†)† = (ABB†(BC(BC)∗)†)†((AB)†)∗.
〈64〉 (((AB)†)∗B†(BC(BC)∗)†)†AB = BC(((AB)∗AB)†B†((BC)†)∗)†.
〈65〉 (((AB)∗AB)†B†((BC)†)∗)†(AB)† = (BC)†(((AB)†)∗B†(BC(BC)∗)†)†.
〈66〉 ((AB)∗ABC)† = (AB(AB)∗ABC)†AB and (ABC(BC)∗)† = BC(ABC(BC)∗BC)†.
〈67〉 (AB(AB)∗ABC)† = ((AB)∗ABC)†(AB)† and (ABC(BC)∗BC)† = (BC)†(ABC(BC)∗)†.
〈68〉 (((AB)∗AB)†B†BC)† = (((AB)∗AB(AB)∗)†B†BC)†((AB)†)∗

and (ABB†(BC(BC)∗)†)† = ((BC)†)∗(ABB†((BC)∗BC(BC)∗)†)†.
〈69〉 (((AB)∗AB)†B†BC)†(AB)∗ = (((AB)∗AB(AB)∗)†B†BC)†

and (BC)∗(ABB†(BC(BC)∗)†)† = (ABB†((BC)∗BC(BC)∗)†)†.
〈70〉 (((AB)∗AB)†B†((BC)†)∗)† = (((AB)∗AB(AB)∗)†B†((BC)†)∗)†((AB)†)∗

and (((AB)†)∗B†(BC(BC)∗)†)† = ((BC)†)∗(((AB)†)∗B†((BC)∗BC(BC)∗)†)†.
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〈71〉 (((AB)∗AB(AB)∗)†B†((BC)†)∗)† = (((AB)∗AB)†B†((BC)†)∗)†(AB)∗

and (((AB)†)∗B†((BC)∗BC(BC)∗)†)† = (BC)∗(((AB)†)∗B†(BC(BC)∗)†)†.

〈72〉 ((AB)∗ABC(BC)∗)† = BC((AB)∗ABC(BC)∗BC)†

and ((AB)∗ABC(BC)∗)† = (AB(AB)∗ABC(BC)∗)†AB.

〈73〉 ((AB)∗ABC(BC)∗BC)† = (BC)†((AB)∗ABC(BC)∗)†

and (AB(AB)∗ABC(BC)∗)† = ((AB)∗ABC(BC)∗)†(AB)†.

〈74〉 (((AB)∗AB)†B†BC(BC)∗)† = BC(((AB)∗AB)†B†BC(BC)∗BC)†

and ((AB)∗ABB†(BC(BC)∗)†)† = (AB(AB)∗ABB†(BC(BC)∗)†)†AB.

〈75〉 (((AB)∗AB)†B†BC(BC)∗BC)† = (BC)†(((AB)∗AB)†B†BC(BC)∗)†

and ((AB)∗ABB†(BC(BC)∗)†)†(AB)† = (AB(AB)∗ABB†((BC)(BC)∗)†)†.

〈76〉 ((AB)∗ABB†(BC(BC)∗)†)† = ((BC)†)∗((AB)∗ABB†((BC)∗BC(BC)∗)†)†

and (((AB)∗AB)†B†BC(BC)∗)† = (((AB)∗AB(AB)∗)†B†BC(BC)∗)†((AB)†)∗.

〈77〉 ((AB)∗ABB†((BC)∗BC(BC)∗)†)† = (BC)∗((AB)∗ABB†(BC(BC)∗)†)†

and (AB(AB)∗ABB†(BC(BC)∗)†)† = ((AB)∗ABB†(BC(BC)∗)†)†(AB)∗.

〈78〉 (((AB)∗AB)†B†(BC(BC)∗)†)† = ((BC)†)∗(((AB)∗AB)†B†((BC)∗BC(BC)∗)†)†

and (((AB)∗AB)†B†(BC(BC)∗)†)† = (((AB)∗AB(AB)∗)†B†(BC(BC)∗)†)†((AB)†)∗.

〈79〉 (((AB)∗AB)†B†((BC)∗BC(BC)∗)†)† = (BC)∗(((AB)∗AB)†B†(BC(BC)∗)†)†

and (((AB)∗AB(AB)∗)†B†(BC(BC)∗)†)† = (((AB)∗AB)†B†(BC(BC)∗)†)†(AB)∗.

〈80〉 BC((AB)∗ABC(BC)∗BC)† = (AB(AB)∗ABC(BC)∗)†AB.

〈81〉 ((AB)∗ABC(BC)∗BC)†(AB)† = (BC)†(AB(AB)∗ABC(BC)∗)†.

〈82〉 BC(((AB)∗AB)†B†BC(BC)∗BC)† = (((AB)∗AB(AB)∗)†B†BC(BC)∗)†((AB)†)∗.

〈83〉 (((AB)∗AB)†B†BC(BC)∗BC)†(AB)∗ = (BC)†(((AB)∗AB(AB)∗)†B†BC(BC)∗)†.

〈84〉 ((BC)†)∗((AB)∗ABB†((BC)∗BC(BC)∗)†)† = (AB(AB)∗ABB†(BC(BC)∗)†)†AB.

〈85〉 ((AB)∗ABB†((BC)∗BC(BC)∗)†)†(AB)† = (BC)∗(AB(AB)∗ABB†(BC(BC)∗)†)†.

〈86〉 (((BC)(BC)∗BC)†(B†)∗((AB)∗AB)†)†(BC)† = (AB)†((BC(BC)∗)†(B†)∗(AB(AB)∗AB)†)†.

〈87〉 AB((BC(BC)∗BC)†(B†)∗((AB)∗AB)†)† = ((BC(BC)∗)†(B†)∗(AB(AB)∗AB)†)†BC.

〈88〉 ((AB)∗ABC(BC)∗)† = BC(AB(AB)∗ABC(BC)∗BC)†AB.

〈89〉 (AB(AB)∗ABC(BC)∗BC)† = (BC)†((AB)∗ABC(BC)∗)†(AB)†.

〈90〉 (((AB)∗AB)†B†BC(BC)∗)† = BC(((AB)∗AB(AB)∗)†B†BC(BC)∗BC)†((AB)†)∗.

〈91〉 (((AB)∗AB(AB)∗)†B†BC(BC)∗BC)† = (BC)†(((AB)∗AB)†B†BC(BC)∗)†(AB)∗.

〈92〉 ((AB)∗ABB†(BC(BC)∗)†)† = ((BC)†)∗(AB(AB)∗ABB†((BC)∗BC(BC)∗)†)†AB.

〈93〉 (AB(AB)∗ABB†((BC)∗BC(BC)∗)†)† = (BC)∗((AB)∗ABB†(BC(BC)∗)†)†((AB)†)∗.

〈94〉 (((AB)∗AB)†B†(BC(BC)∗)†)† = ((BC)†)∗((AB)∗AB(AB)∗)†B†((BC)∗BC(BC)∗)†)†((AB)†)∗.

〈95〉 (((AB)∗AB(AB)∗)†B†((BC)∗BC(BC)∗)†)† = (BC)∗(((AB)∗AB)†B†((BC)(BC)∗)†)†(AB)∗.

〈96〉 (AB(AB)∗ABC(BC)∗BC)† = (((AB)∗AB)2B†BC(BC)∗BC)†(AB)∗

and (AB(AB)∗ABC(BC)∗BC)† = (BC)∗(AB(AB)∗ABB†(BC(BC)∗)2)†.

〈97〉 (((AB)∗AB)2B†BC(BC)∗BC)† = (AB(AB)∗ABC(BC)∗BC)†((AB)†)∗

and (AB(AB)∗ABB†(BC(BC)∗)2)† = ((BC)†)∗(AB(AB)∗ABC(BC)∗BC)†.
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〈98〉 (((AB)∗AB)2B†BC(BC)∗BC)†(AB)∗ = (BC)∗(AB(AB)∗ABB†(BC(BC)∗)2)†.

〈99〉 (AB(AB)∗ABC(BC)∗BC)†((AB)†)∗ = ((BC)†)∗(AB(AB)∗ABC(BC)∗BC)†.

〈100〉 (AB(AB)∗ABC(BC)∗BC)† = (BC)∗(((AB)∗AB)2B†(BC(BC)∗)2)†(AB)∗.

〈101〉 (((AB)∗AB)2B†(BC(BC)∗)2)† = ((BC)†)∗(AB(AB)∗ABC(BC)∗BC)†((AB)†)∗.

〈102〉 (BC(BC)†(B†)∗(AB)†AB)† = ((BC)†(B†)∗(AB)†AB)†(BC)†

and (BC(BC)†(B†)∗(AB)†AB)† = (AB)†(BC(BC)†(B†)∗(AB)†)†.

〈103〉 (BC(BC)†(B†)∗(AB)†AB)†BC = ((BC)†(B†)∗(AB)†AB)†

and AB(BC(BC)†(B†)∗(AB)†AB)† = (BC(BC)†(B†)∗(AB)†)†.

〈104〉 ((AB)∗ABC(BC)†)† = BC((AB)∗ABC)† and ((AB)†ABC(BC)∗)† = (ABC(BC)∗)†AB.

〈105〉 ((AB)∗ABC)† = (BC)†((AB)∗ABC(BC)†)† and (ABC(BC)∗)† = ((AB)†ABC(BC)∗)†(AB)†.

〈106〉 ((BC)†(B†)∗((AB)∗AB)†)† = (((BC)(BC)∗)†(B†)∗((AB)∗AB)†)†((BC)†)∗

and ((BC(BC)∗)†(B†)∗(AB)†)† = ((AB)†)∗((BC(BC)∗)†(B†)∗((AB)∗AB)†)†.

〈107〉 (((AB)∗AB)†B†((BC)†)∗)† = (BC)†(((AB)∗AB)†B†((BC)(BC)∗)†)†

and (((AB)†)∗B†(BC(BC)∗)†)† = (((AB)∗AB)†B†(BC(BC)∗)†)†(AB)†.

〈108〉 (((AB)∗AB)†B†(BC(BC)∗)†)† = BC(((AB)∗AB)†B†((BC)†)∗)†

and (((AB)∗AB)†B†(BC(BC)∗)†)† = (((AB)†)∗B†(BC(BC)∗)†)†AB.

〈109〉 (ABC(B†BC)†(AB)†)† = ((B†BC)†(AB)†)†(ABC)†

and (BC)†(ABB†)†ABC)† = (ABC)†((BC)†(ABB†)†)†.

〈110〉 ABC((AB)†ABC)†(AB)† and (BC)†(ABC(BC)†)†ABC are orthogonal projectors.

〈111〉 ABC((AB)∗ABC)†(AB)∗ and (BC)∗(ABC(BC)∗)†ABC are orthogonal projectors.

〈112〉 (AB)†(ABC)(ABC)†AB and BC(ABC)†(ABC)(BC)† orthogonal projectors.

〈113〉 ABC(ABC)† and AB(AB)∗ commute, and (ABC)†ABC and (BC)∗BC commute.

〈114〉 ABC((AB)†ABC)†(AB)† and AB(AB)∗ commute, and (BC)†(ABC(BC)†)†ABC and (BC)∗BC
commute.

〈115〉 ABC((AB)∗ABC)†(AB)∗ and AB(AB)∗ commute, and (BC)∗(ABC(BC)∗)†ABC and (BC)∗BC
commute.

〈116〉 (AB)†ABC(ABC)†AB and (AB)∗AB commute, and BC(ABC)†ABC(BC)† and BC(BC)∗

commute.

〈117〉 AB((B†BC)†(AB)†AB)†(B†BC)†(AB)† and (BC)†(ABB†)†(BC(BC)†(ABB†)†)†BC
are orthogonal projectors.

〈118〉 ((AB)†)∗((B†BC)†((AB)∗AB)†)†(B†BC)†(AB)†

and (BC)†(ABB†)†((BC(BC)∗)†(ABB†)†)†((BC)†)∗ are orthogonal projectors.

〈119〉 (AB)†((B†BC)†(AB)†)†(B†BC)†(AB)†AB and BC(BC)†(ABB†)†((BC)†(ABB†)†)†(BC)† are
orthogonal projectors.

〈120〉 ((B†BC)†(AB)†)†(B†BC)†(AB)† and (AB(AB)∗)† commute, and (BC)†(ABB†)†((BC)†(ABB†)†)†

and ((BC)∗BC)† commute.

〈121〉 AB((B†BC)†(AB)†AB)†(B†BC)†(AB)† and (AB(AB)∗)† commute,
and (BC)†(ABB†)†(BC(BC)†(ABB†)†)†BC and ((BC)∗BC)† commute.
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〈122〉 ((AB)†)∗((B†BC)†((AB)∗AB)†)†(B†BC)†(AB)† and (AB(AB)∗)† commute,
and (BC)†(ABB†)†((BC(BC)∗)†(ABB†)†)†((BC)†)∗ and ((BC)∗BC)† commute.

〈123〉 (AB)†((B†BC)†(AB)†)†((B†BC)†(AB)†)AB and ((AB)∗AB)† commute,
and BC((BC)†(ABB†)†)((BC)†(ABB†)†)†(BC)† and (BC(BC)∗)† commute.

〈124〉 ABC(B†BC)†(AB)† and (BC)†(ABB†)†ABC are EP.

〈125〉 {(((AB)†)∗B†BC)(1,2,3)} 3 ((AB)†ABC)†(AB)∗

and {(ABB†((BC)†)∗)(1,2,4)} 3 (BC)∗(ABC(BC)†)†.
〈126〉 {(((AB)†)∗B†BC)(1,2,3)} 3 (((AB)∗AB)†B†BC)†(AB)†

and {(ABB†((BC)†)∗)(1,2,4)} 3 (BC)†(ABB†(BC(BC)∗)†)†.
〈127〉 {((AB)†ABC)(1,2,3)} 3 (((AB)†)∗B†BC)†((AB)†)∗

and {(ABC(BC)†)(1,2,4)} 3 ((BC)†)∗(ABB†((BC)†)∗)†.
〈128〉 {(((AB)∗AB)†B†BC)(1,2,3)} 3 (((AB)†)∗B†BC)†AB

and {(ABB†(BC(BC)∗)†)(1,2,4)} 3 BC(ABB†((BC)†)∗)†.
〈129〉 {(((AB)†)∗B†BC)(1,2,3)} 3 (B†BC)†((AB)†ABC(B†BC)†)†(AB)∗

and {(ABB†((BC)†)∗)(1,2,4)} 3 (BC)∗((ABB†)†ABC(BC)†)†(ABB†)†.
〈130〉 {(((AB)†)∗B†BC)(1,2,3)} 3 (B†BC)∗(((AB)∗AB)†B†BC(B†BC)∗)†(AB)†

and {(ABB†((BC)†)∗)(1,2,4)} 3 (BC)†((ABB†)∗ABB†(BC(BC)∗)†)†(ABB†)∗.
〈131〉 {((AB)†ABC(B†BC)†)(1,2,3)} 3 B†BC(((AB)†)∗B†BC)†((AB)†)∗

and {((ABB†)†ABC(BC)†)(1,2,4)} 3 ((BC)†)∗(ABB†((BC)†)∗)†ABB†.

〈132〉 {(((AB)∗AB)†B†BC(B†BC)∗)(1,2,3)} 3 ((B†BC)†)∗(((AB)†)∗B†BC)†AB
and {((ABB†)∗ABB†(BC(BC)∗)†)(1,2,4)} 3 BC(ABB†((BC)†)∗)†((ABB†)†)∗.

〈133〉 (AB(AB)∗ABC)(AB(AB)∗ABC)† = (ABC)(ABC)†

and (ABC(BC)∗BC)†(ABC(BC)∗BC) = (ABC)†(ABC).
〈134〉 R((ABC)†) = R((BC)†((AB)†ABC(BC)†)†(AB)†)

and R(((ABC)†)∗) = R(((BC)†((AB)†ABC(BC)†)†(AB)†)∗).
〈135〉 R(AB(AB)∗ABC) = R(ABC) and R((BC)∗BC(ABC)∗) = R((ABC)∗).
〈136〉 r[AB(AB)∗ABC, ABC] = r[(BC)∗BC(ABC)∗, (ABC)∗] = r(ABC).
〈137〉 r[((AB)∗AB(AB)∗)†B†BC, ((AB)†)∗B†BC] = r(((AB)†)∗B†BC)

and r[(BC(BC)∗BC)†(ABB†)∗, (BC)†(ABB†)∗] = r((BC)†(ABB†)∗).

Theorem 4.5. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following three statements are
equivalent:

〈1〉 (ABC)† = (BC)†((AB)†ABC(BC)†)†(AB)†.
〈2〉 (ABC)† = (BC)†((AB)†ABB† + B†BC(BC)† − B†)†(AB)†.
〈3〉 (((AB)†)∗B†((BC)†)∗)† = (BC)∗((AB)†ABB† + B†BC(BC)† − B†)†(AB)∗.

Corollary 4.6. Let A ∈ Cm×n, B ∈ Cn×p, and C ∈ Cp×q. Then the following two statements are
equivalent:

〈1〉 (ABC)† = (BC)†((AB)†ABC(BC)†)†(AB)†.
〈2〉 (((AB)∗AB)1/2B†(BC(BC)∗)1/2)† = ((BC(BC)∗)1/2)†((AB)†ABC(BC)†)†(((AB)∗AB)1/2)†.
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If (AB)†ABC(BC)† = B†, then (1.18) is reduced to (ABC)† = (BC)†B(AB)†. In this case, it is easy
to obtain a group of equivalent statements associated with the nested ROL from Theorem 4.4, which
we leave for the reader.

As applications of the results in Sections 3 and 4, we are able to establish and simplify many other
types of matrix expressions and matrix equalities that involve generalized inverses. Here, we mention
a convenient way to rewrite the sum A + B, where A, B ∈ Cm×n, as the following products of triple
block matrices:

A + B = [Im, Im]
[
A 0
0 B

] [
In

In

]
, A + B = [A, B]

[
A† 0
0 B†

] [
A
B

]
,

A + B = [AA†, BB†]
[
A 0
0 B

] [
A†A
B†B

]
, A + B =

1
2

[Im, Im]
[
A B
B A

] [
In

In

]
.

In these situations, applying the preceding theorems and corollaries to the triple matrix products on
the right-hand sides of the four matrix equalities will correspondingly yield several groups of results
on the generalized inverses of the sum of two matrices. But we omit them here due to space limits.

5. Conclusions

We have collected and established a myriad of known and novel nested ROLs for generalized
inverses of triple matrix matrices. These ROLs and their variations can be classified as concrete
examples in the establishment and characterization of various matrix equalities of generalized
inverses, so that they provide highly informative accounts of a variety of current researches
concerning equalities for matrices and their generalized inverses, and of course can be used as
analytic tools to deal adequately with various theoretical and computational problems in the theory of
generalized inverses of matrices.

As demonstrated in the preceding sections, ROLs for generalized inverses of multiple products of
singular matrices can reasonably be constructed in numerous regular and nested forms, which seem
quite complicated in contrast with the ordinary inverses of nonsingular matrices. To illustrate, we
present several examples of nested ROLs for the Moore–Penrose generalized inverses of products of
four matrices as follows

(ABCD)† = (CD)†C(BC)†B(AB)†,
(ABCD)† = D†(C†CDD†)†C†(B†BCC†)†B†(A†ABB†)†A†,
(ABCD)† = D†(CDD†)†((A†AB)†BC(CDD†)†)†(A†AB)†A†,
(ABCD)† = (BCD)†((ABC)†ABCD(BCD)†)†(ABC)†,
(ABCD)† = D†(CDD†)†(B(CDD†)†)†(((A†AB)†BC)†(A†AB)†BC(CDD†)†(BC(CDD†)†)†)†

× ((A†AB)†BC)†(A†AB)†A†.

Recall that classification becomes a common theme across all areas of mathematics as various
problems, formulas, results, and facts in each field increase gradually. Thus, the equivalence
classifications of the ROLs have naturally been proposed and have become one of the challenging but
fruitful working areas in the theory of generalized inverses. Nevertheless, the past several decades
have seen magnificent breakthroughs via successful adaptation of the matrix rank method and the
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block matrix method in the investigation of ROLs. By now, the classification program has proven a
resounding success in the establishment of matrix equalities composed of generalized inverses, in
particular, it has been realized that all ROLs for generalized inverses of multiple matrix products can
be divided into certain groups, for which we can approach jointly and obtain many equivalent facts
with great efficiency.
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