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1. Introduction

The measure of noncompactness (MNC) performs an important character in real world problems.
First of all, the fundamental paper of Kuratowski [1] in 1930 open up a new direction of MNC to
solve diffent type of Functional equations, which comes from the diffent real life problems. Using the
notion of MNC, Darbo [2] in 1955 ensure that the endurance of fixed points, which is obtained by
the generalization of Schauder fixed point theorem (SFPT) and banach contraction principle. Many
authors using the notion of MNC generalize Darbo fixed point theorem (DFPT) which ensure that
the endurance of fixed point to solve various kind of integal or differentail equations. Up to now,
many authors have been published several papers using the notion of generalization of DFPT and
MNC [3-14].

Our purpose of present paper is to extend the DFPT and we aaply our obtained results to find the
existence of solutions of the functional differential equations.

At the beginning we provide concepts, notations, definitions and the preliminaries, which will be
used all over the present paper.
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2. Definition and preliminaries

The set of real numbers is symbolize by R, R, = [0, c0) and the set of natural numbers by N. Let
(&, || . |I) be real Banach spaces. If  is a nonempty subset of = then Q and ComQ, symbolize the
closure and convex closure of Q respectively. Also, let Mz symbolize the set of all nonempty and
bounded subsets of = and Nz is the subset of all relatively compact sets.

Banas and Lecko [15] have given the definition of MNC which is given below.

Definition 2.1. A MNC is a mapping y : Mz — R, if it fulfills the following constraints for all
Q, Q, Q€ ME.

(M,) The family ker y = {Q € Mz : x (Q) = 0} is nonempty and ker y C Nz.
(M) Q1 CQy = () < x ().

(M3) x (@) = x (@)

(My) x (ConvQ) = x ().

(Ms) x (kQ + (1 — k) Q) < ky (Q) + (1 — k) x (Qy) fork € [0,1].

(Mg) if Q, € Mz, Q, =Q,, Q.1 € Q, forn =1,2,3,... and lim y (Q,) = 0, then ﬂ Q, # 0.

n=1

We are going to define the Concept of operator S (e;.) which was introduced by Altan and Turkoglu
[16].

Definition 2.2. Let A(R,) be the set of fuctions f : R, — R, and let Z be the set of functions
S(e;.) : ARy) = A(R,), which fulfills the following constraints:

(01) S(f;0) >0 for o> 0and S(h;0) = 0,

(02) S(f301) <S(fs02) foroy <0,

(0) lim S(f;0,) = S(/; lim 7,),

(O4) S(f;max{oy,02}) = max{S(f;071),S(f;02)} for some f € AR,).

Theorem 2.1. (Schauder) [17] A mapping A : Q — Q which is compact and continuous has at least
one fixed point for a nonempty, bounded, closed and convex (NBCC) subset Q of a Banach space E.

DFPT is generalize by resting the compactness of Schauder‘s mapping and theorem is known as
SFPT.

Theorem 2.2. (Darbo) [18] Let A : Q — Q be a continuous mapping and y is an MNC. Then for any
nonempty subset @ of Q, there exists a k € [0, 1) having the inequality

x (Ap) < kx(p).

Then the mapping A have a fixed point in Q.
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Isik et al. [10] introduce a function f to generalize the Banach contraction, we find various type of
contraction mapping.

Theorem 2.3. Let A : Q — Q be a continuous self-mapping, where (€, p) is a complete metric space.
Then for all vy, € E there exists a mapping [ : R, — R, such that lir(r)l f(r)=0, f(0)=0,

p(A&y, Ad) < f(p(y,6)) — f (p(Ay, Ad)).
Then A contains a unique fixed point.
Parvenah et al. [10] generalized DFPT as follows:
Theorem 2.4. Let A : Q — Q be a continuous operator defined on a NBCC subet Q) of E having the

inequality
X(Ap) < f (x(9) = f (x(Ap)),
forall p C Q, where f : R, — R, with }E& f(r) =0, f(0) =0, and y is an MNC. Then A contains a
fixed point in Q.
Remark 2.1. Remember that Theorem 2.4 generalize DFPT. Since A : ¢ — ¢ is a Darbo mapping.

Then for all p C = there exists k € [0, 1) having the property y (Ap) < kx ().
So with the help of inequality, we have

k
Ap) <k < ——x(p),
x (Ap) < ky(p) i W_cx(go)

for all p C E.

Consequently
kx (Ap) + (1 = Viox(Ap) < kx(p),
(1 = Vix (Ap) < kx(p) — kx(Ap).
So
x (Ap) < £ X (9) — £ X (Ap).
1- Vk 1- vk
Taking f(r) = —£-7, we have y(Ap) < f (x(p)) — f (x(Ap)) for all p c Z. Therefore the Darbo

1-Vk
Theorem is a specific case of contraction mapping of Theorem (2.4).

3. Main results

Let us recall an important theorem in this work which extends DFPT by taking the concept of S (4; .).

Theorem 3.1. Let (5,]| . ||) be a Banach space. Suppose A : = — Z is a continuous, nondecreasing
and bounded mapping fulfills the following inequality

x(Ap) x(Ap) x(©) X(©) X(Ap) X(Ap)
S [h; f a(tydr + ¢[ f ﬂ(T)dT]] < f[S [h; fﬂ'(T)dT + ¢[f7r(‘r)dr]]] - f[S [h; f n(t)dr + ¢[ f ﬂ(T)dT]]],

0 0 0 0 0 0
3.1
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for all bounded ¢ of 2, where y is MNC, h € AR,), S(e;.) € Z, ¢, : R, — R, is continuous

functions and [ : R, — R, is a function as lirgl f(r) =0, f(0) =0. Then A contains at least one fixed
point.

Proof. Assume that g, with 9y = ¢ and @,.,; = conv(Agp,) for all n > 0.

Also, Apy = Ap C 9 = 9o, 91 = conv(Apy) C 9 = . Since @, 1s a closed and bounded subset in
and

[x]

00D 91Dy ey D P Dy e 3.2)
Following (3.1), we have

X(9ns1) X(Pn+1) x(conv(Apy)) x(conv(Apy))
S [h; f a(t)dr + gb[ f ﬂ(T)dT]] =S [h; f a(t)dr + gb[ f ﬂ(T)dT]) ,
0

0 0

x(Apn) X(Apy)
S = [h; f 7T(T)d‘l'+¢[ f ﬂ(T)dT]]

0

0

0

X(9n) X(9n) X(Apn) X(Apn)
<f [S [h; f n(t)dr + ¢[ f JT(T)dT]]] - f {S (h; f a(t)dr + ¢[ f ﬂ(T)dT]]].
0 0

0 0

Taking the limit as n — oo on both the sides of this inequality, we have

X(App) X(Apn)
lim S [h; f a(t)dt + ¢[ f ﬂ(T)dT]]

0 0

X(©n) X(©n) Xx(Apn) Xx(Apy,)
< lim f [S [h; f n(t)dt + ¢[ f JT(T)dT]]] — lim f [S [h; f n(t)dr + (;5[ f ﬂ(T)dT))].
0

0 0 0

X(9n) X(9n)
lim S [h; f n(t)dr + gb[f ﬂ(T)dT]] =0.

0

Therefore

0

By the virtue of (iii) of Definition S (4;.), we get

X(9n) x(pn)
S {h; lim f m(t)dt + lim ¢[ f n(r)dr]] =0,

0 0

X(9n)
and therefore lim f n(t)ydr = 0.

n—o0
0

But for any € > 0, fﬂ(T)dT > 0, then y(p,) = 0asn — oo.
0
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Now since g, is nested sequence, by the definition of (MNC) of (M), we conclude that 9o, = N, 9,
is NBCC of Z. Also we aware that 9., € kery. Therefore g, is compact and invariant under the
mapping A. Therefore by the SFPT, A has a fixed point in @.,. O

Remark 3.1. Putting 7(7) = 1 for 7 € [0, o) in Theorem 3.1, we have

S (h; x(Ap) + ¢ (x(Ap))) < f(S (s x(9) + & (x(©)) — (S (h; x(Ap) + ¢ (x(Ap)))) .
Remark 3.2. Take ¢ =0, S(h;7) =71, h=1in Remark(3.1), then we have

X(Ap) < fx(9) - f ((Ap)).
It is a generalization of the result given by Parvenah et al. [10].

Definition 3.1. [19] A mapping A : E X E X E — Z is said to have a TFP (y, 6,0) € =3 if
A(y,6,0) =y, A(y,6,0) =06, A(y,0,0) =6.

Theorem 3.2. [I8] Let x1, x2, ..., Xn be the measure of noncompactness of 2, Z,, ..., &, respectively.
Also assume that the function B8 : R,” — R, is convex and B(y1, v, ....¥:) = 0 if and only if y, = 0 for
r=1,2,..,7. Then
X(©) = B(x1(01), x2(02), ..., xn(By)).

Example 3.1. [20] Let B(y, 6,6) = max{y, 6,6} for (y,6,0) € R,>. Now B(y, 6,6) = max{y,d,0} =0
iff y =6 =6 = 0. Then B is convex and satisfied all conditions of Theorem 3.2. Therefore y(®) =
B(x1(01), x2(0), x3(03)) is an MNC on E; X &, X =3, where y be an MNC in Z and ©; is the natural
projections of Z into Z; for j = 1,2, 3.

Example 3.2. [20] Let B(y,6,0) = vy + 6 + 0 for (y,6,0) € R,>. Now B8(y,6,0) = y+6+60 =0
iff y =6 =6 = 0. Then B is convex and satisfied all conditions of Theorem 3.2. Therefore y(®) =

B(x1(01), x2(02), x3(03)) is an MNC on E; X Z, X E3, where y be an MNC in Z and X is the natural
projections of Z into Z; for j = 1,2, 3.

Theorem 3.3. Let C be a NBCC subset of a Banach space E and let A : CXCXC — C be a continuous
mapping such that

S(fsx(A(O; X 0, X 03))) = w[S (f; x(O1) + x(02) + x(O3))] — w[S (f; x(AO)) + x(AB,) + x(ABO3))],

forall ®,0,,0; € C, y is MNC and w : [0, 00) — [0, o0) is such that lirgl w(t) =0, w() =0. Also
S(fs)eZand S(fiti+12+13)=S(f;11)+S(f;72) +S(f;T3)f0rallT1:T2,T3 > 0. A has at least a
triple fixed point.
Proof. We define a mapping A : C; — C; by
A(y, 6,60) = (A(y, 6,6), A6, v, 0), A8, 8, 7y)) for all (y, 6, 0) € Cs.
Ais continuous, since A is continuous.
We know that y(0) = x(0;) + x(0;) + x(03),
where 0, ®,, @3 denotes the natural projections of C. Suppose ® C C? be a nonempty subset.
Now using the Theorem 3.3,we get

S(f: £(A®)) < S(f; (A®; X B X B3) X A(O, X O X O3) X A(®;3 X O, X 0))))
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< S(fsX(AO; X Oy X O3) + S(f; Y (A2 X O X ©3))) + S (f; X(A(@3 X Oy X )

< w(S (s x(01 X Oy X 03))) — w(S (f; x(A(O; X O, X ©3))))

+w(S (f; X(@2 X ©1 X 03))) — (S (f; ¥(A(®2 X ©1 X 03))))

+w(S (f;X(@3 X Oy X 0))) — w(S (f; ¥(A(®; X O, X 0))))
< [w(S (fs x(01) + x(©2) + x(©3)) — w(S (f; x(AOy) + x(A®,) + x(AB3)))]
+Hw(S (f; x(02) + x(01) + x(©3))) — w(S (f; x(AB,) + x(AB)) + x(AB3)))]
+Ha(S (f; x(O3) + x(O2) + x(01))) — w(S (f; ¥(AB3) + x(AB,) + x(AO1)))]

< 3w(S (f; £(©))) - 3w(S (f; 1 (A®))).

1

3V, We have

S(f; 2(A®)) < W(S (f; 2(©))) — v(S (f; £ (A®))).

Now from the Theorem 3.1, we conclude that A has at least a triple fixed point. O

Putting w =

Remark 3.3. By taking S(f;7) =7, v(r) =71, f =1Iin Theorem 3.3, we get the corollary which is
given below.

Corollary 1. Let A : C x C x C — C be a continuous function defined on a NBCC subset C of = in
such a way that

1
X(AO; X 0, X 03)) < E[X((al) + x(07) + x(03)].
Then A has a TFP.

4. Applications

This section contains the applicability of Theorem 3.1 and Corollary 1 by using the system of
equations which is defined as

&1(y) = h(y, £(4(1), v(£(1)), w({ (D)), & (n()), v (n(7)), wr(1(7))),
vI(y) = h(y, v({(1)), w({(7)), £(L(7)), v (11(7)), w((7)), £7(11(T))), (4.1)
wr(y) = h(y, w({(7)), £((1)), v(£(1)), w(1(7)), £1(1(T)), v (11(7))),
where y € [0, T'] with the initial state £(0) = &, v(0) = vy and w(0) = wy.
Suppose that the space of all bounded continuous function defined on [0, 7] is C[0, T'] equipped
with the standard norm
Iyl = supily(l:  7€[0,T]}.

A function having Modulus of contiunity for y € [0, T'] is defined as
(,()('y, 6) = Sup{|Y(T1) - 7(7'2)| LT, T2 € [Oa T]a |T1 - T2| < 6}5

w(y,e) = 0 as € — 0, because vy is continuously uniform on [0, 7']. The Hausdorff MNC for every
bounded subset g of C[0, T'] is

u(p) = lim {Sup wW(y, 6)} .

—V ye®

Now, we construct the assumptions by which the system of integral Eq (4.1) will be studied.
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(1) ¢,n:[0,T] — [0, T] are the functions which are continuous.

(ii) For a continuous function 4 : [0,7] x R® — R there exists a continuous function ¢ : R, — R,
with ¢(0) = 0 and ¢(1) < 7 for all T > 0 and also satisfy

S (f;|h(T, y15 err Y6) — (T, 01, ..., O6)|)
1
< ¢(S(f; {rsll;ag{lyi - 6l-|})) + ES (fs max{lys — 6a4l,lys — 0sl, lys — d6l}) -

(iii)) M = sup{S (f; |h(t, &0, Vo, 20,0, 0)])} < oo, where 7 € [0, T] and S(f;€) < €.
(iv) There exists ry such that
¢S (f; Arg)) + %S(f; 3ro) + M < ry.
Theorem 4.1. The system (4.1) with the assumptions (i) — (iv) has at least one solution which belongs
to the space {C[0, T} .
Proof. Assume that U(t) = ér(1), V(1) = vr(1), W(t) = wr(1). Then our system of Eq (4.1) can be

written as the system of integral eqautions

{() 4(@) 4()
U =h(T,§o+ [ &o)do,vo + [ v(o)do,wo + [ wlo)do,£(n()), V(n(T)),W(n(T))],
0 0 0

{(r) {(n) 4(7)

V(1) =h(f, vo+ [ veddo,wo+ [ w(odo, & + [ £(o)do, V(n(T)),W(n(T)),f(n(T))), (4.2)
0 0

0
{(1) 4(7) {(7)

W(T)=h[T,WO+ [ wlo)do, & + [ &)do,vo + [ v(o)do, wn(r)), Em(T)), V(n(T))),
0 0 0

where 7 € [0, T'].
Assume A : C[0,T] — C[0, T] be a operator with

(1) {(7) (1)
AE v, w)(®) = |7 + f £(0)do. vo + f Vo)do, wo + f w(o)do, EGr(D)), v(n(r»,w(n(r))].
0 0 0

We notice for every v € C[0,T], the mapping A is continuous i.e A maps the space C[0, T] into
itself.
For fixed arbitrary 7 € C[0, T] and f € F([0, 0)), we have from the assumptions (i) — (iv),

S (f; A, Y, W)(T)I)
(@) {@) £

=S (f; h(T,§o+ f &(o)do, vy + f v(0)do, wo + f W(Q)dQ,§(n(T)),V(n(T)),W(n(T)))
0 0 0
(1) (1) (1)

h(T,§o+ f &(o)do, vy + f v(0)do, wo + f W(Q)dQ,é-’(n(T)),V(n(T)),W(n(T)))
0

0 0

|

-

<s(r
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- h(T’ é‘:O’ Yo, Wo, Oa 09 O)

) + S(f (T €9, v, W, 0, 0, 0)])

4(r) {(0) {(n)

f £(0)do f V(o)dol. f w(g)d@‘ ))
0 0 0

1
+35 (f NE@EN] + Ivn(o)| + Iwn(O)l | + S (f; 1h(T, €0, vo, wo, 0,0, 0)])

’

< ¢(S(f;max

1
< ¢(S(f;Amax{ll§ll, vl IIWII})) + ES S IEN+ ]+ IIWII) + M.
Thus

1
S(fIIAE, vow)(DI) < ¢(S (fs Amax {ligll. (V1L IwlID + 55 (11l + vl + IIWII)) + M,

and
A, v,w) € C[0,T].

Due to the inequality ¢ (S (f; Arp)) + %S (f;3ry) + M < ry, the function A maps (Bm)3 into (B,,).
Now we prove that A is continuous on (B,0)3.
Let fixed arbitrary € > 0 and take (y, 8, 6), (£, v, w) € (B,,)* such that

max{[ly — &I, 16 = vl |6 — wll} < e.

Therefore for every ¢ € [0, T], we get

S (f:1A(y, 6,0)(7) = A€, v, w)(T)])

<S|f

(1) () (1)
h[r, Xo + f x(0)do, yo + f y(0)do, 7o + f z(0)do, X(n(f)),y(n(f)),z(n(f))] |]

0 0 0

-S|/

{(7) {(7) {(7)
h[T,§o+ f &(0)do, vo + f v(0)do, wy + f W(Q)dg,f(n(r)),V(n(f)),w(n(r))] ‘]
0 0 0

{(7) (1) {(7)
< 6|8 | £ 7 max ] xo - &l + f 1x(s) — E@)do, yo — vol + f (s) — V(o) lzo — wol + f 12(s) — w(s)lds
0 0 0

1
+ 35 (/s max {lx(n(r)) = En)L. y(n() = ()L, [2@(1)) = win@)I)

1
<o (fie+Ae)+ ES (f56).
Thus, we have ¢ (S (f; € + Ae€)) + %S (f;e) > 0ase— 0.
Therefore A is a continuous function on (B,,)*. Now, we shall show that A satisfy all the conditions

of Corollary 1. To do this, let U, V and W are nonempty and bounded subsets of (B,,) and € > 0 is
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constant. Moreover we take 7,7, € [0, T] with |1, — 7| < eandé e U, veV and we W.

Then we have

S (f Ay, 6,0)(1) — A€, v, W)(T)I)
&) &) ¢

B, & + f £(o)do, vo + f v(o)do, wo + f w()do, () V(e ) w(n(m )
0 0

= S(f;
4() 4(1) 4

—h(ri,é + f £(o)do. vo + f Vo)do, wo + f W(©)do, E(T2)), v(I(T2)), w(n(n)))'
0 0
(1) (1) L(ry)
+S5 (f;
(1) (1) L(r1)
(o + f £()do, vo + f v©)do, wo + f w(o)do, Em(T2)), v((r2)), w(n(n)))'
h(tas o + f £()do, vo + f v©)do, wo + f w(o)do, E(n(r2)), vn(r2)), w(n(r))
0 0
0
(1) (1) (1)
+S (f;
(1) £(11) L(ty)
— h(ra, & + f £(o)do. vo + f Vo). wo + f w(o)do, £G1(z), v(n(T2), w(n(n)))'

Wt + f £()do, vo + f v©)do, wo + f w(o)do, Em(T2)), v(n(T2)), wi(E2)))
0 0
0 0
+S5 (f;
(1) (1) L(t1)
h(ras o + f £(0)do, v + f v(o)do, wo + f w()do, E(T2)), v(1(z2)), w(n(T))
0 0

(1) (1) L(r1)
— h(ra, & + f £(o)do. vo + f v(o)do, wo + f w(o)do, £G1(72), v(n(T2), w(nm)))'
0
0 0

1
<3 (f max {{£((71)) = E0(T2))], V(7)) = v(n())l, w(n(T1)) — W(n(tz))l})

{(12) {(12) {(12)
+S(f: ol e))+¢( (f maxt f E©)ldo, f vo)ldo, f |w<g>|dg}))

(t1) L(r1) {(11)

1

2

where w(n, €) = sup{In(r2) —n(r)l: |11 —7l<e ,71,72€[0,T]}
w(l,e) =sup{l{(r) = L) : |ti—7l <€ ,7,72€[0,T]},

w(, w(n, €)) = sup{lg(T) =&l 111 — T2l S w(n,€) 71,72 € [0,n(T)]},
w(h’ 6) = SUP“h(Tl")’l, ooy Y6) - h(TZ’ Yis-es 76)| : |Tl - TZl <€ ,T,T2 € [09 T]} ’

(f max {w(, w(n, €)), w(v, w(1, €)), w(w, w1, €))} )+ S(fs w(h, ) + ¢(S (f max row({, €))),
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and yi, ..., Y6 € [=10, 1ol
We infer that

S (f11ACy, 6,0)(7) = A€, v, w)(T)])
1
< 58 (fsmax{w(&, w(r. ), (v, (. €)), w(w, W, D)) + S (f; w(h, €)) + (S (f; max row(, €))).

Therefore we get
S (fs (A(UXV x W), e)
< 18 (fy max {w(U, w(, €)), o(V, w1, €)), (W, w(n, )}) + S (f; w(h, €)) + ¢(S (f; max row({, €))).
Since h,n, { are uniformly continuous on [0, T'] X [—ry, rol?, [0, T] and [0,T] respectively, we get
wh,e) > 0, wn,e) >0 and w(l,e) >0 as € = 0.
By taking S(f;7) =17, O =U, O, =V, O; =W, f =1 and from the MNC definition, we
have y(©; X ©, X ©3) < 1 (max {y(©)), x(0), x(®3)}).
By the Corollary 1, A has at least a TFP. O

S. Example

Example 5.1. Let the system of differentail equations is as

7
£nr) = 72 4 e @* "D+ Log(1 + [or(z) + vr() + wr(D))),
yi(7) = 72 + IO é’?* "D+ Log(1 + vr(z) + wi(z) + €())), (5.1)
wr(T) =12 + e+ ‘;THW + 2log(1 + [wr(T) + €1(T) + (7).

with the state condition £(0) = 1, v(0) =3, w(0) =2 and 7 € [0, 5].
System of Eq (5.1) is the particular case of Eq (4.1) where (1) = 7 = n(7),
By the definition of ¢ and 8 assumption (i) is satisfied.

M(T, Y150 Y6) = T+ Vo ;(THW + 2 log(1 + [&7(7) + v1(T) + wr(T)).
Now assume that 7 € [0,T], S(f;7) =7, and ¢(r) = max;_35-,{V7},
we get

|f(T’ Viseees 76) - f(T7 Visoees 76)'
BV4% —%1|+|W —‘5/52|+|\7/7 —‘7/53| 1

< — = 2 + 2llog(l + bya + s + ¥el) = log(1 + 164 + &5 + S6l)

< |W1_%1|+|W2_‘5/52|+|W3_‘7/53|+110 1+|74+7’5""}’6|—|54‘|‘55+(56|

N 3 6 & 1 + +|64 + 05 + 66|

- Vvt = 611+ ly2 — 62l + lys — 65

- 3

- Vi = 61l + V2 — 6ol + flys — 65

- 3

1
= g(max Yilya — 04l lys — 0sl, lye — O6l}) + dp(max yi—i23{lyi — 6il}).

1
+ 5 log(1 + |ys + s + Y6 — (04 + 05 + J6)])

1
+ 5 log(1 + |ys — 64l + lys — 65 + |y — O6l)
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Hence assumption (if) is satisfied. Moreover

M = Sup{lh(T9 7’0, 50’ 009 0’ 09 O) . TE [0, T]}
:sup{12+\3/T+\5/§+\7/§: 7 €[0,5]}
<29.

It is simple to notice every number r > 75 fulfills the inequality given in (iif).
Now the inequality in assumption (iv) is ¢ (S (f; Arg)) + éS (f;3rg) + M is equal to

o(5r) + é(3r) +29 <r.

Hence, as the number r, we can take ry = 75. Therefore, all the assumptions of Theorem 4.1 are
satisfied. Hence the system of Eq (5.1) have at least one solution which belongs to {C[0, ]}’ space.

6. Conclusions

The present paper concentrated on multiple FPT which is based on the generalization of DFPT via
MNC. In this work, by using the concept of operators we extend DFPT by using MNC. We demonstrate
the endurance of TFP by our extended DFPT and MNC. At the last we yield an example which fulfills
our findings.
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