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Abstract: This paper is mainly concerned with the existence of multiple solutions for the following
boundary value problems of fractional differential equations with generalized Caputo derivatives: C

0 Dα
g x(t) + f (t, x) = 0, 0 < t < 1;

x(0) = 0, C
0 D1

gx(0) = 0, C
0 Dν

gx(1) =
∫ 1

0
h(t)C

0 Dν
gx(t)g′(t)dt,

where 2 < α < 3, 1 < ν < 2, α − ν − 1 > 0, f ∈ C([0, 1] × R+,R+), g′ > 0, h ∈ C([0, 1],R+),
R+ = [0,+∞). Applying the fixed point theorem on cone, the existence of multiple solutions for
considered system is obtained. The results generalize and improve existing conclusions. Meanwhile,
the Ulam stability for considered system is also considered. Finally, three examples are worked out to
illustrate the main results.
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1. Introduction

The fractional calculus is a branch of mathematics, which studies the integration and differentiation
of any order in real or complex field. In 1832, the fractional derivative was first formally proposed
by Liouville. See [1, 2] for more knowledge on fractional calculus. The fractional order differential
equation (FDE, for short) is a generalization of classical integer order differential equation as well,
which can describe complex with simple modeling, clear physical meaning of parameters, accurate
selection and so on. Hence, it becomes an important tool for mathematical modeling of complex
machines, physical processes, fluid dynamics, finance and other areas of applications (see [3, 4] and
references therein). In recent decades, more and more researchers pay much attention to the fractional
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differential equations and have obtained substantial achievements. For example, S. Salahshour and
A. Ahmadian et al. researched the heat transfer problem with a approach of fractional modeling [5],
successive approximation method for Caputo q-fractional IVPs [6] and M-fractional derivative under
interval uncertainty [7]. N. Sene investigated chaotic system involving Caputo fractional derivatives
in [8, 9]. [10–12] were concerned with fractional diffusion equation. [13, 14] studied infinitely
many solutions for impulsive fractional boundary value problem with p-Laplacian and for fractional
schrodinger-maxwell equations, respectively. [15–17] analyzed the Ulam stability of nonlinear FDEs.
[18, 19] investigated the controllability for two classes of semilinear fractional evolution systems.

In the last few years, boundary value problems of fractional differential equations (FBVPs, for
short) have been extensively studied. Most of them have been considered in the frame of standard
fractional derivatives such as Rieman-Liouvile and Caputo derivatives. For instance, [20] is concerned
with positive solutions of a two-point boundary value problem for singular fractional differential
equations in Banach space. [21–23] developed bifurcation techniques for FBVPs. [24–26] investigated
positive solutions for FBVPs. [27, 28] dealt with coupled fractional differential systems with nonlocal
boundary conditions. [29–31] studied FBVPs via critical point theory. [32, 33] were concerned with
the solvability for multi-order nonlinear fractional systems and periodic boundary value problems of
nonlinear fractional hybrid differential equations. [34] investigated positive solutions for nonlinear
discrete FBVPs with a p-laplacian operator.

More generally, A. Babakhani in [35] considered d
dt

CDα
0+

u(t) + q(t) f (u(t), u′(t)) = 0, 0 ≤ t ≤ 1, 1 < α < 2,
u(0) = 0, u(1) = v > 0, (CDα

0+
u)(1) =

∫ 1

0
(CDα

0+
u)(s)dg(s),

where CDα
0+

is the Caputo fractional derivative of order α, f : [0, 1] × R2 → R is a given continuous
function and g : [0, 1] → [0,+∞) is nondecreasing function. By constructing a special cone, the
existence of at least one positive solution was obtained under some suitable assumptions. In [36], Y.
Li studied the following fractional q-difference equations involving q-integral boundary conditions:

Dα
q x(t) + f1(t, y(t)) = 0, 0 < t < 1;

Dα
qy(t) + f2(t, x(t)) = 0, 0 < t < 1;

x(0) = 0, D1
qx(0) = 0, Dν

qx(1) =
∫ 1

0
h(t)Dν

qx(t)dqt;
y(0) = 0, D1

qy(0) = 0, Dν
qy(1) =

∫ 1

0
h(t)Dν

qy(t)dqt,

where 2 < α < 3, 1 < ν < 2, Dν
q is α-order Riemann-Liouville’s fractional q-derivative. The existence

of nontrivial solutions is obtained by using topological degree theory.
With the development of investigation on fractional derivatives, new concepts are constantly being

put forward. For instance, F. Jarad et al. proposed a new kind of generalized fractional derivatives
and studied their properties in [37, 38]. N. Sene investigates fractional advection-dispersion equation
described by the Caputo left generalized fractional derivative in [39]. [40] studied Ulam stabilities of
fractional differential equations including generalized Caputo fractional derivative. However, to our
best knowledge, there are few studies on the existence of multiple solutions and Ulam-Hyers stability
for integral boundary value problems of FDES with generalized Caputo derivatives. The purpose of
present paper is to fill this gap.
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Motivated by the above discussions, this paper studies multiple solutions and Ulam-Hyers stability
for the following FBVPs with generalized Caputo derivatives C

0 Dα
g x(t) + f (t, x) = 0, 0 < t < 1;

x(0) = 0, C
0 D1

gx(0) = 0, C
0 Dν

gx(1) =
∫ 1

0
h(t)C

0 Dν
gx(t)g′(t)dt,

(1.1)

where 2 < α < 3, 1 < ν < 2, α − ν − 1 > 0, f ∈ C([0, 1] × R+,R+), g′ > 0, h ∈ C([0, 1],R+),
R+ = [0,+∞). The main features of this paper are as follows. Firstly, compared with the above
mentioned references, BVP (1.1) is studied in the sense of generalized Caputo fractional derivatives,
which is also different from fractional q-difference equations in [36]. Secondly, the fractional boundary
value condition we consider here is of integral form, and that makes BVP (1.1) more widely applicable
in solving practical problems. Thirdly, the used approach in this paper has certain advantages over
some references listed as above. In detail, the distinctive tool used here is the first eigenvalue of
corresponding linear operator. At the same time, a suitable cone is established by researching properties
of Green’s function deeply. So the positive solutions can be obtained by means of the cone expansion
and compression fixed point theorem and Leggett-Williams theorem. Finally, the Ulam-Hyers stability
and generalized Ulam-Hyers stability for BVP (1.1) are also studied under some suitable assumptions.

The remainder of this paper is organized as follows: Some basic knowledge of fractional calculous
and some preliminary results are given in Section 2. The existence results will be given and proved
in Section 3. And in Section 4, the Ulam-Hyers stability and generalized Ulam-Hyers stability will
be established. Three examples are worked out to illustrate the main results in Section 5. Finally, the
conclusion and some future works are given in Section 6.

2. Preliminaries

Definition 2.1. [38] (1) Let g ∈ Cn[a, b] such that g′(t) > 0 on [a, b]. Define

ACn
g =: { f : [a, b]→ C and f [n−1] ∈ AC[a, b]},

where f [n−1] = (
1

g′(t)
d
dt

)n−1 f .

(2)
Cε,g[a, b] =: { f : (a, b]→ R such that (g(t) − g(a))ε f (t) ∈ C[a, b]},

where C0,g = C[a, b].
(3)

Cn
ε,g[a, b] =: { f : (a, b]→ R such that f [n−1] ∈ C[a, b] and f [n] ∈ Cε,g[a, b]},

where Cn
0,g = C[a, b].

Definition 2.2. [38] (1) The Riemann-Liouville fractional integral of order α ∈ R+ of a function f on
a finite or infinite interval (a, b) is defined as follows:

(aIαy)(t) =
1

Γ(α)

∫ t

a
(t − s)α−1y(s)ds.
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(2) The Riemann-Liouville fractional derivative of order α ∈ R+ of a function f on a finite or infinite
interval (a, b) is defined as follows:

(aDαy)(t) =
1

Γ(n − α)
(

d
dt

)n
∫ t

a
(t − s)n−α−1y(s)ds,

where n = [α] + 1, g(i) , 0, i = 1, 2, ..., n.

Definition 2.3. [38] The Caputo fractional derivative of order α ∈ R+ of a function f on a finite or
infinite interval (a, b) is defined as follows:

(C
a Dαy)(t) =

1
Γ(n − α)

∫ t

a
(t − s)n−α−1y(n)(s)ds.

Definition 2.4. [38] (1) The generalized Riemann-Liouville fractional integral of order α ∈ R+ of a
function f with respect to the function g on a finite or infinite interval (a, b) is defined as follows:

(aIαg y)(t) =
1

Γ(α)

∫ t

a
(g(t) − g(s))α−1y(s)g′(s)ds.

(2) The generalized Riemann-Liouville fractional derivative of order α ∈ R+ of a function f with
respect to the function g on a finite or infinite interval (a, b) is defined as follows:

(aDα
gy)(t) =

1
Γ(n − α)

(
1

g′(t)
d
dt

)n
∫ t

a
(g(t) − g(s))n−α−1y(s)g′(s)ds,

where n = [α] + 1, g(i) , 0, i = 2, ..., n.

Definition 2.5. [38] The generalized Caputo fractional derivative of order α ∈ R+ of a function f with
respect to another function g on a finite or infinite interval (a, b) is defined as follows:

(C
a Dα

gy)(t) =
1

Γ(n − α)

∫ t

a
(g(t) − g(s))n−α−1y[n](s)g′(s)ds,

where y[n] = ( 1
g′(t)

d
dt )

n, n = [α] + 1, g(i) , 0, i = 2, ..., n.

Remark 2.6. From the Definition 2.4 (1) and Definition 2.5 above, we can see that

(C
a Dα

gy)(t) =
1

Γ(n − α)

∫ t

a
(g(t) − g(s))n−α−1y[n](s)g′(s)ds = aIn−α

g y[n](t).

Lemma 2.7. [38] Let g ∈ Cn[a, b] such that g′(t) > 0 on [a, b]. Then y ∈ ACn
g if and only if it can be

written as that

y(t) =
1

(n − 1)!

∫ t

a
(g(t) − g(s))n−1y[n](s)g′(s)ds +

n−1∑
k=0

y[k](a)
k!

(g(t) − g(a))k. (2.1)

Lemma 2.8. [38] Let α > 0, n = [α] + 1 and y ∈ ACn
g[a, b]. Then the fractional derivative of y with

respect to g exists almost everywhere and

(aDα
gy)(t) =

1
Γ(n − α)

∫ t

a
(g(t) − g(s))n−α−1y[n](s)g′(s)ds +

n−1∑
k=0

y[k](a+)
Γ(k − α − 1)

(g(t) − g(a))k−α. (2.2)
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Remark 2.9. [38] Equation (2.2) can be written as that

(aDα
gy)(t) = (aIn−α

g )y[n](t) +

n−1∑
k=0

y[k](a+)
Γ(k − α − 1)

(g(t) − g(a))k−α,

and thus, one can define the Caputo fractional derivative of a function with respect to another
function as

(C
a Dα

gy)(t) = (aDα
gy)(t) −

n−1∑
k=0

y[k](a+)
Γ(k − α − 1)

(g(t) − g(a))k−α

= aDα
g (y(s) −

n−1∑
k=0

y[k](a+)
k!

(g(t) − g(a))k)(t).

Similar to Caputo fractional derivative, we can easily obtain the following properties.

Lemma 2.10. Let α > 0, C
a Dα

g be a generalized Caputo fractional derivative of α, y(t) ∈ C[0, 1]. Then,

aIαg
C
a Dα

gy(t) = y(t) −
n−1∑
k=0

y[k](a)
k!

(g(t) − g(a))k,

where g(k) , 0, k = 0, 1, 2, · · · , n, n = [α] + 1.

Proof. The proof is done by using Remark 2.6 and Lemma 2.7.

aIαg
C
a Dα

gy(t) = aIαg aIn−α
g y[n](t) = aIn

gy[n](t) = y(t) −
n−1∑
k=0

y[k](a)
k!

(g(t) − g(a))k,

where g(k) , 0, k = 0, 1, 2, · · · , n, n = [α] + 1.
The proof is completed. �

Lemma 2.11. Let A = 1−
∫ 1

0
h(t)( g(t)−g(0)

g(1)−g(0) )
α−v−1g′(t)dt , 0. Then the following boundary value problem (C

0 Dα
g x)(t) + y(t) = 0, 0 < t < 1;

x(0) = 0, C
0 D1

gx(0) = 0, C
0 Dν

gx(1) =
∫ 1

0
h(t)C

0 Dν
gx(t)g′(t)dt,

(2.3)

has a unique solution

x(t) =

∫ 1

0
G(t, s)y(s)g′(s)ds := S y(t),

where
B = (g(1) − g(0))α−v−1A, L =

Γ(3)
Γ(3 − ν)

,

G(t, s) = G0(t, s) +
(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
h(t)G1(t, s)g′(t)dt,
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G0(t, s) =


1

LΓ(α − ν)
(g(t) − g(0))2 (g(1) − g(s))α−v−1

(g(1) − g(0))2−ν −
1

Γ(α)
(g(t) − g(s))α−1, 0 ≤ s ≤ t ≤ 1;

1
LΓ(α − ν)

(g(t) − g(0))2 (g(1) − g(s))α−v−1

(g(1) − g(0))2−ν , 0 ≤ t ≤ s ≤ 1,

G1(t, s) =
1

LΓ(α − ν)


(g(t) − g(0))2−ν (g(1) − g(s))α−v−1

(g(1) − g(0))2−ν − (g(t) − g(s))α−ν−1, 0 ≤ s ≤ t ≤ 1;

(g(t) − g(0))2−ν (g(1) − g(s))α−v−1

(g(1) − g(0))2−ν , 0 ≤ t ≤ s ≤ 1.

Proof. Using Definition 2.4 and Definition 2.5, one can obtain that

x(t) = c0 + c1(g(t) − g(0)) + c2(g(t) − g(0))2 − 0Iαg y(t).

Noticing that x(0) = (C
0 D1

gx)(0) = 0, one can deduce that c0 = c1 = 0. Hence,

x(t) = c2(g(t) − g(0))2 − 0Iαg y(t). (2.4)

By (2.4), one can easily get that

(C
0 Dν

gx)(t) = C
0 Dν

g[c2(g(t) − g(0))2 − 0Iαg y(t)]

= c2
Γ(3)

Γ(3 − ν)
(g(t) − g(0))2−ν − (C

0 Dν
g)(0Iαg y)(t)

= c2
Γ(3)

Γ(3 − ν)
(g(t) − g(0))2−ν − (0Iα−νg y)(t)

= c2
Γ(3)

Γ(3 − ν)
(g(t) − g(0))2−ν −

1
Γ(α − ν)

∫ t

0
(g(t) − g(s))α−ν−1y(s)g′(s)ds.

Obviously,

(C
0 Dν

gx)(1) = c2
Γ(3)

Γ(3 − ν)
(g(1) − g(0))2−ν −

1
Γ(α − ν)

∫ 1

0
(g(1) − g(s))α−ν−1y(s)g′(s)ds. (2.5)

Applying

(C
0 Dν

gx)(1) =

∫ 1

0
h(t)C

0 Dν
gx(t)g′(t)dt

and (2.5), it is immediate to see that

(C
0 Dν

gx)(1) =

∫ 1

0
h(t)C

0 Dν
gx(t)g′(t)dt

= c2
Γ(3)

Γ(3 − ν)

∫ 1

0
h(t)(g(t) − g(0))2−νg′(t)dt
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−
1

Γ(α − ν)

∫ 1

0
h(t)[
∫ t

0
(g(t) − g(s))α−ν−1y(s)g′(s)ds]g′(t)dt.

Hence, we deduce that

c2 =
1

BLΓ(α − ν)

∫ 1

0
(g(1) − g(s))α−ν−1y(s)g′(s)ds

−
1

BLΓ(α − ν)

∫ 1

0
h(t)[
∫ t

0
(g(t) − g(s))α−ν−1y(s)g′(s)ds]g′(t)dt.

Moreover, by (2.4), one can get that

x(t) =
1

BLΓ(α − ν)

∫ 1

0
(g(t) − g(0))2(g(1) − g(s))α−ν−1y(s)g′(s)ds

−
(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
h(t)[
∫ t

0
(g(t) − g(s))α−ν−1y(s)g′(s)ds]g′(t)dt

−
1

Γ(α)

∫ t

0
(g(t) − g(s))α−1y(s)g′(s)ds

=
1

BLΓ(α − ν)

∫ 1

0
(g(t) − g(0))2(g(1) − g(s))α−ν−1y(s)g′(s)ds

−
(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
h(t)[
∫ t

0
(g(t) − g(s))α−ν−1y(s)g′(s)ds]g′(t)dt

−
1

Γ(α)

∫ t

0
(g(t) − g(s))α−1y(s)g′(s)ds

+
1

L(g(1) − g(0))2−νΓ(α − ν)

∫ 1

0
(g(t) − g(0))2(g(1) − g(s))α−ν−1y(s)g′(s)ds

−
1

L(g(1) − g(0))2−νΓ(α − ν)

∫ 1

0
(g(t) − g(0))2(g(1) − g(s))α−ν−1y(s)g′(s)ds

=

∫ 1

0
G0(t, s)y(s)g′(s)ds

+
(g(1) − g(0))2−ν

BLΓ(α − ν)

∫ 1

0
(g(t) − g(0))2 (g(1) − g(s))α−ν−1

(g(1) − g(0))2−ν y(s)g′(s)ds

−
(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
h(t)[
∫ t

0
(g(t) − g(s))α−ν−1y(s)g′(s)ds]g′(t)dt

−
B

BLΓ(α − ν)

∫ 1

0
(g(t) − g(0))2 (g(1) − g(s))α−ν−1

(g(1) − g(0))2−ν y(s)g′(s)ds

=

∫ 1

0
G0(t, s)y(s)g′(s)ds

−
(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
h(t)[
∫ t

0
(g(t) − g(s))α−ν−1y(s)g′(s)ds]g′(t)dt

+
(g(1) − g(0))2−ν(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0

(g(1) − g(s))α−ν−1

(g(1) − g(0))2−ν y(s)g′(s)ds
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−
B(g(t) − g(0))α−1

BLΓ(α)

∫ 1

0

(g(1) − g(s))α−ν−1

(g(1) − g(0))2−ν y(s)g′(s)ds]

=

∫ 1

0
G0(t, s)y(s)g′(s)ds

−
(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
h(t)[
∫ t

0
(g(t) − g(s))α−ν−1y(s)g′(s)ds]g′(t)dt

+
(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
h(t)(g(t) − g(0))2−νg′(t)dt

∫ 1

0

(g(1) − g(s))α−ν−1

(g(1) − g(0))2−ν y(s)g′(s)ds

=

∫ 1

0
G0(t, s)y(s)g′(s)ds

+
(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
[
∫ 1

0
h(t)(g(t) − g(0))2−ν (g(1) − g(s))α−ν−1

(g(1) − g(0))2−ν g′(t)dt

−

∫ 1

s
h(t)(g(t) − g(s))α−ν−1g′(t)dt]y(s)g′(s)ds

=

∫ 1

0
G0(t, s)y(s)g′(s)ds +

(g(t) − g(0))2

BLΓ(α − ν)

∫ 1

0
[
∫ 1

0
h(t)G1(t, s)g′(t)dt]y(s)g′(s)ds

=

∫ 1

0
G(t, s)y(s)g′(s)ds.

The proof is completed. �

Suppose that (2− ν)(g(t)− g(s)) ≤ (α− ν− 1)(g(t)− g(0)), for 0 ≤ s ≤ t ≤ 1 in the rest of the paper.

Lemma 2.12. The functions Gi(i = 0, 1) has the following properties:
(1) G0(t, s) ≥ 0 f or s, t ∈ [0, 1];
(2) G1(t, s) ≥ 0 f or s, t ∈ [0, 1];
(3) G0(t, s) ≤ G0(1, s) f or s, t ∈ [0, 1];

(4) G0(t, s) ≥ (
g(t) − g(0)
g(1) − g(0)

)2G0(1, s) f or s, t ∈ [0, 1].

Proof. (1) On the one hand, for 0 ≤ s ≤ t ≤ 1, we know

G0(t, s) =
1

LΓ(α − ν)
(g(t) − g(0))2 (g(1) − g(s))α−v−1

(g(1) − g(0))2−ν −
1

Γ(α)
(g(t) − g(s))α−1.

By careful calculation, we can see

G[3]
0 (t, s) = (

1
g′(t)

d
dt

)3G0(t, s) = −
1

Γ(α)
(α − 1)(α − 2)(α − 3)(g(t) − g(s))α−3 ≥ 0.

With the property of g(t), it implies that

G[2]
0 (t, s) ≥ G[2]

0 (s, s) ≥ 0.

Similarly,
G[1]

0 (t, s) ≥ G[1]
0 (s, s) ≥ 0.
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Thus, it is easy to see that

G0(t, s) ≥ G0(s, s) =
1

LΓ(α − ν)
(g(s) − g(0))2 (g(1) − g(s))α−v−1

(g(1) − g(0))2−ν ≥ 0.

On the other hand, for 0 ≤ t ≤ s ≤ 1, it is easy to see that from Lemma 2.10, G0(t, s) ≥ 0 for
s, t ∈ [0, 1].

(2) For 0 ≤ s ≤ t ≤ 1, from (2 − ν)(g(t) − g(s)) ≤ (α − ν − 1)(g(t) − g(0)),
(g(t) − g(s))α−ν−1

(g(t) − g(0))2−ν is a

nondecreasing function for t on [0, 1].
Then,

G1(t, s) =
1

LΓ(α − ν)
[(g(t) − g(0))2−ν (g(1) − g(s))α−v−1

(g(1) − g(0))2−ν − (g(t) − g(s))α−ν−1]

=
1

LΓ(α − ν)
[(g(t) − g(0))2−ν(

(g(1) − g(s))α−ν−1

(g(1) − g(0))2−ν −
(g(t) − g(s))α−ν−1

(g(t) − g(0))2−ν )]

≥ 0.

On the other hand, for 0 ≤ t ≤ s ≤ 1, it is easy to see that from Lemma 2.10 the conclusion is
obviously established. Therefore, G1(t, s) ≥ 0 for s, t ∈ [0, 1].

(3) For s, t ∈ [0, 1], from (1) and Lemma 2.10, one can easily obtain that G0(t, s) is an increasing
function with respect to t. Then, G0(t, s) ≤ G0(1, s).

(4) For 0 ≤ s ≤ t ≤ 1, from (2 − ν)(g(t) − g(s)) ≤ (α − ν − 1)(g(t) − g(0)),
(g(t) − g(s))α−1

(g(t) − g(0))2 is a

nondecreasing function with respect to t.

G0(t, s)
G0(1, s)

=

1
LΓ(α − ν)

(g(t) − g(0))2 (g(1) − g(s))α−ν−1

(g(1) − g(s))α−1 −
1

Γ(α)
(g(t) − g(s))α−1

1
LΓ(α − ν)

(g(1) − g(0))2 (g(1) − g(s))α−ν−1

(g(1) − g(s))α−1 −
1

Γ(α)
(g(1) − g(s))α−1

=

(g(t) − g(0))2[
1

LΓ(α − ν)
(g(1) − g(s))α−ν−1

(g(1) − g(s))α−1 −
1

Γ(α)
(g(t) − g(s))α−1

(g(t) − g(0))2 ]

(g(1) − g(0))2[
1

LΓ(α − ν)
(g(1) − g(s))α−ν−1

(g(1) − g(s))α−1 −
1

Γ(α)
(g(1) − g(s))α−1

(g(1) − g(0))2 ]

≥ (
(g(t) − g(0))
(g(1) − g(0))

)2.

On the other hand, for 0 ≤ t ≤ s ≤ 1, it is easy to see that

G0(t, s)
G0(1, s)

= (
(g(t) − g(0))
(g(1) − g(0))

)2.

Therefore, (
g(t) − g(0)
g(1) − g(0)

)2G0(1, s) ≤ G0(t, s) for s, t ∈ [0, 1].

The proof is completed. �

By Lemma 2.12, the following conclusion is established obviously.
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Lemma 2.13. Under the assumption in Lemma 2.12, the function G has the following properties:

G(t, s) ≥ 0, f or s, t ∈ [0, 1];

(
g(t) − g(0)
g(1) − g(0)

)2ϕ(s) ≤ G(t, s) ≤ ϕ(s), f or s, t ∈ [0, 1].

where ϕ(s) = G0(1, s) +
(g(1) − g(0))2

BLΓ(α − ν)

∫ 1

0
h(t)G1(t, s)g′(t)dt.

The following lemmas will be used in the proof of the main results.

Lemma 2.14. [41] Let Ω ⊂ E be a bounded open set and 0 ∈ Ω. T : P ∩ Ω → P be a completely
continuous operator. If T satisfies

x , µT x, ∀x ∈ P ∩ ∂Ω, 0 < µ ≤ 1,

then i(T, P ∩Ω, p) = 1.

Lemma 2.15. [41] Let Ω ⊂ E be a bounded open set and 0 ∈ Ω. T : P ∩ Ω → P be a completely
continuous operator. If there is ϕ ∈ P, ϕ , 0 such that T satisfies

x − T x , µϕ, ∀x ∈ P ∩ ∂Ω, µ ≥ 0,

then i(T, P ∩Ω, p) = 0.

Lemma 2.16. [42] (Leggett-Williams theorem) Let P be a cone in a real Banach space E, Pc = {x ∈
P| ||x|| < c}, θ be a nonnegative continuous concave functional on P such that θ(x) ≤ ||x||, for ∀x ∈ Pc;
and P(θ, b, d) = {x ∈ P| b ≤ θ(x), ||x|| ≤ d}. Suppose that T : Pc → Pc is completely continuous and
there exist constants 0 < a < b < d ≤ c such that

(A1) {x ∈ P(θ, b, d)| θ(x) > b} , ∅ and θ(T x) > b for x ∈ P(θ, b, d);
(A2) ||T x|| < a for ‖x‖ ≤ a;
(A3) θ(T x) > b for x ∈ P(θ, b, c) with ||T x|| > d.
Then T has at least three fixed points x1, x2, x3 with ||x1|| < a; b < θ(x2); a < ||x3|| and θ(x3) < b.

3. Existence results

In this section, we establish the existence and multiplicity results for BVP (1.1). Let E = C[0, 1],
||x|| := maxt∈[0,1]|x(t)| and P := {x ∈ E : x(t) ≥ 0, ∀t ∈ [0, 1]}. Then (E, || · ||) is a real Banach space
and P is a cone on E. Hence E is an ordered Banach space and the cone P is normal. Obviously, the
normal constant is N = 1. Define operator T : P→ P as follows:

T x(t) :=
∫ 1

0
G(t, s) f (s, x(s))g′(s)ds, x ∈ P. (3.1)

For any x ∈ P, by the continuity of G, f and g′, T x is well defined. Since f is bounded, It is easy to
see that T is also bounded. By Lemma (2.11), one can easily see that the existence of solutions for
BVP (1.1) is equivalent to the existence of positive fixed point of T . Therefore, we need only to find
the positive fixed point of T in the following work.
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Subsequently, for simplicity and convenience, set

M = (
∫ 1

0
ϕ(s)g′(s)ds)−1, N = (

∫ 1

0
(
g(

1
2

) − g(0)

g(1) − g(0)
)2ϕ(s)g′(s)ds)−1.

Let r(S ) be the spectral radius of the linear bounded operator S defined by

(S x)(t) =

∫ 1

0
G(t, s)x(t)g′(s)ds, t ∈ [0, 1], x ∈ E.

From the Krein-Rutman theorem, we know that r(S ) is positive and S has a positive eigenfunction ϕ1

corresponding to λ1 such that λ1S (ϕ1) = ϕ1, where λ1 is the first eigenvalue of S and λ1 = (r(S ))−1.
Now let’s list the following assumptions satisfied throughout the paper.

(H1) lim
x→0+

sup
t∈[0,1]

f (t, x)
x

< λ1.

(H2) lim
x→+∞

inf
t∈[0,1]

f (t, x)
x

> λ1.

(H3) lim
x→0+

inf
t∈[0,1]

f (t, x)
x

> λ1.

(H4) lim
x→+∞

sup
t∈[0,1]

f (t, x)
x

< λ1.

By the Arzela-Ascoli theorem, the following conclusion is established obviously.

Lemma 3.1. The operator T : P→ P is completely continuous.

Now we are in a position to give our main results.

Theorem 3.2. Under the assumptions (H1) and (H2), BVP (1.1) admits at least one positive solution.

Proof. For the sake of obtaining the desired result, we need only to prove T has at least a positive fixed
point in P ∩ (BR1

\Br1).
First, the assumption (H1) implies that there exist r1 > 0 and ε0 ∈ (0, λ1) such that

f (t, x) < (λ1 − ε0)x, t ∈ [0, 1], x ∈ [0, r1].

We claim that for µ ∈ (0, 1],

x(t) , µT x(t), ∀x ∈ P ∩ ∂Br1 , t ∈ [0, 1]. (3.2)

Suppose on the contrary that there exist x0 ∈ P ∩ ∂Br1 , µ0 ∈ (0, 1] such that

x0(t) = µ0T x0(t), t ∈ [0, 1].

Then,

x0(t) = µ0T x0(t)

≤

∫ 1

0
G(t, s) f (s, x0(s))g′(s)ds
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< (λ1 − ε0)
∫ 1

0
G(t, s)x0(s)g′(s)ds

= (λ1 − ε0)S x0(t).

By nth iteration, we can get that

x0(t) < (λ1 − ε0)S x0(t) < (λ1 − ε0)2S 2x0(t) < . . . < (λ1 − ε0)nS nx0(t).

From the definition of the norm ‖ · ‖, one can deduce that

||x0|| < (λ1 − ε0)n||S n||||x0||.

It is easy to see that
(λ1 − ε0)n||S n|| > 1.

Hence we have
limn→∞

n
√
||S n||(λ1 − ε0) ≥ 1.

This is a contradiction with

limn→∞
n
√
||S n||(λ1 − ε0) = (λ1 − ε0)r(S ) < 1,

which means that (3.2) holds. By Lemma 2.14, we get

i(T, P ∩ ∂Br1 , P) = 1. (3.3)

Second, the assumption (H2) implies that there exist ε1 > 0 and R1 > 0 such that

f (t, x) > (λ1 + ε1)x, t ∈ [0, 1], |x| ≥ R1.

Let M̃ = maxt∈[0,1],x∈[0,R1][ f (t, x) + (λ1 + ε1)x], we can see

f (t, x) > (λ1 + ε1)x − M̃, t ∈ [0, 1], ∀x ∈ [0,+∞).

Choose R1 > max{r1,R1,
M̃‖[(λ1 + ε1)S − I]−1 ‖

M
}. We claim that for µ ∈ [0,+∞),

x(t) − T x(t) , µϕ1(t), ∀x ∈ P ∩ ∂BR1
, t ∈ [0, 1]. (3.4)

Suppose on the contrary that there exist x1 ∈ P ∩ ∂BR1
and µ1 ≥ 0 such that

x1(t) − T x1(t) = µ1ϕ1(t), t ∈ [0, 1].

Therefore,

x1(t) = T x1(t) + µ1ϕ1(t)

=

∫ 1

0
G(t, s) f (s, x1(s))g′(s)ds + µ1ϕ1(t)
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>

∫ 1

0
G(t, s)[(λ1 + ε1)x1(s) − M̃]g′(s)ds + µ1ϕ1(t)

= (λ1 + ε1)
∫ 1

0
G(t, s)x1(s)g′(s)ds −

∫ 1

0
G(t, s)M̃g′(s)ds + µ1ϕ1(t)

= (λ1 + ε1)S x1(t) −
∫ 1

0
G(t, s)M̃g′(s)ds + µ1ϕ1(t).

Thus, we can see

[(λ1 + ε1)S − I]x1(t) <
∫ 1

0
G(t, s)M̃g′(s)ds − µ1ϕ1(t)

<

∫ 1

0
G(t, s)M̃g′(s)ds.

Since λ1 + ε1 > λ1, [(λ1 + ε1)S − I] is a positive linear operator. Hence, it has the inverse operator
[(λ1 + ε1)S − I]−1. By normality of cone P, we know

R1 = ‖x1‖ < ‖[(λ1 + ε1)S − I]−1‖‖

∫ 1

0
G(t, s)M̃g′(s)ds‖

< M̃(
∫ 1

0
ϕ(s)g′(s)ds)‖[(λ1 + ε1)S − I]−1 ‖

=
M̃‖[(λ1 + ε1)S − I]−1 ‖

M
< R1.

This is a contradiction, which implies that (3.4) hold. By Lemma 2.15, one can get that

i(T, P ∩ BR1
, P) = 0. (3.5)

Together with (3.3) and according to the regional additivity of the fixed point index, we have

i(T, P ∩ (BR1
\Br1), P) = 0 − 1 = −1. (3.6)

The proof is completed. �

Theorem 3.3. Under the assumptions (H3) and (H4), BVP (1.1) admits at least one positive solution.

Proof. For the sake of obtaining the desired result, we need only to prove that T has a positive fixed
point in P ∩ (BR2

\Br2).
First, the assumption (H3) implies that there exist ε2 > 0 and r2 > 0 such that

f (t, x) > (λ1 + ε2)x, t ∈ [0, 1], x ∈ [0, r2]. (3.7)

Now we claim that for µ ∈ [0,+∞),

x(t) − T x(t) , µϕ1(t), ∀x ∈ P ∩ ∂Br2 , t ∈ [0, 1]. (3.8)
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Hence, suppose on the contrary that there exist x2 ∈ P ∩ ∂Br2 and µ2 ≥ 0 such that

x2(t) − T x2(t) = µ2ϕ1(t), t ∈ [0, 1].

Without loss of generality, suppose µ2 > 0. Then,

x2(t) = T x2(t) + µ2ϕ1(t) ≥ µ2ϕ1(t).

Taking µ∗ = sup{µ | x2 ≥ µϕ1, µ > 0}, we have 0 < µ2 ≤ µ∗ < +∞ and x2(t) ≥ µ∗ϕ1(t). By the
positivity of operator S , we know

λ1S x2 ≥ λ1S (µ∗ϕ1) = µ∗ϕ1.

This together with (3.7) guarantees that

x2(t) = T x2(t) + µ2ϕ1(t)

=

∫ 1

0
G(t, s) f (s, x2(s))g′(s)ds + µ2ϕ1(t)

> (λ1 + ε2)
∫ 1

0
G(t, s)x2(s)g′(s)ds + µ2ϕ1(t)

= (λ1 + ε2)S x2(t) + µ2ϕ1(t)
> (µ∗ + µ2)ϕ1(t),

which is a contradiction with the definition of µ∗. Therefore, (3.8) is valid. According to Lemma 2.15,
we have

i(T, P ∩ ∂Br2 , P) = 0. (3.9)

Second, the assumption (H4) implies that there exist ε3 ∈ (0, λ1) and R2 > 0 such that

f (t, x) < (λ1 − ε3)x, t ∈ [0, 1], |x| > R2.

Let Ñ = maxt∈[0,1],x∈[0,R2][ f (t, x) + (λ1 − ε3)x], we can see

f (t, x) < (λ1 − ε3)x + Ñ, t ∈ [0, 1], ∀x ∈ [0,+∞).

Choose R2 > max{r2,R2,
Ñ[1 − (λ1 − ε3)‖S ‖]−1

M
}. We claim that for µ ∈ (0, 1],

x(t) , µT x(t), ∀x ∈ P ∩ ∂BR2
, t ∈ [0, 1]. (3.10)

If it is not true, there exist x3 ∈ P ∩ ∂BR2
and µ3 ∈ (0, 1] such that

x3(t) = µ3T x3(t), t ∈ [0, 1].

Then,

x3(t) = µ3T x3(t)
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≤

∫ 1

0
G(t, s) f (s, x3(s))g′(s)ds

<

∫ 1

0
G(t, s)[(λ1 − ε3)x3(s) + Ñ]g′(s)ds

= (λ1 − ε3)S x3(t) +

∫ 1

0
ÑG(t, s)g′(s)ds,

which means

[I − (λ1 − ε3)S ]x3(t) < Ñ
∫ 1

0
ϕ(s)g′(s)ds.

Because of 0 < ||(λ1−ε3)S || < 1, [I−(λ1−ε3)S ] has the bounded and inverse operator [I−(λ1−ε3)S ]−1

and

[I − (λ1 − ε3)S ]−1 =

∞∑
n=0

[(λ1 − ε3)S ]n.

By normality of cone P, we have

R2 = ||x3|| < ||[I − (λ1 − ε3)S ]−1
∫ 1

0
ϕ(s)Ñg′(s)ds||

≤ Ñ ||[I − (λ1 − ε3)S ]−1||

∫ 1

0
ϕ(s)g′(s)ds

≤
Ñ[1 − (λ1 − ε3)‖S ‖]−1

M
< R2.

This is a contraction, which means that (3.10) is valid. By Lemma 2.14,

i(T, P ∩ ∂BR2
, P) = 1. (3.11)

It together with (3.9) and the regional additivity of the fixed point index guarantees that

i(T, P ∩ (BR2
\Br2), P) = 1 − 0 = 1. (3.12)

The proof is completed. �

Now we are in a position to give the multiple solutions for BVP (1.1).

Theorem 3.4. Assume that (H2) and (H3) hold. In addition, suppose that there exists R > 0 such that

f (t, x) < MR, ∀x ∈ [0,R], t ∈ [0, 1].

Then BVP (1.1) has at least two positive solutions.
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Proof. For the sake of obtaining our conclusion, we first claim that for µ ∈ (0, 1],

x(t) , µT x(t), ∀x ∈ P ∩ ∂BR, t ∈ [0, 1]. (3.13)

Suppose on the contrary that there exist x4 ∈ P ∩ ∂BR and µ4 ∈ (0, 1] such that

x4(t) = µ4T x4(t), t ∈ [0, 1]. (3.14)

Then,

x4(t) = µ4T x4(t) ≤
∫ 1

0
G(t, s) f (s, x4(s))g′(s)ds <

∫ 1

0
ϕ(s)MRg′(s)ds = R.

This is a contradiction, which means that (3.13) is valid. By Lemma 2.14, we have

i(T, P ∩ BR, P) = 1. (3.15)

Next, similar to the process of proving (3.4) and (3.8), there exist r ∈ (0,R) and R̃ ≥ max{R,R1} such
that (3.5) and (3.9) hold.

Together with (3.15), Lemma 2.14 and Lemma 2.15, one can immediately obtain that

i(T, P ∩ (BR̃\BR), P) = i(T, P ∩ BR̃, P) − i(T, P ∩ BR, P) = 0 − 1 = −1,

i(T, (P ∩ BR\Br), P) = i(T, P ∩ BR, P) − i(T, P ∩ Br, P) = 1 − 0 = 1.

Namely, there exist x1 ∈ P ∩ (BR̃\BR) and x2 ∈ P ∩ (BR\Br) satisfying T xi = xi(i = 1, 2).
To sum up, Theorem 3.4 is proved. �
Now we are in a position to give at least three solutions for BVP (1.1).

Theorem 3.5. Assume that there exist positive constants a, b, c with 0 < a < b < c such that
(H5) f (t, x) < Ma, (t, x) ∈ [0, 1] × [0, a];

(H6) f (t, x) > Nb, (t, x) ∈ [
1
2
, 1] × [b, c];

(H7) f (t, x) ≤ Mc, (t, x) ∈ [0, 1] × [0, c].
Then BVP(1.1) has at least three nonnegative solutions x1, x2, x3 satisfying ||x1|| < a; b <

mint∈[ 1
2 ,1]|x2(t)| < ‖x2‖ ≤ c, a < ‖x3‖ ≤ c and mint∈[ 1

2 ,1]|x3(t)| ≤ b.

Proof. We shall prove assumptions of Lemma 2.16 are valid.
Let θ(x) = mint∈[ 1

2 ,1]|x(t)|. Hence, θ(x) is a nonnegative continuous concave functional on P.
First, we prove T : Pc → Pc is completely continuous. In fact, for x ∈ Pc, from (H7) and Lemma

2.16, one can deduce that

‖T x‖ = maxt∈[0,1]|

∫ 1

0
G(t, s) f (s, x(s))g′(s)ds|

≤

∫ 1

0
ϕ(s) f (s, x(s))g′(s)ds

≤ Mc
∫ 1

0
ϕ(s)g′(s)ds

= c.
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Thus, T : Pc → Pc. In addition, by the continuity of G, f and g′, we can conclude that T : Pc → Pc is
completely continuous.

Let x(t) =
b + c

2
for t ∈ [0, 1], it is not difficult to see

x(t) =
b + c

2
∈ P(θ, b, c), θ(x) = θ(

b + c
2

) > b.

This means {x ∈ P(θ, b, c)| θ(x) > b} , ∅. By condition (H6), for x ∈ P(θ, b, c), we have

θ(T x) = mint∈[ 1
2 ,1]|(T x)(t)|

= mint∈[ 1
2 ,1]|

∫ 1

0
G(t, s) f (s, x(s))g′(s)ds|

>

∫ 1

0
(
g(

1
2

) − g(0)

g(1) − g(0)
)2ϕ(s)Nbg′(s)ds

= b,

which means that (A1) in Lemma (2.16) is valid.
By similar analysis, by (H5), one can see that

‖T x‖ < a, ∀x ∈ Pa.

That is, (A2) in Lemma (2.16) holds. Taking c = d, (A3) is valid obviously.
To sum up, all assumptions of Lemma 2.16 are valid. Therefore, BVP (1.1) has at least three

nontrivial solutions x1, x2, x3 satisfying ||x1|| < a; b < mint∈[ 1
2 ,1]|x(t)| < ‖x2‖ ≤ c, a < ‖x3‖ ≤ c and

mint∈[ 1
2 ,1]|x(t)| ≤ b. �

4. The Ulam stability analysis

In this section, we shall give the criteria of Ulam stability for BVP (1.1). First, let us list the
following assumption.
(H8) For all x, y ∈ R+, there exists a positive constant 0 < L < M such that

| f (t, x) − f (t, y)| ≤ L|x − y|, t ∈ [0, 1].

Next, for some ε > 0, consider the following differential inequalities

|C0 Dα
g x(t) − f (t, x(t))| ≤ ε, t ∈ [0, 1]. (4.1)

Definition 4.1. [17] BVP (1.1) is Ulam-Hyers stable if there exists a real number C f > 0 such that for
each ε > 0 and for each solution x ∈ E of the inequality 4.1, there exists a solution x ∈ E of BVP (1.1)
with

|x(t) − x(t)| ≤ C f ε, t ∈ [0, 1].

Definition 4.2. [17] BVP (1.1) is generalized Ulam-Hyers stable if there exist Φ f ∈ C(R+, (0,+∞)),
Φ f (0) = 0 such that for each solution x ∈ E of the inequality 4.1, there exists a solution x ∈ E of
BVP (1.1) with

|x(t) − x(t)| ≤ Φ f (ε), t ∈ [0, 1].
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Now, we are in a position to prove the main stable theorem of this section.

Theorem 4.3. Under the assumptions (H1), (H4) and (H8), BVP (1.1) is Ulam-Hyers stable.

Proof. Under the assumptions (H1) and (H4), by process similar to proving Theorems 3.2 and 3.3,
BVP (1.1) has at least one positive solution.

Let x ∈ E be the solution of BVP (1.1) and x ∈ E be a solution of |C0 Dα
g x(t) − f (t, x)| ≤ ε, 0 < t < 1;

x(0) = 0, C
0 D1

gx(0) = 0, C
0 Dν

gx(1) =
∫ 1

0
h(t)C

0 Dν
gx(t)g′(t)dt,

(4.2)

Then, by Lemma 2.10,

x(t) =

∫ 1

0
G(t, s) f (s, x(s))g′(s)ds,

and

x(t) =

∫ 1

0
G(t, s)( f (s, x(s)) + E(s))g′(s)ds,

where E(t) = C
0 Dα

g x(t) − f (t, x). By (4.2), it is easy to see |E(t)| < ε.
Then,

|x(t) − x(t)| = |x(t) −
∫ 1

0
G(t, s) f (s, x(s))g′(s)ds|

≤ |x(t) −
∫ 1

0
G(t, s) f (s, x(s))g′(s)ds|

+|

∫ 1

0
G(t, s) f (s, x(s))g′(s)ds −

∫ 1

0
G(t, s) f (s, x(s))g′(s)ds|

= |

∫ 1

0
G(t, s)E(s)g′(s)ds|

+|

∫ 1

0
G(t, s) f (s, x(s))g′(s)ds −

∫ 1

0
G(t, s) f (s, x(s))g′(s)ds|

≤
1
M
ε + L(maxt∈[0,1]

∫ 1

0
G(t, s)|x(s) − x(s)|g′(s)ds)

=
1
M
ε +

L
M
‖x − x‖.

Hence,

‖x − x‖ ≤
1

M − L
ε.

Therefore, BVP (1.1) is Ulam-Hyers stable.
In addition, set Φ f (z) = Lz, then Φ f (0) = 0. By Definition 4.2, BVP (1.1) is generalized Ulam-

Hyers stable.
The proof is completed. �
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5. Examples

In this section, three illustrative examples are worked out to show the effectiveness of the obtained
results.

Example 5.1. Consider the following BVP

 C
0 D2.95

g + f (t, x) = 0, 0 < t < 1;
x(0) = 0, C

0 D1
gx(0) = 0, C

0 D1.05
g x(1) =

∫ 1

0
h(t)C

0 D1.05
g x(t)g′(t)dt,

(5.1)

where g(t) = e
t
2 , h(t) = 1 and

f (t, x) =

(1 + t)(x)
1
2 , 0 < x ≤ 1, 0 ≤ t ≤ 1;

(1 + t)(x)2, x > 1, 0 ≤ t ≤ 1.

Conclusion: BVP (5.1) has at least two positive solutions.
Proof. BVP (5.1) can be regarded as a BVP of the form (1.1).

By careful calculation and Lemma 2.11, one can obtain that

G(t, s) = G0(t, s) +
(e

t
2 − 1)2

BLΓ(1.90)

∫ 1

0
G1(t, s)g′(t)dt, L =

Γ(3)
Γ(1.95)

,

G0(t, s) =


Γ(1.95)

Γ(1.9)Γ(3)
(e

t
2 − 1)2 (e

1
2 − e

s
2 )0.90

(e
1
2 − 1)0.95

−
1

Γ(2.95)
(e

t
2 − e

s
2 )1.95, 0 ≤ s ≤ t ≤ 1;

Γ(1.95)
Γ(1.9)Γ(3)

(e
t
2 − 1)2 (e

1
2 − e

s
2 )0.90

(e
1
2 − 1)0.95

, 0 ≤ t ≤ s ≤ 1.

G1(t, s) =
Γ(1.95)

Γ(1.9)Γ(3)


(e

t
2 − 1)0.95 (e

1
2 − e

s
2 )0.90

(e
1
2 − 1)0.95

− (e
t
2 − e

s
2 )0.90, 0 ≤ s ≤ t ≤ 1;

(e
t
2 − 1)0.95 (e

1
2 − e

s
2 )0.90

(e
1
2 − 1)0.95

, 0 ≤ t ≤ s ≤ 1.

By calculation, we get that

lim
x→0+

inf
t∈[0,1]

f (t, x)
x

= lim
x→0+

inf
t∈[0,1]

x−
1
2 = +∞ > λ1,

lim
x→+∞

inf
t∈[0,1]

f (t, x)
x

= lim
x→+∞

inf
t∈[0,1]

x = +∞ > λ1.

In addition, notice that M = (
∫ 1

0
ϕ(s)g′(s)ds)−1 ≈ 11.42 and choose R = 5.

Thus,
0 ≤ f (t, x) ≤ maxt∈[0,1] f (t, x) ≤ 2R2 < MR, t ∈ [0, 1], x ∈ [0,R].

Consequently, all conditions in Theorem 3.5 hold, which means that our conclusion follows. �
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Example 5.2. Consider the following BVP

 C
0 D2.95

g + f (t, x) = 0, 0 < t < 1;
x(0) = 0, C

0 D1
gx(0) = 0, C

0 D1.05
g x(1) =

∫ 1

0
h(t)C

0 D1.05
g x(t)g′(t)dt,

(5.2)

where g(t) = e
t
2 , h(t) = 1 and

f (t, x) =


1
4

t + x2, 0 < x ≤ 1, 0 < t < 1;

500 +
1
4

t + x, x > 1, 0 < t < 1.

Conclusion: BVP (5.2) has at least three nonnegative solutions.
Proof. BVP (5.2) can be regarded as a BVP of the form (1.1). The function G, G0, G1 for BVP (5.2) is
the same as that of BVP (5.1) in Example 5.1.

In addition, notice that

M = (
∫ 1

0
ϕ(s)g′(s)ds)−1 ≈ 11.42,

N = (
∫ 1

0
(
g(

1
2

) − g(0)

g(1) − g(0)
)2ϕ(s)g′(s)ds)−1 ≈ 59.52.

Choosing a = 1
10 , b = 1, c = 30, we have

f (t, x) =
1
4

t + x2 ≤ 0.26 < Ma ≈ 1.142, ∀t ∈ [0, 1], x ∈ [0,
1

10
];

f (t, x) = 300 +
1
4

t + x ≥ 301.12 > Nb ≈ 59.52, ∀t ∈ [
1
2
, 1], x ∈ [1, 30];

f (t, x) = 300 +
1
4

t + x ≤ 330.25 < Mc ≈ 342.60, ∀t ∈ [0, 1], x ∈ [0, 30].

By Theorem 3.5, BVP (5.3) has at least three nonnegative solutions x1, x2, x3 with ||x1|| <
1

10 ;
1 < mint∈[ 1

2 ,1]|x(t)| < ‖x2‖ ≤ 30; 1
10 < ‖x3‖ ≤ 30 and mint∈[ 1

2 ,1]|x(t)| ≤ 1.

Example 5.3. Consider the following BVP

 C
0 D2.95

g + f (t, x) = 0, 0 < t < 1;
x(0) = 0, C

0 D1
gx(0) = 0, C

0 Dν
gx(1) =

∫ 1

0
h(t)C

0 D1.05
g x(t)g′(t)dt,

(5.3)

where g(t) = e
t
2 , h(t) = 1 and f (t, x) = etln(1 + x2).

Conclusion: BVP (5.3) has at least one positive solutions and the solution of BVP (5.3) is Ulam-Hyers
stable and generalized Ulam-Hyers stable.
Proof. BVP (5.3) can be regarded as a BVP of the form (1.1). The function G, G0, G1 for BVP (5.3) is
the same as that of BVP (5.1) in Example 5.1. By calculation, we get that

lim
x→0+

sup
t∈[0,1]

f (t, x)
x

= lim
x→0+

sup
t∈[0,1]

etln(1 + x2)
x

= +∞ > λ1,
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lim
x→+∞

sup
t∈[0,1]

f (t, x)
x

= lim
x→+∞

sup
t∈[0,1]

etln(1 + x2)
x

= 0 < λ1,

which implies that (H1) and (H4) hold.
In addition, notice that for all x, y ∈ R+,

| f (t, x) − f (t, y)| = et|ln(1 + x2) − ln(1 + y2)| ≤ e|x − y|.

This means that (H8) are satisfied if we set L = e.
Consequently, by Theorem 4.3, BVP (5.3) has at least one positive solutions and the solution of

BVP (5.3) is Ulam-Hyers stable and generalized Ulam-Hyers stable.
The proof is completed. �

6. Conclusions

The existence of solutions is of the fundamental problems for FDEs. This work studies the existence
of positive solutions and multiple positive solutions for a class of FBVPs with generalized Caputo
derivatives. Taking full advantage of the properties of Green’s function, a suitable cone is established.
The positive solutions and multiple positive solutions are obtained by means of the first eigenvalue
of corresponding linear operator and the cone expansion and compression fixed point theorem. At the
same time, by using Leggett-Williams theorem, we obtain that BVP (1.1) has at least three nonnegative
solutions. Moreover, Ulam-Hyers stability and generalized Ulam-Hyers stability are also studied under
some suitable assumptions.

For our subsequent work, the following issues will continue to be focused on:
(i) The systems studied on this topic will be more and more extensive and complicated. Therefore, it
is valuable to investigate impulsive FDEs with generalized derivatives or hybrid FDEs with delay.
(ii) As an important component of technology and mathematical control theory, controllability has
already gained considerable attention. Hence, the controllability for fractional differential system with
generalized derivatives may be an interesting issue.
(iii) With the development of the theoretical study on FDEs, application area of FDEs with generalized
derivatives in reality needs to be investigated in depth.
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