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1. Introduction

The first significant result in metric fixed point theory about contractive mappings, the Banach
contraction principle (BCP) was established by S. Banach [1] in 1922. Due to its simplicity, this
theorem vest as a conventional research tool in many different fields of mathematics. Then, several
researchers proposed various types of fixed point theorems concerning different kinds of contractive
mappings, see [2—4] and references therein. In 1968, R. Kannan [5] introduced the concept of K-
contractions, and then in 1972, S. K Chatterjea [6] initiated the idea of C-contractions.

Definition 1.1. [5,6] Let (X, d) be a metric space and f a self-mapping on X. Then,

(1) A mapping f is said to be K-contraction if there exists € [0, %) such that
d(fx, fy) < Bld(x, fx)+d@y, fy)l VYxyeX;
(i) A mapping f is said to be C-contraction if there exists 8 € [0, %) such that

d(fx, fy) < pld(x, fy) +d(y, fx)] ¥xyeX
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Kannan [5] proved that every K-contraction mapping in a complete metric space has a unique fixed
point. Chatterjea [6] proved a similar fixed theorem using C-contraction mappings.

Further, generalizations of C-contraction and K-contraction mappings were introduced by B. S.
Choudhury [7] and Razani and Parvaneh [8] respectively as follows:

Definition 1.2. [7,8] Let (X, d) be a metric space, f : X — X a self-mapping and ¢ : [0, 00)> — [0, c0)
a continuous mapping with ¢(x,y) = 0 if and only if x = y = 0. Then,

(i) f is said to be a weak C-contraction if

d(fx, fy) < 50d(x, fy) +d(y, f0)] = $(d(x, f3),d, fx) Y x,y € X;

(i1) f is said to be a weak K-contraction if

d(fx, fy) < 5ld(x, fx) +d, fy)] - ¢(d(x, fx),d@, fy) Y x,y € X.
In 2009, Choudhury [7] established a fixed point theorem using weak C-contraction as follows:
Theorem 1.3. [7] Every weak C-contraction in a complete metric space has a unique fixed point.

On the other hand, in 2015, Alam and Imdad [9] established another generalization of the classical
Banach contraction principle using an amorphous (arbitrary) binary relation. In this context, many
relation-theoretic variants of existing fixed point results have been reported for both linear and
nonlinear contractions, see [10—12] and references therein. For nonlinear contractions, the underlying
binary relation should be transitive. To make the transitivity condition weaker, Alam and Imdad [13]
introduced the concept of locally f-transitivity.

Fixed point theory is used as a requisite tool in investigating the existence and uniqueness of
solutions of differential and integral equations, see [14—16] and references therein. Also, the fixed
point theorems for contractive mappings are used in economics, game theory, and many branches of
mathematics. For instance, consider the following integral equation

fx) = gkx)+ fx k(x, $)u(s, f(s))ds,x € [0, 1]. (1.1)
0

where g : [0,1] - R, k: [0, 1] %[0, 1] = [0,00) and u : [0, 1] X R — R are three continuous functions.
The Eq (1.1) can be studied by means of fixed point theory in view of the fact that f(x) is a solution of
(1.1) if and only if f(x) is a fixed point of 7" where T is defined by

Tf(x)=gx)+ fox k(x, s)u(s, f(s))ds, x € [0, 1].

This paper aims to establish some coincidence point theorems for weak C-contraction and
K-contraction mappings involving a new auxiliary function in a metric space endowed with a locally
f-transitive binary relation. We also deduce related fixed point theorems. As a consequence, these
results improve and sharpen some existing fixed point results. Further, we give an example that shows
the effectiveness of our results.
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2. Preliminaries

In this section, we recall some basic definitions which will be required in proving our main results.
We denote N U {0} as N, throughout the paper.

Definition 2.1. [17,18] Let X be a nonempty set and (f, g) be a pair of self-mappings on X. Then

(i) an element x € X is called a coincidence point of f and g if

f(x) = g(x),

(i1) if x € X is a coincidence point of f and g and X € X such that X = g(x) = f(x), then X is called a
point of coincidence of f and g,

(ii1) if x € X is a coincidence point of f and g such that x = f(x) = g(x), then x is called a common
fixed point of f and g,

(iv) the pair (f, g) is said to be commuting if

g(fx) = f(gx) ¥ x € X,

(v) the pair (f,g) is said to be weakly compatible (or partially commuting or coincidentally
commuting) if f and g commute at their coincidence points, i.e.,

8(fx) = f(gx) whenever g(x) = f(x).

Definition 2.2. [19] Let X be a nonempty set. A subset R of X is called a binary relation on X. The
subsets, X2 and 0 of X? are called the universal relation and empty relation respectively.

Definition 2.3. [9] Let R be a binary relation on a nonempty set X. For x,y € X, we say that x and y
are R-comparative if either (x,y) € R or (y, x) € R. We denote it by [x,y] € R.

Definition 2.4. [19-24] A binary relation R defined on a nonempty set X is called
(i) amorphous if R has no specific property at all,
(i1) reflexive if (x,x) e RV x € X,
(i) symmetric if (x,y) e R = (y,x) € R,
(iv) anti-symmetric if (x,y) € Rand (y,x) e R = x =y,
(v) transitive if (x,y) € Rand (y,w) e R = (x,w) € R,
(vi) complete, connected or dichotomous if [x,y] € R V x,y € X,
(vii) a partial order if R is reflexive, anti-symmetric and transitive.
Definition 2.5. [19] Let X be a nonempty set and R be a binary relation on X.

(i) The inverse, transpose or dual relation of R, denoted by R~ is defined by,
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R ={(x,y) € X2 : (y,x) € R}.

(ii) Symmetric closure of R, denoted by R*, is defined to be the set R U R~ '(i.e., R* = RUR™).

Proposition 2.6. [9] For a binary relation R defined on a nonempty set X,
(x,y)eR = [x,y]e R

Definition 2.7. [25] Let X be a nonempty set, £ C X and R be a binary relation on X. Then, the
restriction of R to E, denoted by R|g, is defined to be the set RN E? (i.e. Rz = RN E?). Indeed, R is
a relation on E induced by R.

Definition 2.8. [9] Let X be a nonempty set and R be a binary relation on X. A sequence {x,} C X is
called R-preserving if
(X, Xp11) ER VY € Ny.

Definition 2.9. [9] Let X be a nonempty set and f be a self-mapping on X. A binary relation R on X
is called f-closed if V x,y € X,

(L) eR = (fx, fy) eR

Definition 2.10. [26] Let X be a nonempty set and f and g be two self-mappings in X. A binary
relation R defined on X is called (f, g)-closed if V x,y € X

(gx,8Y) €ER = (fx, fy)eR.

Note that under the restriction g = I, the identity mapping on X, Definition 2.10 reduces to the notion
of f-closedness of R defined in Definition 2.9.

Definition 2.11. [26] Let (X, d) be a metric space and R be a binary relation on X. We say that (X, d)
is R-complete if every R-preserving Cauchy sequence in X converges.

Clearly, every complete metric space is R-complete with respect to a binary relation R but not
conversely. For instance, Suppose X = (-1, 1] together with the usual metric d. Notice that (X, d) is
not complete. Now endow X with the following relation:

R={(x,y) € X*: x,y>0}.
Then, (X,d) is a R-complete metric space. Particularly, under the universal relation, the notion of
R-completeness coincides with usual completeness.

Definition 2.12. [26] Let (X, d) be a metric space and R be a binary relation on X with x € X. A
mapping f : X — X is called R-continuous at x if for any R-preserving sequence {x,} such that x, 4 X,

we have f(x,) = f(x). Moreover, f is called R-continuous if it is R-continuous at each point of X.

Clearly, every continuous mapping is R-continuous under any binary relation R. Particularly, under
the universal, relation the notion of R-continuity coincides with usual continuity.

Definition 2.13. [27,28] Let (X, d) be a metric space and (f, g) be a pair of self-mappings on X. The
the pair (f, g) is said to be compatible if
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lim d(gfx,, fgx,) =0,
whenever {x,} is a sequence in X such that
lim g(x,) = lim f(x,).

Definition 2.14. [26] Let (X, d) be a metric space and R be a binary relation on X and let f and g be
two self-mappings on X. Then the mappings f and g are R-compatible if for any sequence {x,} C X
such that {fx,} and {gx,} are R-preserving and lim gx, = lim fx,, we have

lim d(gfx,, fgx,) = 0.

Remark 2.15. [26] In a metric space (X, d) endowed with a binary elation R,
commutativity = compatibility = R-compatibility = weak compatibility.

In particular, under the universal relation, the notion of R-compatibility coincides with usual
compatibility.

Definition 2.16. [9] Let (X, d) be a metric space. A binary relation R defined on X is called d-self-
closed if whenever {x,} is an R-preserving sequence and

d
Xn = X,

then there exists a subsequence {x,,} of {x,} with [x,,, x] € RY k € Ny.

Definition 2.17. [26] Let (X, d) be a metric space, and let g be a self-mapping on X. A binary relation
R defined on X is called (g, d)-self-closed if for any R-preserving sequence {x,} such that {x,} — x,
there exists a subsequence {x,, } of {x,} with [gx,,, gx] € RV k € N,.

Note that under the restriction g = I, the identity mapping on X, Definition 2.17 reduces to the
notion of d-self-closedness of R.

Definition 2.18. [29] Given a mapping f : X — X, a binary relation R defined on X is called f-
transitive if for any x,y,z € X,

fx fy),(fy. fa) eR = (fx, fz) eR.
Later, Alam and Imdad [13] introduced the concept of locally f-transitivity.

Definition 2.19. [13] Let X be a nonempty set, and f be a self-mapping on X. A binary relation R on
X is called locally f-transitive if for each (effectively) R-preserving sequence {x,} C f(X) (with range
E = {x, € Ny}), the binary relation R|g is transitive.

Clearly, for a given self-mapping f and a binary relation R on a nonempty set X,
transitivity = f-transitivity = locally f-transitivity.

Definition 2.20. [24] Let X be a nonempty set and R a binary relation on X. A subset E of X is called
R-directed if for each x,y € E, there exists z € X such that (x,z) € R and (y,z) € R.
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Now we recollect the following lemma which will be required in the proof of our main results.

Lemma 2.21. [30] Let (X, d) be a metric space and {x,} be a sequence in X. If {x,} is not a Cauchy
sequence, then there exist € > 0 and two subsequence {x,,} and {x,, } of {x,} such that

(i) k<m <mVkeN,
(i) d(Xps Xn,) 2 €,
(i) d(Xp,, Xn—1) < E.
In addition to this, if {x,} also satisfies r}l_)rg d(x,, xX,41) = 0, then
]}gg d(Xpy X)) = ]}gg d(Xpy—1, Xp,) = ]}gg d(Xp» Xp-1) = E.

Now we are equipped to prove our main results.
3. Main results

In what follows, we define a family of functions as follows:

® = {¢: [0,00)> — [0, 0) : ¢ is a function such that liminf ¢(a,.b,) > 0 whenever the pair (a,, b,) —

n—oo

(a,b) # (0,0)}.
Consider a function ¢ : [0, 00)?> — [0, co) defined by

$(Z+3y+1), whenx,yel0,1]

1, others.

d(x,y) = {

Notice that ¢ € @ but ¢ is not continuous, which establishes the fact that the family of functions @ is
larger than the family of functions considered by Choudhury [7] and Razani and Parvaneh [8].
Now we present our first result on the existence of coincidence points under weak C-contractions.

Theorem 3.1. Let (X, d) be a R-complete metric space endowed with a binary relation R and f, g be
two self-mappings on X. Suppose that the following conditions hold:

(a) f(X) < g(X),

(b) Ris (f,g)-closed and locally f-transitive,

(c) there exists xy € X such that (gxy, fXo) € R,

(d) f and g are R-compatible,

(e) g is R-continuous,

(f) either f is R-continuous or R is (g, d)-self-closed,

(g) there exists ¢ € © such that
d(fx, fy) < 3ld(gx, fy) + d(gy, fx)] — ¢(d(gx, fy), d(gy, fx))
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¥V x,y € X with (gx, gy) € R.
Then f and g have a coincidence point.

Proof. By assumption (c), there exists x, € X such that (gxo, fxo) € R. If f(xo) = g(x0), then we are
done. Otherwise, by (a) we can choose x; € X such that g(x;) = f(xp). Again from f(X) C g(X) there
exists x, € X such that g(x;) = f(x;). Continuing this process inductively, we can define a sequence
{x,} C X of joint iterates such that

8(xnr1) = flx) VYneN,. (3.1)
Now, we assert that {gx,,} is a R-preserving sequence, i.e.,
(8Xn, 8Xns1) €R ¥ 1 € Np. (3.2)

We prove the fact by mathematical induction. On using assumption (c¢) and Eq (3.1) with n = 0, we
have

(gx0,gx1) € R.
Thus (3.2) holds for n = 0. Now suppose (3.2) holds forn = r > 0, i.e.,

(8xr, 8%r41) ER, (3.3)

then we have to show that (3.2) holds for n = r + 1. since R is (f, g)-closed, we have from (3.3),

(8%, 8Xr41) ER = (fx, fXr41) ER = (gXp11,8%42) ER,

that is, (3.2) holds for n = r + 1 also. Thus, by induction (3.2) holds V n € Ny. In view of (3.1) and
(3.2), the sequence {fx,} is also R-preserving, i.e.,

(fxp, fXp41) €ER VYV neN,.

If g(x,,) = g(xny+1) for some ny € N, then using (3.1) we have g(x,,) = f(x,,), 1.e., x,, 1 a coincidence
point of f and g and hence we are done.
On the other hand, if g(x,) # g(x,+1) ¥V n € Ny then d(gx,, gx,+1) # 0, then we can define a sequence
{dq} € (0, 00) by

d, = d(gxy, 8Xn+1)-

Applying (3.1), (3.2) and assumption (g),

dps1 = d(8Xns1,8Xn+2)
= d(fxn,fxn+l)

1
_[d(gxn’ fxn+1) + d(gxn+la fxn)] - ¢(d(gxn’ fxn+1)’ d(gxn+1a fxn))

IA

2
1
< E[d(gxn’ gxn+2) + d(gxn+la g-xn+1)] - ¢(d(gxm gxn+2)a d(gxn+la gxn+l))
1
= Ed(g-xna g-xn+2) - ¢(d(g-xna g-xn+2)’ 0) (34)
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1
< Ed(gxn’gxn+2) (35)
1 1
< Ed(gxn,gxn+1)+Ed(gxnﬂ,gxm) (3.6)
which gives
1 1
dpi1 < Edn+§dn+l

= dyy < d,.

Therefore, the sequence {d,} is a decreasing sequence of non-negative real numbers and hence it is
convergent. Suppose there exists » > 0 such that

d, —r, ie., dgx,, gx,1) —r. (3.7)
We will show that r = 0. Suppose r > 0, then letting n — oo in (3.5) and (3.6) we get
.1 1
r < lim zd(gxn’gleZ) < E(’” +r)=r
= lim d(gx,, gx,.2) = 2r. (3.8)

Again, taking upper limit in (3.4) and using (3.7) and (3.8), we get

) ) 1 )
lim sup d(gx,+1, 8Xu+2) < limsup Ed(gxn, 8Xn42) + lim sup(—@(d(gx,, 8Xn12), 0)).

n—oo n—oo n—oo

Using the fact that for any sequence {x,}, lim sup(—x,) = —liminf(x,), we get

1
lim sup d(gx,+1, 8Xuns2) < 3 lim sup d(gx,,, gx,+2) — liminf ¢(d(gx,, gx,+2),0)

n—oo n—0oo

1
— r < =.2r-liminf ¢(d(gx,, gXs:2),0)

2
which gives liminf ¢(d(gx,, gx,+2),0) < 0 which is a contradiction to the property of ¢, since
(d(gxn, 8Xn+2),0) — (2r,0) # (0, 0). Hence,

lim d(g:%,, gXys1) = 0. (3.9)

Now, we show that {gx,} is a Cauchy sequence. Suppose that {gx,} is not a Cauchy sequence.
Therefore, by Lemma 2.21, there exist € > 0 and two subsequences {gx,,} and {gx,, } such that

d(gXp,, 8Xn,) > € (3.10)

for n, > my > k, further, corresponding to m; we can choose 7, in such a way that it is the smallest
integer n; > my and satisfy (3.10). Then,

d(gXm,, 8Xn—1) < €. 3.11)
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Further, in view of (3.9), (3.10), (3.11) and Lemma 2.21, we have
lim d(gxy,, 8x,) = im d(gx,,, , §xn—1) = lim d(gx,,,—1,8%xn,) = €. (3.12)

As {gx,} is R-preserving and {gx,} C f(X), by the local f-transitivity of R, we have (gx,,, gx,,) € R.
Hence, applying contractivity condition (g), we obtain

d(gxmk’ g-xnk) = d(fxmk,l ) fxnk,l)

1
< E[d(g-xmk—l ’ fxnk—l) + d(g-xnk—l s fxmk—l )] - ¢(d(gxmk—l B fxnk—l)’ d(g-xnk—l s f—xmk—l))
1
= E[d(gxmk—l, 8Xn) +d(gxy,—1, 8Xm )] — H(A(8X—1, 8%, )> A(8Xn—15 8Xm,))-

Taking the upper limit in the above equation and in view of (3.12), we get

: L. .
lim sup d(gxm,, 8xy,) < E[hm sup d(gXp,—1, fXn,—1) + limsup d(gx,,—1, fXm,—1)]

+ lim Sup(_¢(d(gxmk—l ) fxnk—l), d(gxnk—l s fxmk—l)))
Since for any sequence {x,}, limsup(—x,) = —liminf(x,), we get using (3.12)

1 o
€ < S(e+e)—liminf G(d(gxm, -1, fXn-1), A(G X1 fXm-1))
== h}}lglf ¢(d(gxmk—1, f-xnk—l)a d(gxnk—l, fxmk—l)) <0
which is a contradiction to the property of ¢, since
(d(gxmk—la f'xl’lk—l)7 d(gxnk—l’ fxmk—l)) - (6’ 6) # (Oa 0)

Hence, {gx,} is a Cauchy sequence. Now since {gx,} is a R-preserving sequence and X is R-complete,
{gx,} converges to an element z € X, i.e.,

lim g(x,) = z. (3.13)
Also, from (3.1),
lim f(x,) = z. (3.14)
By R-continuity of g,
lim g(gx,) = g(lim gx,) = g(2). (3.15)
Utilizing (3.14) and R-continuity of g,
lim g(fx,) = g(lim fx,) = g(2). (3.16)

Since {fx,} and {gx,} are R-preserving and

lim fx, = lim gx, = z,
n—oo

n—oo
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by the R-compatibility of f and g,

lim d(gfx,, fgx,) = 0. (3.17)

Now, we prove that z is a coincidence point of f and g.
Suppose that f is R-continuous. Using (3.2), (3.13) and R-continuity of f,

lim f(gx,) = f(lim gx,) = f(2). (3.18)

Applying (3.16), (3.17) and continuity of d,

d(gz, fz) = d(lim gfx,, lim fgx,)
= limd(gfx, fgx,) =0

so that g(z) = f(z). Hence, z is a coincidence point of f and g.
Alternately, suppose that R is (g, d)-self-closed. As {gx,} is R-preserving and gx, — z, due to (g, d)-
self-closedness of R, there exists a subsequences {gx,,} of {gx,} such that

[g8Xn,,82]l € R Kk €Ny. (3.19)

Since gx,, — z, Eqs (3.13)—(3.17) also holds for {x,,} instead of {x,}. In view of (3.19) and using

assumption (g), we get
d(fgxn. fz) <
<

<

1

> [d(ggxy,, f2) +d(8z, f8x,)] — d(d(ggxn,, f2), d(gZ, 8Xn))

1

> [d(ggx,, f2) +d(gz, fgx,,)]

1

i[d(ggxnk, f2) +d(gz, gf xn) + d(gf Xn, f8Xn)]. (3.20)

Now using triangle inequality and (3.20) we get

d(gz, fz) < d(gz, gf xn) + d(&f Xu., f8Xn) + d(fgXn,, f2)

1
< d(gz,gfxn) +d(gfxy, f8x,) + E[d(ggxnk, f2) +d(gz, gf xn) + d(gf Xu, f8Xn)].

Letting k — oo in the above equation, we get

=

1
Ed(gz, f2)

1
d(gz, fz) < d(gz,g82) + E[d(gz, f2) +d(gz, g2)]
1
< Ed(gz,fz)

0

IA

which gives d(gz, fz) = 0, 1.e, z is a coincidence point of f and g. |

Theorem 3.2. In addition to Theorem 3.1, if we consider the following condition:

(h) f(X)is R;(X)—directed,

AIMS Mathematics
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then f and g have a unique point of coincidence.

Proof. Suppose there exist x,y € X such that
f(x) = g(x) = xand f(y) = g(y) = . (3.21)
We show that X = y. As f(x), f(y) € f(X) € g(X), by assumption (h), there exist g(z) such that
[fx,gz71 e R = [gx,gz] e R (3.22)

and
[fy.gzl e R = [gy.82] € R (3.23)

Now define the constant sequences: z° = x and z2 = y Vn € Ny, then using (3.21),
8(zn) = f(z) = %, (3.24)

8 = f(2) =7 (3.25)

Suppose z; = z. Since f(X) C g(X), we can define a sequence {z,} such that g(z}, ) = f(z,) ¥V n € Ny.
Therefore,
g@,)=f(@)¥neNyandi=0,1. (3.26)

We claim that
[g(z), gz e RV neNgand i =0, 1. (3.27)

We prove this fact by mathematical induction. It follows from (3.22) and (3.23) that (3.27) holds for
n = 0. Suppose that (3.27) holds forn = r > 0, i.e.,

[g(z), gz e Rand i =0, 1.

As Ris (f, g)-closed, we have
[fG), f@*)] € Rand i = 0, 1,

which gives in view of (3.26), we get
[g(z', ). gZ" )] e Rand i = 0, 1.

Therefore, (3.27) holds for n = r + 1 also. Hence, (3.27) holds ¥ n € N,. Now in view of (3.27) and
using (3.26) and assumption (g), we get

d(gzy, 1. 82ne) = d(fzy. f2)
< Sld(e), f2) + diszh, FD) - (&, f2b) diszl F)

1
= E[d(gzﬁ, gzh.1) +d(gzn, 870, D] — d(d(gz 82011)s d(820, 82041))

which gives
1
d(gz’, . gz.,) < E[d(gzﬁwgz,iﬂ) + d(gzl, ] — ¢(d(gz’,,.gz.,)),d(gz}, 82%) (3.28)
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which implies

[d(gzg-H ’ ngIH—l) + d(gZ}l’ ng)]

| =

d(gZ2+]7gZ}11+l) <
which implies
d(g2, . gzb,) < d(gzd, gz)).

Therefore, the sequence {d(gz°, gz})} is decreasing non-negative sequence which converges to a non-
negative real number r, i.e,

{d(g2, gzp)} — 1.

We will show that r = 0. Suppose that r > 0, then taking upper limit in (3.28) and utilizing the same
method as used earlier in this proof, we get

1 o
r < 5(r+r)-liminf P(d(g2),,,820,1), d(gz), 870))

which gives liminf ¢(d(g2?, |, gz}, ), d(gz}, g25)) < 0, which is a contradiction to the property of ¢.

Hence,

lim d(gz, gz)) = 0. (3.29)
Similarly, we can show that

lim d(gz,, gz,) = 0. (3.30)

Now, using triangle inequality, (3.24) and (3.25), we get

d(%,5) = d(g2,87>)
d(gz", gz)) + d(gz), 872).

IA

Letting n — oo and in view of (3.29) and (3.30), we get
d(x,y) = 0.
Hence, f and g have unique point of coincidence. O
Now we present coincidence point results for mappings satisfying weak K-contraction.

Theorem 3.3. Let (X, d) be a R-complete metric space endowed with a binary relation R. Let f and g
be two self-mappings on X. Suppose that the following conditions hold:

(a) f(X) < g(X),

(b) Ris (f, g)-closed and locally f-transitive,
(c) there exists xy € X such that (gxy, fx9) € R,
(d) f and g are R-compatible,

(e) g is R-continuous,
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(f) either f is R-continuous or R is (g, d)-self-closed,

(g) there exists ¢ € ®© such that

d(f-x’ fy) < %[d(g-x’ fx) + d(gy9 fy)] - ¢(d(gx, fX), d(gy’ f}’))
YV x,ye X with(gx,gy) € R
Then f and g have a coincidence point.

Proof. Following the proof of Theorem 3.1, we can construct the sequence {gx,} defined in (3.1) and
claim that the sequences {gx,} and {fx,} are R-preserving. If g(x,,) = g(x,,+1) for some ny € N, then
using (3.1) we have g(x,,) = f(x,,) i.e. x,, is a coincidence point of f and g, hence we are done. On
the other hand, if g(x,) # g(x,+1) V n € Ny then d(gx,,, gx,+1) # 0. On using (3.1), (3.2) and assumption
(g), we have

d(8Xn+1, 8Xn+2) = d(f X, [ Xn+1)
1
< E[d(gxn’ fxn) + d(gxn+la fxn+l)] - ¢(d(gxn’ fxn)’ d(gxn+l’ f-xn+1))

1
= i[a’(gxn,gxnﬂ) + d(gXn+1, 8Xns2)] — D(A(8Xns 8Xns1), A(8Xns1, 8Xns2)) (3.31)

which gives

IA

1
d(8Xp+1, 8Xn+2) 3 [d(gxn, 8Xn+1) + d(gXps1, 8Xns2)]

- d(gxn+1agxn+2) < d(gxmgxn+l)-

Hence, the sequence {d(gx,, gx,+1)} 1s a decreasing sequence which converges to r > 0. Using the
same technique as in Theorem 3.1, we get

lim d(gx,, gXus1) = O. (3.32)

Now, we show that {gx,} is a Cauchy sequence. Following the lines of Theorem 3.1, there exist
subsequences {gx,, } and {gx,,} of {gx,} such that (gx,,,gx,,) € R. Then applying condition (g), we
obtain

d(gxmk, gxnk) = d(fxmk,l ) fxnk,l)
1
< E[d(gxmk—l’ SXm—1) + d(@xn—1, [Xn—1)] — S(A(@Xpp—1, [ Xmy—1), AQXnp—15 [Xn-1))
1
= E[d(gxmk—l» 8%m,) + d(gxn—1, 8Xn )] — A(A(8Xp-15 8Xm) A(§Xni—1, 8%Xn,))-

Letting k — oo in the above equation and using the property of ¢, we get that the sequence {gx,} is
Cauchy. The rest of the proof is similar to Theorem 3.1. m|

Theorem 3.4. In addition to Theorem 3.3, if we consider the following condition:

(h) f(X)is R;(X)—directed,
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then f and g have a unique point of coincidence.

Proof. The proof is almost similar to Theorem 3.2. Here,

d(gzy,1,8%0) = d(fz f2))

1
< E[d(gzg,fzg) +d(gz), f2)] — d(d(g2, f22),d(gz., fz}))
1
= jﬂﬁ&ﬁ&ﬂ+ﬂﬁb%bm—¢M@£@dﬁd@¢£¢HD
1
= EﬂﬂLﬂLD—MQﬂﬂLﬂLM (3.33)

which gives

|
d(82,1,8%1) < 582, 8%01) (3.34)
1
< 5ld(sz,.82) + d(83). 8%,.1)
< Llaes! g% + d(g2? . g7 3.35
< Sld(gz, 82) + d(g2,1, 820,1) (3.35)

= d(gzy,1.8%0,) < d(gz,, 820

Therefore, the sequence {d(gz., gz°)} is decreasing non-negative sequence which converges to a non-
negative real number, i.e.,

lim d(gz,, g20) = r.
Also in view of (3.34) and (3.35), we get
lim d(gz, 825,1) = 2r.
Now taking the upper limit in (3.33) and using the property of ¢, we get

lim d(gz), gz,) = 0

Similarly,
lim d(gz), gz2) = 0.
Now the conclusion is immediate following Theorem 3.2. O

Remark 3.5. Theorem 3.2 (Theorem 3.4) also guarantees the existence of a unique common fixed
point of f and g.

Proof. Let x be a coincidence point of f and g. So we have, g(x) = f(x) = X. Using Remark 2.15,
every R-compatible pair is weakly compatible. Therefore, X is also a coincidence point of f and g. In
view of Theorem 3.2 (Theorem 3.4), we get g(x) = g(X) which gives

%= g() = (D).
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Hence, X is a common fixed point of f and g. To claim the uniqueness, we assume x’ be another
common fixed point of f and g. Using Theorem 3.2 (Theorem 3.4), we get

X =g(x)=g(x)=x
which concludes the proof. O

Under universal relation (i.e. R = X?), Theorem 3.1 together with Theorems 3.2, 3.3, 3.4 reduce to
the following coincidence point theorems

Corollary 3.6. Let (X,d) be a complete metric space and f, g be two self-mappings on X. Suppose
that the following conditions hold:

(a) f(X) < gX),
(b) f and g are compatible,
(c) g is continuous,

(d) there exists ¢ € ® such that

d(fx, fy) < i[d(gx, fy) + d(gy, )] — ¢(d(gx, fy),d(gy, fx))
Vx,yeX
Then f and g have a unique point of coincidence.

Corollary 3.7. Let (X,d) be a complete metric space and f, g be two self-mappings on X. Suppose
that the following conditions hold:

(a) f(X) < gX),
(b) f and g are compatible,
(c) g is continuous,

(d) there exists ¢ € ® such that

d(fx, fy) < 3[d(gx, fx) +d(gy, fy)] — p(d(gx, fx),d(gy. [y))
Vx,yeX

Then f and g have a unique point of coincidence.
4. Related fixed point results

In this section, we derive several fixed point results of the existing literature as consequences of
our newly proved results.

Taking g = I, the identity map on X in Theorems 3.1, 3.2, 3.3 and 3.4, we obtain
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Corollary 4.1. Let (X,d) be a R-complete metric space endowed with a binary relation R and f a
self-mappings on X. Suppose that the following conditions hold:

(a) R is f-closed and locally f-transitive,
(b) there exists xy € X such that (xy, fxg) € R,
(c) either f is R-continuous or R is d-self-closed,

(d) there exists ¢ € ® such that

d(fx, fy) < 3ld(x, fy) + d@y, f0)] = $(d(x, £3),d(y, fx))
Y x,y € X with (x,y) € R.
Then f has a fixed point. Moreover, if
(e) f(X)is R*-directed,
then f has a unique fixed point.

Corollary 4.2. Let (X,d) be a R-complete metric space endowed with a binary relation R and f a
self-mappings on X. Suppose that the following conditions hold:

(a) Ris f-closed and locally f-transitive,
(b) there exists xy € X such that (xy, fxg) € R,
(c) either f is R-continuous or R is d-self-closed,

(d) there exists ¢ € © such that

d(fx, fy) < 3ld(x, fx) +d(y, f9)] = ¢(d(x, fx),dQ, f)
VY x,y € X with (x,y) € R.
Then f has a fixed point. Moreover, if
(e) f(X)is R°-directed,
then f has a unique fixed point.

Under universal relation (i.e. R = X?), taking g = I, the identity map on X in Theorems 3.1, 3.2,
3.3 and 3.4, we obtain:

Corollary 4.3. Let (X,d) be a complete metric space and f be a self-mapping on X. If there exists
¢ € © such that

d(fx, fy) < 5ld(x, fy) + d(y, f0)] = $(d(x, fy),d(, fx))
VY x,y € X. Then, f has a unique fixed point.

Corollary 4.4. Let (X, d) be a complete metric space and f a self-mapping on X. If there exists ¢ € ©
such that

AIMS Mathematics Volume 6, Issue 12, 13072-13091.



13088

d(fx, fy) < 3ld(x, fx) + d(y, fy)] - ¢(d(x, fx),d(y, f))
V x,y € X. Then, f has a unique fixed point.

Taking R =<, the partial order and g = I, the identity map on X in Theorem 3.1 we obtain the
following result:

Corollary 4.5. Let (X,d, <) be a complete metric space endowed with usual partial order and f a
self-mapping on X. Suppose the following conditions hold:

(a) there exists xy € X such that xy < fxo,
(b) f is nondecreasing with respect to <,
(c) f is continuous or (X, d, <) is regular,

(d) there exists ¢ € © such that
d(fx, fy) < 5ld(x, fy) + d(y, fx)] = ¢(d(x, fy).d(y, fx)) ¥ x =y,

then, f has a fixed point.

Notice that Corollary 4.1 improves and sharpens Theorem 1.3 and Theorem 2.1 of Harjani et al. [30]
since the auxiliary function ¢ considered here is relatively weaker than the existing one.

Remark 4.6. Taking ¢(x,y) = k(x + y), where 0 < k < 1 in Corollaries 4.3 and 4.4 we obtain the
classical fixed point theorems given by Kannan [5] and Chatterjea [6] respectively.

5. An illustrative example

Consider the metric space (X, d) with X = (-1, 1] with the usual metric d. Define two functions
f,g: X —> Xby

L ifx e (-1,0) 3x
=4 47 ’ and =,
f {%’ it x € [0.1] g(x) 1

Now endow X with the following binary relation
R={(x,y) e X*:x>y>0).
Obviously, X is R-complete metric space. Consider a function ¢ : [0, 00)?> — [0, o) defined by

1ox 0
Z(g + Zy), when X,y € [ s 1]
¢(xay) {1

, others.

For x,y € X with (gx, gy) € R,

d(fx, fy)

Il

I

|
W<

Il

|
*
<

|
=
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179
< —|==19x-4
< T2l 1™ y']
17,1 1
< N _—— j—
< 127(2 20)|9x 4y|]
17,1 1 1
< |G 19X -G -3 19y -4
< 121G g 19— IH(Z - ) 19y - 4x]
L 1,1
< |5l 19 =4yl +19 —4x |} = 2{z 19— 4y [ +219y - 4x]]
1 9x-4 Oy —4x I 1 9x-4 Oy — 4y
< Sl=r =g = gls = 12 = )
22 12 1512 B

1
= Q[d(gx, fy) +d(gy, fx)] — ¢(d(gx, fy), d(gy, fx)).

Therefore, the condition (g) of Theorem 3.1 is satisfied. Also, by routine calculation, it can be
observed that all the other conditions of Theorems 3.1 and 3.2 are satisfied, and f and g have a unique
point of coincidence, namely: x = 0, which is also a unique common fixed point of f and g in view of
Remark 3.5.

Notice that condition (g) of Theorem 3.1 does not hold for the whole space (for example, take
x =0and y = 1). Also, the used auxiliary function ¢ in this example is discontinuous. Therefore, this
example cannot be solved by the existing results, which establishes the importance of our results.

6. Conclusions

In this paper, we observed that some of the conditions of the auxiliary function ¢ are not necessary
for weak C-contractions and weak K-contractions. Moreover, we established the relation-theoretic
variants of some coincidence point as well as fixed point theorems for these contractions. Also, the
presented example shows the effectiveness of our newly proved results over corresponding several
noted results. Now, for possible problems, one can attempt to prove related contractions like weakly
f-Kannan, weakly f-Chatterjea etc., with the newly introduced family of auxiliary functions.

Acknowledgments

The authors would like to thank the anonymous referees for their comments that helped us improve
this article. The first author would like to thank the Council of Scientific and Industrial Research
(CSIR), Government of India for JRF (File No. 09/112(0604)/2018-EMR-I).

Conflict of interest

The authors declare no conflict of interest.

References

1. S. Banach, Sur les operations dans les ensembles abstraints er leur application aux equations
intgrales, Fund. Math., 3 (1922), 133-181.

AIMS Mathematics Volume 6, Issue 12, 13072-13091.



13090

2.

10.

1.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

A. Ali, H. Isik, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued SU-type -contractions
and related applications, Open Math., 18 (2020), 386—-399.

A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process
for F-HRS type contractions with application, Phys. A. Stat. Mech. Appl., 538 (2020), 1226609.

A. Ali, M. Alansari, F. Uddin, M. Arshad, A. Asif, G. A. Basendwah, Set-valued SU-type fixed
point theorems via Gauge function with applications, J. Math., (2021), 6612448.

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.

S. K. Chatterjea, Fixed-point theorems, Comptes Rendus de I’Acadmie Bulgare des Sci., 25 (1972),
727-730.

B. S. Choudhury, Unique fixed point theorem for weak C-contractive mappings, Kathmandu Uniyv.
J. Sci., Eng. Technol., 5 (2009), 6-13.

A. Razani, V. Parvaneh, Some fixed point theorems for weakly T-Chatterjea and weakly T-Kannan-
contractive mappings in complete metric spaces, Russ. Math. (Izv. VUZ), 57 (2013), 38—45.

A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17
(2015), 693-702.

M. U. Ali, Y. Guo, F. Uddin, H. Aydi, K. Javed, Z. Ma, On partial metric spaces and related fixed
point results with applications, J. Funct. Spaces, (2020), 6671828.

P. Gopi, K. Deepak, Fixed point theorems in relational metric spaces with an application to
boundary value problems, J. Part. Differ. Equ., 34 (2021), 83-93.

F. Uddin, C. Park, K. Javed, M. Arshad, J. R. Lee, Orthogonal m-metric spaces and an application
to solve integral equations, Adv. Differ. Equ., (2021), 159.

A. Alam, M. Imdad, Nonlinear contractions in metric spaces under locally T-transitive binary
relations, Fixed Point Theory, 19 (2018), 13-24.

H. A. Hammad, M. De la Sen, A solution of Fredholm integral equation by using the cyclic n?-
rational contractive mappings technique in b-metric-like spaces, Symmetry, 11 (2019), 1184.

H. A. Hammad, M. De la Sen, Solution of nonlinear integral equation via fixed point of cyclic
af-rational contraction mappings in metric-like spaces, Bull. Braz. Math. Soc. New Ser., 51 (2020),
81-105.

H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of
functional and nonlinear integral equations, Mathematics, 7 (2019), 634.

G. Jungck, Commuting maps and fixed points, Amer. Math. Mon., 83 (1976), 261-263.

G. Jungck, Common fixed points for noncontinuous non self maps on non-metric space, Far. East.
J. Math. Sci., 4 (1996), 199-215.

S. Lipschutz, Schaums outlines of theory and problems of set theory and related topics, McGraw-
Hill, New York, 1964.

R. D. Maddux, Relation algebras, studies in logic and the foundations of mathematics, Elsevier,
Amsertdam, 2006.

V. Flaska, J. Jezek, T. Kepka, J. Kortelainen, Transitive closures of binary relations I, Acta Univ.
Carolin. Math. Phys., 48 (2007), 55-69.

AIMS Mathematics Volume 6, Issue 12, 13072-13091.



13091

22
23

24.

25.

26.

27.

28.

29.

30.

@ AIMS Press

. H. L. Skala, Trellis theory, Algebr. Univ., 1 (1971), 218-233.

. A. Stouti, A. Maaden, Fixed point and common fixed point theorems in pseudo-ordered sets,
Proyecciones, 32 (2013), 409-418.

B. Samet, M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary
relation and applications, Commun. Math. Anal., 13 (2012), 82-97.

B. Kolman, R. C. Busby, S. Ross, Discrete mathematical structures, 3 Eds, PHI Pvt. Ltd., New
Delhi, 2000.

A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2015), 693—
702.

S. Sessa, On a weak commutativity conditon of mappings in fixed point consideration, Publ. Inst.
Math. Soc., 32 (1982), 149-153.

G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci., 9 (1986), 771-779.

A. F. Roldan-Lépez-de-Hierro, E. Karapinar, M. de la sen, Coincidence point theorems in quasi-
metric spaces without assuming the mixed monotone property and consequences in G-metric
spaces, Fixed Point Theory Appl., (2014), 184.

J. Harjani, B. Lopez, K. Sadarangani, Fixed point theorems for weakly C-contractive mappings in
ordered metric spaces, Comput. Math. Appl., 61 (2011), 790-796.

, ©2021 the Author(s), licensee AIMS Press. This
D is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 12, 13072-13091.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Related fixed point results
	An illustrative example
	Conclusions

