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1. Introduction

Generally speaking, the equations of dissipative systems usually contain the first derivative term,
which reflects the energy loss of the system. Second order dissipative differential equations arise widely
in various research fields such as celestial mechanics, fluid mechanics [1, 2], relativistic mechanics
[3, 4], engineering [5, 6].

The purpose of this paper is to study a class of special dissipative second order differential equations,
named a quadratic Liénard type systems in [7],

ẍ + f (x)(ẋ)2 + g(x) = p(t), (1.1)

where p(t) is a continuous periodic function (let T > 0 be its minimum period), and f (x), g(x) are
local Lipschitz continuous functions. Equation (1.1) models one-dimensional oscillator studied at the
classical and also at the quantum level [8].

Equation (1.1) is a special case of the form

ü + f (u)(u̇)2 = g̃(t, u),
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which arises from nonlinear elastic mechanics [9]. Take F(u) such that F′(u) = f (u), then multiplying
by eF(u), the latter equation is written as

d
dt

[
eF(u)u̇

]
= eF(u)g̃(t, u),

which in turn is just
d2

dt2 [Ψ(u)] = eF(u)g̃(t, u),

where Ψ′(u) = eF(u). Now, the change x = Ψ(u) leads to the desired newtonian formulation ẍ =

f̃ (t, x). For the nonlinear vibrations of a radially forced thick-walled hollow sphere made of an elastic,
homogeneous, isotropic, and incompressible material, Del Pino and Manásevich [10] have shown that
f̃ has the strong singularity at the origin and the superlinearity at infinite by an asymptotic analysis.
Then by Poincaré-Birkhoff twist theorem, they have prove the existence of infinitely many periodic
solutions. Another concrete example of this equation is the Rayleigh-Plesset equation

ρxẍ +
3
2

(ẋ)2 = pB(t) − p∞(t).

We can refer to [11, 12] for the related development.
When Eq (1.1) has no dissipative term, it is just a Duffing equation

ẍ + g(x) = p(t).

Under various conditions such as superlinearity, sublinearity and semilinearity, the existence and
multiplicity of periodic solutions has been established, see [13–15] for instance. We can refer to
[16–19] for more research on the problem of periodic solutions. When the system has nonconvex
potentials or periodic nonlinearities, the existence of subharmonic solutions has been established in
[20,21], where the authors exploited different techniques by using critical point theory. Moreover, with
a similar approach based on the Poincaré-Birkhoff fixed point theorem, the existence of subharmonic
solutions for different second-order differential systems has been widely studied by Zanolin and his
collaborators, see [22–25].

When the forced term p vanishes, Eq (1.1) is an autonomous equation

ẍ + f (x)(ẋ)2 + g(x) = 0. (1.2)

Owing to the second term f (x)(ẋ)2 of (1.1), equation is not conservative in usual phase space (x, ẋ).
However, in the generalized coordinates (x, p), Eq (1.1) can be transformed into a Hamiltonian system
whose energy is conserved; see [26] for details.

In case of

f (x) =
λx

1 − λx2 , g(x) =
αx2

1 − λx2 ,

Eq (1.2) is a one-dimensional Mathews-Lakshmanan (ML) oscillator with real constant parameters
λ, α (see [27, 28]). The ML oscillator can be regarded as the zero-dimensional version of a scalar
nonpolynomial field equation or as a velocity dependent potential oscillator. The kinetic term in
its Hamiltonian function features a position-dependent mass term that produces a variable “spring
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constant” of the oscillator. As a consequence, the classical Euler-Lagrange equation associated with the
model admits simple, sinusoidal solutions [29]. The ML oscillator exhibits simple harmonic periodic
solutions but with amplitude dependent frequency,

x(t) = A cos(Ωt + δ), Ω =
α

√
1 − λA2

,

where A is the amplitude and δ is the initial phase. We can refer to [28] for details.
When the functions f (x) and g(x) are of class C1, a sufficient condition for the monotonicity of the

period T or for the isochronicity of the origin O has been established for Eq (1.2) in [30] by Sabatini.
In the analytic case of f (x) and g(x), Chouikha has given a necessary and sufficient condition for the
isochronicity of the origin O; see [31]. We can refer to [32, 33] for the development. Moreover, a
complete classification of the Lie point symmetry groups is given in [7] for Eq (1.2).

Recently, Atslega [34] provides some conditions on the functions f (x) and g(x) which ensure the
existence of solutions of Eq (1.2) with the Neumann boundary conditions

ẋ(0) = 0, ẋ(1) = 0.

A natural problem is, if the periodic external force p(t) is added, how about the existence and
multiplicity of solutions for Eq (1.1) under the periodic boundary value condition

x(0) = x(mT ), ẋ(0) = ẋ(mT ).

Comparing with the case considered by Del Pino and Manásevich [10], we do not give any assumption
of singularity.

In this paper, we consider the sublinear case, and need the following conditions:

(H1) g(x) satisfies the sublinear condition

lim
|x|→∞

g(x)

x
= 0.

(H2) F(x) and x f (x) are bounded on (−∞,+∞), where F(x) is a prime function of f (x);
(H3) for all x , 0, there is x f (x) < 0.
(H4) lim

x→+∞
g(x) = +∞, lim

x→−∞
g(x) = −∞.

We remark that condition (H4) implies the sign condition of g, that is, there exist d > 0 such that
xg(x) > 0, for all |x| > d. Without loss of generality, in view of assumption (H2) we assume that
0 ≤ F(x) ≤ a with a positive constant a > 0. Moreover, in condition (H2), if f (x) is a monotone
function, then the boundedness of x f (x) holds naturally. In fact, the boundedness of F implies that
infinite integral ∫ +∞

0
f (x)dx,

∫ 0

−∞

f (x)dx

are all convergent, and the monotonicity of f yields the limit lim
x→∞

x f (x) = 0.
The condition (H3) is only a sign condition of the functions f (x) and g(x). A simple example which

satisfies all conditions above is given in the following

ẍ −
x

1 + x4 (ẋ)2 + x1/3 = sin t.
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In order to state our main results, we recall some definitions form [35]. Assume x(t) is a periodic
solution of Eq (1.1) with its minimum positive period T0. If T0 = T , we call x(t) is a harmonic solution;
if T0 = mT with some positive integer m ≥ 2, we call x(t) is a m-order subharmonic solution.

Now we give our main results as follows.

Theorem 1.1. Assume that conditions (H1)–(H4) hold, then there exists a sufficiently large positive
integer m0 such that, for each positive integer m ≥ m0, Eq (1.1) possesses at least two distinct m-order
subharmonic solution.

Theorem 1.2. Assume that conditions (H1)–(H4) hold, then Eq (1.1) has at least one harmonic
solution.

Theorem 1.1 implies that Eq (1.1) possesses infinitely many subharmonic solutions. The proof of
Theorem 1.1 is based on the Poincaré-Birkhoff twist theorem, and the main difficulty is how to verify
the twist property of the Poincaré map corresponding to Eq (1.1). Compared with the superlinear
case [36], when g(x) satisfies the sublinear condition, the rotation speed of the solutions of (1.2) around
the origin is very slow outside a sufficiently large disk.

The paper is organized as follows. Preliminaries and some lemmas which are useful for proving our
theorems are stated in Section 2. We will prove Theorem 1.1 and 1.2 in Section 3.

2. Preliminaries and some lemmas

Firstly, Eq (1.1) is a special case of Benoulli type equation with n = −1 and p(t) ≡ 0 (see [26]),
whose characteristic equation is

dẋ
dx

= − f (x)ẋ −
g(x)

ẋ
,

where we regard t as an independent parameter variable. Then we have the first integral of (1.2)

I(x, ẋ) = (ẋ)2e2F(x) + 2
∫ x

0
[g(s)]e2F(s)ds.

In the following, we introduce the generalized coordinates and the generalized momentum. The
generalized coordinates x is used to describe a conservative mechanical system whose configuration
is completely specified by the value of a certain single variable x. The variable need not represent a
displacement; it might, for example, be an angle, or even the reading on a dial forming part of the
system. The generalized momentum y is a function of both the generalized velocity and generalized
coordinates; see [37, p.31 and p.374] or [26].

Let
y = 2ẋe2F(x) + ϕ(x),

then the Hamiltonian function corresponding to (1.1) is given by

H(x, y) =
1
4

e−2F(x)y2 + 2
∫ x

0
g(s)e2F(s)ds − 2

∫ x

0
e2F(s) p(t)ds.

Here, we take ϕ(x) ≡ 0. For simplification, we rewrite the Hamiltonian function in the following form

H(t, x, y) =
1
4

e−2F(x)y2 + V(x) + P(t, x), (2.1)
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where
V(x) =

∫ x

0
2e2F(s)g(s)ds, P(t, x) = −

∫ x

0
2e2F(s) p(t)ds.

The corresponding Hamiltonian system is defined by
ẋ =

1
2

e−2F(x)y,

ẏ =
1
2

e−2F(x) f (x)y2 − 2e2F(x) (g(x) − p(t)) .
(2.2)

Lemma 2.1. The existence of periodic solutions of Eq (1.1) is equivalent to the existence of periodic
solutions of Hamiltonian system (2.2).

Proof. Equation (1.1) is equivalent to the following plane differential system ẋ = v,

v̇ = − f (x)v2 − g(x) + p(t).
(2.3)

By introducing a global differential homeomorphism

x = x, y = 2e2F(x)v,

system (1.1) is transformed into (2.2). Thus, we complete the proof. �

Lemma 2.2. Assume that conditions (H2)–(H4) hold, then the solutions of Eq (2.2) are well defined on
(−∞,+∞).

Proof. Assume that (x(t; x0, y0), y(t; x0, y0)) is a solution of Eq (2.2) with the initial value condition
(x(t0), y(t0)) = (x0, y0), which is defined on the maximum existence interval (α, β). Let

V(t) =
1
4

e−2F(x(t;x0,y0))y2(t; x0, y0) + V(x(t; x0, y0)),

then we have
dV(t)

dt
= −

∂P(t, x)
∂x

ẋ = 2e2F(x) p(t)(
1
2

e−2F(x)y) = yp(t).

From the conditions (H2) and (H3), we have∣∣∣∣∣dV(t)
dt

∣∣∣∣∣ = |yp(t)| ≤
1
2

y2(t) + |p|2∞ ≤
1
2

e2F(a)−2F(x(t))y2(t) + |p|2∞

≤ C1

[
1
4

e−2F(x(t))y2(t) + V(x(t))
]

+ C2

≤ C1V(t) + C2, (2.4)

where C1,C2 are positive constants, since V(x)→ +∞ as x→ ∞.
If β < +∞, by the continuation of solutions, we have

lim
t→β−

(
|x(t)| + |y(t)|

)
= +∞.
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In view of condition (H4), it follows that lim
t→β−
V(t) = +∞. By using the Grownwall inequality for (2.4),

for all t ∈ [t0, β), we know that

V(t) ≤ −
C2

C1
+ eC1(t−t0)V(t0) +

C2

C1
eC1(t−t0),

which implies V(t) is bounded on [t0, β) since β is finite. Therefore, we obtain a contradiction and
β = +∞.

If α > −∞, with the same argument we obtain

V(t) ≤ −
C2

C1
+ eC1(t0−t)V(t0) +

C2

C1
eC1(t0−t),

which also is a contradiction.
Thus the proof of the lemma is completed. �

Let (x(t; x0, y0), y(t; x0, y0)) be the solution of Eq (2.2) with the initial value
(x(t0; x0, y0), y(t0; x0, y0)) = (x0, y0). Let

x1 = x(T ; x0, y0), y1 = y(T ; x0, y0).

By Lemma 2.2, the Poincaré mapping of (2.2)

P : (x0, y0) 7→ (x1, y1)

is well defined. Moreover, it is a area-preserving smooth homeomorphism in the phase plane since
(2.2) is a Hamiltonian system.

With the same argument as [38, 39], we have the elastic property for system (2.2).

Lemma 2.3. For any constants d > 0 and L > 0, there is a sufficiently large constant c > d, such that
the solution (x(t; x0, y0), y(t; x0, y0)) of system (2.2) satisfies the inequality

x2(t; x0, y0) + y2(t; x0, y0) ≥ d2, t ∈ [t0, t0 + L], (2.5)

if the initial value (x0, y0) satisfies the condition

x2
0 + y2

0 ≥ c2.

If the solution does not pass through the origin, we can use the polar coordinates to represent the
solution. Now we transform system (2.2) into the polar coordinates, that is,

ṙ =
1
2

rsin θ cos θe−2F(r cos θ) +
1
2

r2sin3θe−2F(r cos θ) f (r cos θ)

−2 sin θe2F(r cos θ)(g(r cos θ) − p(t)),

θ̇ =
1
2

rsin2θ cos θe−2F(r cos θ) f (r cos θ)

−
2 cos θ

r
e2F(r cos θ)(g(r cos θ) − p(t)) −

1
2

sin2θe−2F(r cos θ).

(2.6)
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From Lemma 2.3, if r0 > c, the solution can be written in the form of polar coordinates

r(t) = r(t; r0, θ0) > d, θ(t) = θ(t; r0, θ0), t ∈ [0,T ], (2.7)

which satisfies the initial value r(0) = r0, θ(0) = θ0. Furthermore, we have

r(t; r0, θ0 + 2π) = r(t; r0, θ0), θ(t; r0, θ0 + 2π) = θ(t; r0, θ0) + 2π.

Then the function r(t; r0, θ0) is the period of 2π for θ0, and the function θ(t; r0, θ0) is 2π-appreciation
with respect to θ0.

When r0 > c, we can get the Poincaré mapping P in the polar coordinate form

r1 = r0 + R(r0, θ0), θ1 = θ0 + Θ(r0, θ0),

where
R(r0, θ0) = r(T ; r0, θ0) − r0, Θ(r0, θ0) = θ(T ; r0, θ0) − θ0.

Lemma 2.4. Assume that conditions (H3) and (H4) hold, then there exists a sufficiently large disc

Dd = {(x, y)| x2 + y2 ≤ d2}

such that the trajectory of (2.6) outside the disc Dd rotates clockwise around the origin O.

Proof. By the second equality of (2.6), we have

dθ
dt

=
1
2

sin2θe−2F(x)(x f (x) − 1) − 2cos2θe2F(x) (g(x) − p(t))
x

.

From conditions (H3) and (H4), there exists a positive constant N such that

g(x) − p(t)
x

> 0, |x| ≥ N.

Moreover, from (H3) we have x f (x) < 0, for all |x| ≥ N. Therefore, when |x| ≥ N, we have

dθ(t)
dt

< 0.

When |x| ≤ N, we have

dθ
dt

=
1
2

sin2θe−2F(x)(x f (x) − 1) − 2e2F(x) (g(x) − p(t))
x2 + y2 x.

Notice that if d is large enough, for |x| ≤ N, we have θ ∈ [π/4, 3π/4] ∪ [5π/4, 7π/4] so that sin2 θ is
uniformly positive. On the other hand, for any ε > 0, we can take a sufficiently large d, we obtain∣∣∣∣∣ (g(x) − p(t))

x2 + y2 x
∣∣∣∣∣ ≤ ε.

Consequently, we have
dθ(t)

dt
< 0, t ∈ [0,T ]. (2.8)

�

By combining Lemma 2.3 and Lemma 2.4, we know that if the initial value (θ0, r0) such that r0 > c,
then for t ∈ [0, L], the solution of (2.6) rotates clockwise around the origin O and is always outside the
disc Dd.
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3. Harmonic and subharmonic solutions of (1.1)

Denote by ∆τ(r0, θ0) the time for which the solution (θ(t; r0, θ0), r(t; r0, θ0)) of system (2.2) rotates
one around the origin.

Lemma 3.1. Assume that conditions (H1)–(H4) hold, we have

lim
r0→+∞

∆τ(r0, θ0) = +∞.

Proof. Taking two large enough constants A > 0 and B > 0 such that

A

B
< ε � 1,

we consider the following regions respectively:

D1 = {(x, y) ∈ R2 : |x| ≤ A, y > B},

D2 = {(x, y) ∈ R2 : x ≥ A, |y| < ∞},

D3 = {(x, y) ∈ R2 : |x| ≤ A, y < −B},

D4 = {(x, y) ∈ R2 : x ≤ −A, |y| < ∞},

and D = D1 ∪ D2 ∪ D3 ∪ D4 ⊂ Dd, where Dd is defined in Lemma 2.4. According to Lemma 2.3 and
Lemma 2.4, when r0 is sufficiently large, the solution of (2.6) rotates clockwise around the origin O
and is always outside the region D. Let [t1, t2], [t2, t3] be the time intervals for the solution staying at
D1, D2, respectively, and so on.

From the first equality of Eq (2.2), we obtain

t2 − t1 =

∫ A

−A

2e2F(x)

y
dx <

4Ae2a

B
.

Similarly, we have

t4 − t3 =

∫ −A

A

2e2F(x)

y
dx <

4Ae2a

B
.

From the second equality of (2.6), we obtain

dθ
dt

=
1
2

rsin2θ cos θe−2F(r cos θ) f (r cos θ)

− 2 cos θe2F(r cos θ) (g(r cos θ) − p(t))
r

−
1
2

sin2θe−2F(r cos θ).

Let
F = −

dθ
dt
.

Then we have

∆τ(r0, θ0) =

∫ 2π

0

1
F

dθ.
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By condition (H1), for any positive constant δ � 1, we can take B� 1 such that

0 <
g(x) − p(t)

x
< δ, |x| ≥ B.

We take A � B to ensure that θ(t) ∈ [−π/4, π/4] for all t ∈ [t2, t3]. Moreover, x f (x) is bounded on
x ∈ (−∞,+∞). Then, for K > 0 large enough such that x f (x) ≥ −K, we have

t3 − t2 =

∫ θ(t2)

θ(t3)

dθ
H
≥

∫ π
4

− π4

dθ
1
2sin2θ + 1

2 Ksin2θ + 2e2aδcos2θ

=
π√

(1 + K)e2aδ
.

Similarly, we have

t5 − t4 ≥
π√

(1 + K)e2aδ
.

Consequently, if 0 < δ � 1, then

∆τ(r0, θ0) =(t2 − t1) + (t3 − t2) + (t4 − t3) + (t5 − t4)

≥
2π√

(1 + K)e2aδ
� 1.

Thus we complete the proof. �

In the proof of Lemma 3.1, it seems that the estimates of time intervals [t1, t2] and [t3, t4] are not
needed. However, it has shown that the main part of ∆τ(r0, θ0) is the solution staying at D2 and D4.

3.1. Proof of Theorem 1.2

Proof of Theorem 1.2. By using Lemma 3.1, we conclude that the time required for the solution
rotating clockwisely one around the origin is sufficiently large. Therefore, when |z0| = a is sufficiently
large, θ(t, z0) satisfies the condition

− 2π < θ(T, z0) − θ(0, z0) < 0. (3.1)

Then the Poincaré mapping P of Eq (2.2) satisfies the conditions of the Poincaré-Bohl fixed point
theorem on the disk Da. Therefore, P has at least one fixed point ζ0, then z = z(t, ζ0) is the harmonic
solution of Eq (2.2).

Thus we complete the proof. �

3.2. Proof of Theorem 1.1

According to Theorem 1.2, Eq (2.2) has at least one harmonic solution z = z0(t) = (x0(t), y0(t)). Let

x = u + x0(t), y = v + y0(t).
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Substituting into Eq (2.2), we have

u̇ =
1
2

ve−2F(u+x0(t)) +
1
2

y0(t)
[
e−2F(u+x0(t)) − e−2F(x0(t))

]
,

v̇ =
1
2

e−2F(u+x0(t)) f (u + x0(t))(y0(t) + v)2 − 2e2F(u+x0(t))g(u + x0(t))

+2p(t)
[
e2F(u+x0(t)) − e2F(x0(t))

]
+ 2e2F(x0(t))g(x0(t))

−1
2e−2F(x0(t)) f (x0(t))y2

0(t).

(3.2)

Obviously, Eq (3.2) has a trivial solution (u, v) = (0, 0). From the uniqueness of the solution, if
(u0, v0) , 0, we have (u(t; u0, v0), v(t; u0, v0)) , (0, 0) for all t ∈ R. Therefore, it can be written in the
form of polar coordinates

Λ : u(t) = ρ(t)cosϕ(t), v(t) = ρ(t)sinϕ(t),

where ρ(t) > 0 and ϕ(t) are continuous functions of t.

Lemma 3.2. Let t1 > 0 and assume that the angle ϕ of Λ satisfies the condition

ϕ(t1) − ϕ(0) < −2Nπ. (3.3)

Then for any t2 > t1, we have
ϕ(t2) − ϕ(0) < −2Nπ + π. (3.4)

Proof. From the first equality of Eq (3.2), when Λ intersects with the positive half axis of the v-axis,
that is, u = 0 and v > 0, then

u̇(t) =
1
2

ve−2F(x0(t)) > 0.

When Λ intersects with the negative half axis of the v-axis, that is, u = 0 and v < 0, then u̇(t) < 0.
Therefore, when the trajectory Λ intersects with the v-axis, it crosses in a clockwise direction. That is,
when Λ goes from the positive (or negative) v-axis to the negative (or positive) v-axis, the angle ϕ of
Λ gets an increment of −π. And when Λ is in the right (or left) half plane, no matter how active, the
increment of the angle will not exceed +π. Therefore, when t1 ≤ t ≤ t2, we have

ϕ(t2) − ϕ(t1) < π.

By using inequality (3.3), we get

ϕ(t2) − ϕ(0) = (ϕ(t1) − ϕ(0)) + (ϕ(t2) − ϕ(t1)) < −2Nπ + π.

Therefore,the proof of Lemma 3.2 is now completed. �

Let
x = x(t) = u(t) + x0(t), y = y(t) = v(t) + y0(t)

be the solution of Eq (2.2) on the (x, y) plane. The trajectory on the plane of (x, y) is also denoted as Λ.
Consider the moving point

P(t) = (x(t), y(t)) ∈ Λ,Q(t) = (x0(t), y0(t)) ∈ Λ0 (t ∈ R),
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and the triangle ∆OPQ, where O is the origin on the plane (x, y) and Q is the origin on the plane (u, v).
Let the constant c0 satisfy

c0 > sup
0≤t≤T

√
x2

0(t) + y2
0(t). (3.5)

That is, the closed orbit Λ0 is within the disk Dc0(O). Then when the poin P(t) is outside the disk
Dc0(O) (i.e. r(t, z0) = |P(t)| > c0), the angle ∆OPQ at the vertex P of the triangle σ(t) is an acute angle.
Therefore, using |θ(t, ζ0) − ϕ(t)| = σ(t), we can derive

|θ(τ2, ζ0) − θ(τ1, ζ0)| < |ϕ(τ2) − ϕ(τ1)| +
π

2
(∀τ2 > τ1 > 0). (3.6)

Lemma 3.3. Let 0 < t1 < mT. Suppose the argument θ(t, z0) of the trajectory Λ satisfies

θ(t1, z0) − θ(0, z0) < −2Nπ. (3.7)

Then

θ(mT, z0) − θ(0, z0) < −(2N −
3
2

)π. (3.8)

Proof. From Lemma 3.2, for any t2 > t1, we have

ϕ(t2) − ϕ(t1) < π.

According to inequalities (3.6) and (3.7), there is

θ(t2, z0) − θ(0, z0) ≤|θ(t2, z0) − θ(t1, z0)| + |θ(t1, z0) − θ(0, z0)|

≤|ϕ(t2) − ϕ(t1)| +
π

2
+ (−2Nπ) < −(2N −

3
2

)π.

Take t2 = mT , then we complete the proof of Lemma 3.3. �

Now we began to prove Theorem 1.1 as follows.

Proof of Theorem 1.1. The proof follows the method of Fonda, Manásevich and Zanolin (see [25]),
and we also can refer to the book [35]. The proof is essentially the same as the one in [25], however,
for the sake of the integrity of the article, we repeat this process in our setting.

First of all, according to Lemma 2.4, we know that there exists a constant c0 > 0 such that, for any
trajectory of Eq (2.2), namely,

Γ : z = (x(t), y(t)) = (r(t, z0) cos θ(t, z0), r(t, z0) sin θ(t, z0)),

we have
θ′(t) < 0, if r(t, z0) ≥ c0. (3.9)

Assume that inequality (3.5) holds, where (x0(t), y0(t)) is a harmonic solution of Eq (2.2).
Secondly, for an arbitrarily large t1 > 0, there is a sufficiently large d0 > c0 such that when 0 ≤ t ≤ t1,

we get
r(t, z0) > c0, θ

′(t) < 0, if |z0| ≥ d0.
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Thus
θ(t1, z0) − θ(0, z0) < −2Nπ, (3.10)

where the integer N ≥ 0.
Next we have to prove that the constant N of inequality (3.10) can be arbitrarily large, if t1 is

sufficiently large.
In fact, assume by contradiction that there is a constant K > 0 such that

θ(t1, z0) − θ(0, z0) > −K(t1 � 1). (3.11)

There include two situations. If t1 → +∞, r(t1, z0)→ +∞, then we obtain

lim
t→∞

θ(t, z0) = θ∗ > −∞,

that is, the trajectory Γz0 takes the ray θ = θ∗ as the asymptote. From the second equality of Eq (2.6),
we have

dθ
dt

=
1
2

sin2θe−2F(x)x f (x) − 2 cos2 θe2F(x) (g(x) − p(t))
x

−
1
2

sin2θe−2F(x).

Thus we have θ∗ = kπ, where k is a certain integer. That is, the trajectory Γz0 takes the positive x-axis
(or negative x-axis) as the asymptotes. Let the positive x axis be the asymptote. Therefore, the tangent
slope of the trajectory Γz0 has a limit

lim
x→∞

dy
dx

= lim
x→∞

1
2e−2F(x) f (x)y2 − 2e2F(x) (g(x) − p(t))

1
2e−2F(x)y

= 0.

which yields that, when x→ +∞, we have y→ 0. It contradicts with the condition (H4), and the above
situation cannot happen.

We consider the other case. Suppose c0 > 0, which is given by (3.5). Then there is t1 � 1 such
that r(t1, z0) = c0. Since |z0| can be sufficiently large, there exists a trajectory Γ∗ starting from the circle
|z| = c0 with a negative direction asymptote, which is similar to the first case. Then we can also deduce
contradictions. This proves that inequality (3.11) does not hold.

Therefore, the constant N > 0 in the inequality (3.10) can be arbitrarily large, if t1 is sufficiently
large.

Then, take an appropriately large constant a0 > c0, so that the initial value of the trajectory Γ which
satisfies |z(0)| = a0 has the following properties:

(P1) For a given prime number Q ≥ 2, there is t1 > 0 such that

|z(t, z0)| > c0 (0 ≤ t < t1),

|z(t1, z0)| = c0 , θ(t1, z0) − θ(0, z0) < −(2Q + 2)π.

or
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(P2) For any sufficiently large t1 > 0, such that

|z(t, z0)| > c0 (0 ≤ t < t1),

θ(t1, z0) − θ(0, z0) < −(2Q + 2)π.

Let
E = {t1 > 0 : the property (P1) holds}.

Then when E , ∅, we have an upper bound

t∗1 = sup
t1∈E

t1.

And when E = ∅ (that is, for any t1 > 0, the property (P2) holds). Let t∗1 = 0 and take the integer

m0 = max{2, t∗1}.

Then when m ≥ m0, from Lemma 3.3, we obtain

θ(mT, z0) − θ(0, z0) < −(2(Q + 1) −
3
2

)π < −(2Q +
1
2

)π, |z(0)| = a0. (3.12)

On the other hand, from Lemma 3.1, there is a sufficiently large constant bm > 0(bm > a0) such that

− 2π < θ(mT, z0) − θ(0, z0) < 0, |z(0)| = bm. (3.13)

Considering the annular domain

Am : a2
0 ≤ x2 + y2 ≤ b2

m,

we denote the m iterations of the Poincaré-Birkhoff of Eq (2.2) as Pm. Obviously, the composition of
the Poincaré maps for Hamiltonian Systems is an area-preserving homeomorphism. And by (3.12) and
(3.13), it is twisted on the annular domain Am. Therefore, according to the Poincaré-Birkhoff twist
theorem, Pm has at least two fixed points ζ(k)

m (k = 1, 2) inAm, and satisfies the conditions

θ(mT, ζ(k)
m ) = −2Qπ, (k = 1, 2).

where Q ≥ 2 is a prime number. Obviously, z = zm(t, ζ(k)
m ) is the mT periodic solution of Eq (2.2).

With the same argument in [25, 35], owing to the fact that Q is prime and Q ≥ 2, we know that mT
is the minimum period of z = zm(t, ζ(k)

m ). Thus we complete the proof of Theorem 1.1. �

4. Conclusions

Based on the Poincaré-Birkhoff twist theorem, we have proved the existence of harmonic solutions
and infinitely many subharmonic solutions of dissipative second order sublinear differential equations
named quadratic Liénard type systems.
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