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Abstract: In this work we consider a family of cubic, with respect to the first derivative, nonlinear
oscillators. We obtain the equivalence criterion for this family of equations and a non-canonical form of
Ince VII equation, where as equivalence transformations we use generalized nonlocal transformations.
As a result, we construct two integrable subfamilies of the considered family of equations. We
also demonstrate that each member of these two subfamilies possesses an autonomous parametric
first integral. Furthermore, we show that generalized nonlocal transformations preserve autonomous
invariant curves for the equations from the studied family. As a consequence, we demonstrate that
each member of these integrable subfamilies has two autonomous invariant curves, that correspond
to irreducible polynomial invariant curves of the considered non-canonical form of Ince VII equation.
We illustrate our results by two examples: An integrable cubic oscillator and a particular case of the
Liénard (4,9) equation.
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1. Introduction

We consider the following family of nonlinear oscillators

yzz + k(y)y3
z + h(y)y2

z + f (y)yz + g(y) = 0, (1.1)

where k, h, f , 0 and g , 0 are arbitrary sufficiently smooth functions. Particular members of (1.1)
are used for the description of various processes in physics, mechanics and so on and they also appear
as invariant reductions of nonlinear partial differential equations [1–3].

Integrability of (1.1) was studied in a number of works [4–16]. In particular, in [15] linearization
of (1.1) via the following generalized nonlocal transformations

w = F(y), dζ = (G1(y)yz + G2(y))dz. (1.2)
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was considered. However, equivalence problems with respect to transformations (1.2) for (1.1) and its
integrable nonlinear subcases have not been studied previously. Therefore, in this work we deal with
the equivalence problem for (1.1) and its integrable subcase from the Painlevé-Gambier classification.
Namely, we construct an equivalence criterion for (1.1) and a non-canonical form of Ince VII
equation [17, 18]. As a result, we obtain two new integrable subfamilies of (1.1). What is more, we
demonstrate that for any equation from (1.1) that satisfy one of these equivalence criteria one can
construct an autonomous first integral in the parametric form. Notice that we use Ince VII equation
because it is one of the simplest integrable members of (1.1) with known general solution and known
classification of invariant curves.

Moreover, we show that transformations (1.2) preserve autonomous invariant curves for equations
from (1.1). Since the considered non-canonical form of Ince VII equation admits two irreducible
polynomial invariant curves, we obtain that any equation from (1.1), which is equivalent to it, also
admits two invariant curves. These invariant curves can be used for constructing an integrating factor
for equations from (1.1) that are equivalent to Ince VII equation. If this integrating factor is Darboux
one, then the corresponding equation is Liouvillian integrable [19]. This demonstrates the connection
between nonlocal equivalence approach and Darboux integrability theory and its generalizations, which
has been recently discussed for a less general class of nonlocal transformations in [20–22].

The rest of this work is organized as follows. In the next Section we present an equivalence criterion
for (1.1) and a non-canonical form of the Ince VII equation. In addition, we show how to construct
an autonomous first integral for an equation from (1.1) satisfying this equivalence criterion. We also
demonstrate that transformations (1.2) preserve autonomous invariant curves for (1.1). In Section 3 we
provide two examples of integrable equations from (1.1) and construct their parametric first integrals,
invariant curves and integrating factors. In the last Section we briefly discuss and summarize our
results.

2. Main results

We begin with the equivalence criterion between (1.1) and a non-canonical form of the Ince VII
equation, that is [17, 18]

wζζ + 3wζ + εw3 + 2w = 0. (2.1)

Here ε , 0 is an arbitrary parameter, which can be set, without loss of generality, to be equal to ±1.
The general solution of (1.1) is

w = e−(ζ−ζ0)cn
{
√
ε(e−(ζ−ζ0) −C1),

1
√

2

}
. (2.2)

Here ζ0 and C1 are arbitrary constants and cn is the Jacobian elliptic cosine. Expression (2.2) will be
used below for constructing autonomous parametric first integrals for members of (1.1).

The equivalence criterion between (1.1) and (2.1) can be formulated as follows:

Theorem 2.1. Equation (1.1) is equivalent to (2.1) if and only if either

(I) 25515lgp2qy + 2352980l10 +
(
3430q − 6667920p3

)
l5

−14580qp3 − 10q2 − 76545lgqppy = 0,
(2.3)
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or
(II) 343l5 − 972p3 = 0, (2.4)

holds. Here

l = 9( f gy − g fy + f gh − 3kg2) − 2 f 3, p = gly − 3lgy + l( f 2 − 3gh),

q = 25515gylp2 − 5103lgppy + 686l5 − 8505p2
(

f 2 − 3gh
)

l + 6561p3.
(2.5)

The expression for G2 in each case is either

(I) G2 =
126l2qp2

470596l10 −
(
1333584p3 + 1372q

)
l5 + q2 , (2.6)

or

(II) G2
2 = −

49l3G2 + 9p2

189pl
. (2.7)

In all cases the functions F and G1 are given by

F2 =
l

81εG3
2

, G1 =
G2( f − 3G2)

3g
. (2.8)

Proof. We begin with the necessary conditions. Substituting (1.2) into (2.1) we get

yzz + k(y)y3
z + h(y)y2

z + f (y)yz + g(y) = 0, (2.9)

where

k =
FG3

1(εF2 + 2) + 3G2
1Fy + G1Fyy − FyG1,y

G2Fy
,

h =
G2Fyy + (6G1G2 −G2,y)Fy + 3FG2G2

1(εF2 + 2)
G2Fy

,

f =
3G2(Fy + FG1(εF2 + 2))

Fy
, g =

FG2
2(εF2 + 2)

Fy
.

(2.10)

As a consequence, we obtain that (1.1) can be transformed into (2.1) if it is of the form (2.9) (or (1.1)).
Conversely, if the functions F, G1 and G2 satisfy (2.10) for some values of k, h, f and g, then (1.1)

can be mapped into (2.1) via (1.2). Thus, we see that the compatibility conditions for (2.10) as an
overdertmined system of equations for F, G1 and G2 result in the necessary and sufficient conditions
for (1.1) to be equivalent to (2.1) via (1.2).

To obtain the compatibility conditions, we simplify system (2.10) as follows. Using the last two
equations from (2.10) we find the expression for G1 given in (2.8). Then, with the help of this relation,
from (2.10) we find that

81εF2G3
2 − l = 0, (2.11)

and
567lG3

2 + (243lgh − 81l f 2 − 81gly + 243lgy)G2 − 7l2 = 0,
243lgG2,y + 324lG3

2 − 81glyG2 + 2l2 = 0,
(2.12)

Here l is given by (2.5).
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As a result, we need to find compatibility conditions only for (2.12). In order to find the generic case
of this compatibility conditions, we differentiate the first equation twice and find the expression for G2

2
and condition (2.3). Differentiating the first equation from (2.12) for the third time, we obtain (2.6).
Further differentiation does not lead to any new compatibility conditions. Particular case (2.4) can be
treated in the similar way.

Finally, we remark that the cases of l = 0, p = 0 and q = 0 result in the degeneration of
transformations (1.2). This completes the proof. �

As an immediate corollary of Theorem 2.1 we get

Corollary 2.1. If coefficients of an equation from (1.1) satisfy either (2.3) or (2.4), then an autonomous
first integral of this equation can be presented in the parametric form as follows:

y = F−1(w), yz =
G2wζ

Fy −G1wζ

. (2.13)

Here w is the general solution of (2.1) given by (2.2). Notice also that, formally, (2.13) contains two
arbitrary constants, namely ζ0 and C1. However, without loss of generality, one of them can be set
equal to zero.

Now we demonstrate that transformations (1.2) preserve autonomous invariant curves for equations
from (1.1).

First, we need to introduce the definition of an invariant curve for (1.1). We recall that Eq (1.1) can
be transformed into an equivalent dynamical system

yz = P, uz = Q, P = u, Q = −ku3 − hu2 − f u − g. (2.14)

A smooth function H(y, u) is called an invariant curve of (2.14) (or, equivalently, of (1.1)), if it is a
nontrivial solution of [19]

PHy + QHu = λH, (2.15)

for some value of the function λ, which is called the cofactor of H.
Second, we need to introduce the equation that is equivalent to (1.1) via (1.2). Substituting (1.2)

into (1.1) we get
wζζ + k̃w3

ζ + h̃w2
ζ + f̃ wζ + g̃ = 0, (2.16)

where

k̃ =
kG3

2 − gG3
1 + (G1,y − hG1)G2

2 + ( fG1 −G2,y)G1G2

F2
yG2

2

,

h̃ =
(hFy − Fyy)G2

2 − (2 fG1 −G2,y)G2Fy + 3gG2
1Fy

F2
yG2

2

,

f̃ =
fG2 − 3gG1

G2
2

, g̃ =
gFy

G2
2

.

(2.17)

An invariant curve for (2.16) can be defined in the same way as that for (1.1). Notice that, further, we
will denote wζ as v.
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Theorem 2.2. Suppose that either (1.1) possess an invariant curve H(y, u) with the cofactor λ(y, u)
or (2.16) possess an invariant curve H̃(w, v) with the cofactor λ̃(w, v). Then, the other equation also
has an invariant curve and the corresponding invariant curves and cofactors are connected via

H(y, u) = H̃
(
F,

Fyu
G1u + G2

)
, λ(y, u) = (G1u + G2)λ̃

(
F,

Fyu
G1u + G2

)
. (2.18)

Proof. Suppose that H̃(w, v) is an invariant curve for (2.16) with the cofactor λ̃(w, v). Then it satisfies

vH̃w + (−k̃v3 − h̃v2 − f̃ v − g̃)H̃v = λ̃H̃. (2.19)

Substituting (1.2) into (2.19) we get

uHy + (−ku3 − hu2 − f u − g)H = (G1u + G2)λ̃
(
F,

Fyu
G1u + G2

)
H. (2.20)

This completes the proof. �

As an immediate consequence of Theorem 2.2 we have that transformations (1.2) preserve
autonomous first integrals admitted by members of (1.1), since they are invariant curves with zero
cofactors.

Another corollary of Theorem 2.2 is that any equation from (1.1) that is connected to (2.1) admits
two invariant curves that correspond to irreducible polynomial invariant curves of (2.1). This invariant
curves of (2.1) and the corresponding cofactors are the following (see, [23] formulas (3.18) and (3.19)
taking into account scaling transformations)

H̃ = ±i
√
−2ε(v + w) + w2, λ̃ = ±

√
−2εw − 2. (2.21)

Therefore, we have that the following statement holds:

Corollary 2.2. If coefficients of an equation from (1.1) satisfy either (2.3) or (2.4), then is admits the
following invariant curves with the corresponding cofactors

H = ±i
√
−2ε

(
Fyu

G1u + G2
+ F

)
+ F2, λ = (G1u + G2)

(
±
√
−2εF − 2

)
. (2.22)

Let us remark that connections between (2.1) and non-autonomous variants of (1.1) can be
considered via a non-autonomous generalization of transformations (1.2). However, one of two
nonlocally related equations should be autonomous since otherwise nonlocal transformations do not
map a differential equation into a differential equation [5].

In this Section we have obtained the equivalence criterion between (1.1) and (2.1), that defines two
new completely integrable subfamilies of (1.1). We have also demonstrated that members of these
subfamilies posses an autonomous parametric first integral and two autonomous invariant curves.
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3. Examples

In this Section we provide two examples of integrable equations from (1.1) satisfying integrability
conditions from Theorem 2.1.

Example 1. One can show that the coefficients of the following cubic oscillator

yzz −
12εµy

(εµ2y4 + 2)2 y3
z − 6µyyz + 2µ2y3(εµ2y4 + 2) = 0, (3.1)

satisfy condition (2.3) from Theorem 2.1. Consequently, Eq (3.1) is completely integrable and its
general solution can be obtained from (2.2) by inverting transformations (1.2). However, it is more
convenient to use Corollary 2.1 and present the autonomous first integral of (3.1) in the parametric
form as follows:

y = ±

√
w
µ
, yz =

w(εw2 + 2)wζ

2wζ + w(εw2 + 2)
, (3.2)

where w is given by (2.2), ζ is considered as a parameter and ζ0, without loss of generality, can be set
equal to zero. As a result, we see that (3.1) is integrable since it has an autonomous first integral.

Moreover, using Corollary 2.2 one can find invariant curves admitted by (3.1)

H1,2 =
y4

[
(
√

2 ±
√
−εµy2)2(

√
2 ∓
√
−εµy2) + 2(εµy2 ∓

√
−2ε)u

]
2µ2y2(εµ2y4 + 2) − 4u

,

λ1,2 = ±
2(µy2(εµ2y4 + 2) − 2u)(

√
−2εµy2 ∓ 2)

y(εµ2y4 + 2)

(3.3)

With the help of the standard technique of the Darboux integrability theory [19], it is easy to find the
corresponding Darboux integrating factor of (3.1)

M =
(εµ2y4 + 2)

9
4

(2εu2 + (εµ2y4 + 2)2)
3
4 (µy2(εµ2y4 + 2) − 2u)

3
2

. (3.4)

Consequently, equation is (3.1) Liouvillian integrable.

Example 2. Consider the Liénard (1,9) equation

yzz + (biyi)yz + a jy j = 0, i = 0, . . . 4, j = 0, . . . , 9. (3.5)

Here summation over repeated indices is assumed. One can show that this equation is equivalent
to (2.1) if it is of the form

yzz − 9(y + µ)(y + 3µ)3yz + 2y(2y + 3µ)(y + 3µ)7 = 0, (3.6)

where µ is an arbitrary constant.
With the help of Corollary 2.1 one can present the first integral of (3.6) in the parametric form as

follows:

y =
3
√
−2εµw

2 −
√
−2εw

, yz =
7776

√
2εµ5wwζ

(
√
−2εw − 2)5(2

√
−εwζ + (

√
2εw + 2

√
−ε)w)

, (3.7)
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where w is given by (2.2). Thus, one can see that (3.5) is completely integrable due to the existence of
this parametric autonomous first integral.

Using Corollary 2.2 we find two invariant curves of (3.6):

H1 =
y2[(2y + 3µ)(y + 3µ)4 − 2u)]

(y + 3µ)2[(y + 3µ)4y − u]
, λ1 =

6µ(u − y(y + 3µ)4)
y(y + 3µ)

, (3.8)

and

H2 =
y2(y + 3µ)2

y(y + 3µ)4 − u
, λ2 =

2(2y + 3µ)(u − 2y(y + 3µ)4)
y(y + 3µ)

. (3.9)

The corresponding Darboux integrating factor is

M =
[
y(y + 3µ)4 − u

]− 3
2
[
(2y + 3µ)(y + 3µ)4 − 2u

]− 3
4
. (3.10)

As a consequence, we see that Eq (3.6) is Liouvillian integrable.
Therefore, we see that equations considered in Examples 1 and 2 are completely integrable from two

points of view. First, they possess autonomous parametric first integrals. Second, they have Darboux
integrating factors.

4. Conclusions and discussion

In this work we have considered the equivalence problem between family of Eqs (1.1) and its
integrable member (2.1), with equivalence transformations given by generalized nonlocal
transformations (1.2). We construct the corresponding equivalence criterion in the explicit form,
which leads to two new integrable subfamilies of (1.1). We have demonstrated that one can explicitly
construct a parametric autonomous first integral for each equation that is equivalent to (2.1) via (1.2).
We have also shown that transformations (1.2) preserve autonomous invariant curves for (1.1). As a
consequence, we have obtained that equations from the obtained integrable subfamilies posses two
autonomous invariant curves, which corresponds to the irreducible polynomial invariant curves
of (2.1). This fact demonstrate a connection between nonlocal equivalence approach and Darboux and
Liouvillian integrability approach. We have illustrate our results by two examples of integrable
equations from (1.1).
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