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1. Introduction

We consider the following Hadamard fractional differential equation
¢p,(" D u(@®) + f(t,u@®)," D u@®) =0, 1 <t<e, (1.1)

with nonlocal boundary conditions
(@) _ © Di H D2
u’(1)=0,i=0,1,2,...,n D cu(e) = E n]D Tu(é)), (1.2)

where o, u € RT(R" = [0,+00)),n—-1<a<nn>3,0<u<s<n-2,n7>20,0<& <&E <0 <€ <
g < <1(=12)8,() = s 2s.p> Ly =g L4l =1 prelln-20< py < py,
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f(t, x,y) may be singular at t = 1 and 7 Df.u, H Dfi u(i = 1,2) are the standard Hadamard derivatives.
The existence of maximal and minimal positive solutions are obtained by iterative sequence for the
boundary value problem (1.1) and (1.2) under certain conditions.

Compared with classical integer order differential equations, fractional order differential model have
the advantages of simple modeling, accurate description and clear physical meaning of parameters for
complex problems, and is one of the important tools for mathematical modeling of complex mechanics,
physics, medicine and other processes. It has been noticed that most of the work on the topic is
based on Riemann-Liuville and Caputo derivatives, for more details readers can refer to [2, 3, 5-12,
14—18] and the references therein, there is another kind of fractional derivatives in the literature due
to Hadamard [13], which is named as Hadamard derivative and differs from the preceding ones in the
sense that its definition involves logarithmic function of arbitrary exponent. Although many researchers
are paying more and more attention to Hadamard fractional differential equation, but the solutions of
Hadamard fractional differential equations are still very few, the study of the topic is still in its primary
stage. About the details and recent developments on Hadamard fractional differential equations, we
refer the reader to [1,2,4,19,21,22]. In [4], Ahmad et al. considered fractional integro-differential
inclusions of Hadamard and Riemann-Liouville type:

D" (x(t) - T IAP i, x(1))) € F(t x(1), 1 S t <e,

with a initial value u(1)=0, where ” D? denotes Hadamard fractional derivative of order @, 0 < a < 1,
and “I” denotes Hadamard fractional integral of order y > 0,y € {81,55, .. .,Bu}. In [19], Thiramanus
et al. considered the following Hadamard fractional differential equation:

"DP¢,("D" (1)) = a(®) f(u(t)), 1 € (1, T),T > 1,
with boundary conditions
w(T) = 27 17u(m),” D*u(1) = 0,u(1) = 0,

where D and 717 denote Hadamard fractional derivative of order @ and the Hadamard fractional
integral of order o, respectively. ¢,(s) is a p— Laplacian operator, i.e., ¢,(s) = |s|""*s for p > 1,
(qﬁp)‘l(s) = ¢4(s), where % + é = 1. In [22], Yukunthorn et al. considered the following fractional
differential equation:

‘Du(t) = f(t,u(®),v(t)),te(l,e),1 <a <2,

“DPV(t) = g(t, u(®), v(t)),t € (1,e),1 < B <2,

subject to integral boundary condition
u(1) = 0,u(e) = Mu(ory), v(1) = 0,v(e) = Nu(o),

where y > 0,1 < 0y <e,1 < 0, < e,’lD“ and 71 denote Hadamard fractional derivative of order «
and Hadamard fractional integral of order y, and f, g : [1,e] X R! x R! — R! are continuous functions.
In [23], the author considered the following fractional differential equation:

D¢, u(t) + gt f(t,u()) =0, 0 < 1 < 1,
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with boundary conditions

u0)=u'0) =...=u"20) =0,u”(1) = Z au(é)),

i=1

where @ € R, n—1 < a < nn >3, i € [l,n-2]is a fixed integer, ¢; > 0,0 < & < & <

< E <€ <...<1(=12,--+), fis allowed to have singularities with respect to both time
and space variables. Various theorems were established for the existence and multiplicity of positive
solutions. The existence of positive solutions are established under some sufficient conditions by u,-
positive linear operator and the fixed point theorem.

Motivated by the excellent results above, in this paper, we investigate the existence of maximal and
minimal positive solutions for singular Hadamard fractional differential equation with infinite-point
boundary value conditions (1.2). Compared with [20, 23], the fractional derivative is involved in the
nonlinear term in this paper, and the result is more precise this is because that the positive solutions
we obtained are iterative solutions. Compared with [23], the derivatives in our paper are Hadamard
fractional derivatives.

Now we list a condition below to be used later in the paper.

(Hp): f:(1,e] xR" xR* — R", and there exists a constant 0 < € < 1 such that (In#)°¢,(f(z, xo, x1))
is continuous on [1, e] X R* X R*.

2. Preliminaries and lemmas

For the convenience of the reader, we first present some basic definitions and lemmas which are
useful for the following research are given, and which can be found in the recent literature such as [13].
Definition 2.1. ( [13]). The Hadamard fractional integral of order @ > 0 of a function y : (0, 00) — R!
is given by

s = o [Tty
I9y(t) = @) J, (In s) g ds.

Definition 2.2. ( [13]). The Hadamard fractional derivative of order @ > 0 of a continuous function
y : (0,00) — R! is given by

H na _ 1 i nft )’(S)
D(1) = To—a (t dt) 1 —S (1n L)a_nﬂds,

where n = [a] + 1, [a] denotes the integer part of the number «, provided that the right-hand side is
pointwise defined on (0, o).
Lemma 2.1. ([13]). If a,y,8 > 0, then

ot o= o

H (ln(é)ﬁ_l) (x) = % (ln g)ﬁ_a_l .
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Lemma 2.2. ( [23]). Suppose that @ > 0 and u € C[1,00) N L'[1, o), then the solution of Hadamard
fractional differential equation “ D¢, u(r) = 0 is

u®) =c(In)* ' +c,(In)* 2+ +¢,(In)* ", c;eR,i=0,1,-- ,n,n = [a] + 1.
Lemma 2.3. ( [23]). Suppose that @ > 0, @ is not natural number. If u € C[1, c0) N L![1, c0), then

u() =" 129D u(r) + Z cx(In ),
k=1

forte (1,e], wherec, e R(k=1,2,--- ,n),and n = [a] + 1.
We consider the linear fractional differential equation

¢,("DY u() +gt) =0, 1 <t<e, (2.1)

with boundary condition (1.2).
Lemma 2.4. Given g € L'(1,e) N C(1,e), then the Eq (2.1) with boundary condition (1.2) can be
expressed by

u() = f G928y et 2.2)
1 S
where 1
(n)* ' <
G(t.5) = Gi(t, ) + =—— D 1,Gal€. 9).
=1
in which . ;
(InH*'(n =) —(In-)""!, 1<s<t<e,
Gi(t,s) = — > S (2.3)
F@) | (inp'(an Syr-ri-, I<r<s<e,
s
t
L [t an St sy 1<s<r<e,
Gy(t,5) = ——— 2 s (2.4)
T =p2) | (ny=r-'(n S)*r-, l<t<s<e,
s
I'(a) @) < po-1
A= - (IngH)* P,
Fa—p) T@-po) Zl miines
Proof. By means of the Lemma 2.3, we can reduce (2.1) to an equivalent integral equation
ut) = -"15.¢,(g() + Ci(In N + Co(Int)* 2 + - -+ + C,(In 1) ™",
for some C;,C,,---,C, € R!. From u(1) = w/(1) = --- = u”"2(1) = 0 of (1.2), we have C, = C5 =
---=C, =0, then
* (In L)e-! S
u(t) = — (In ™ 44 L Ci(InH*, (2.5)
1 Ko
by simple calculation, we have
_ _ r
D ut) = I 5(0) + O (i = 1,2 26)
I'(a - pi)
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Substituting (2.6) into “Dflu(e) = X7, nHDpzu(fj) we have

(@) N

a—pi _ F(a/) a—py— a-p»
Citamyy 7 e = 3 (€ s ey 1)

then

1 (“peye-r—12489) 5o £j 1 Eiva—p 1¢,,(g<s))
I'(a—p1) ﬁ (11'1 s) : s ds Zz lnjr(a —p2) f (h'l ) z ds

G = T : (2.7)
(@) @) a—pr—
Ta-p1) T(a-p) Zi:l n;(ng;*-r !

Substituting (2.7) into (2.5), we have

o) = - ﬁ f in Ly 1¢q<g<s>)

124800 i ncé 1440
a-1T(a- Pl)f( e)a P = =ds — YL =1 Ty pz)fjln( 2yl A——ds

M_ ') . Na—pr—1
Fa—p) ~ Tampy izt 1;(INEH*P2

) f( 1¢q<g< 9
)

') (@) -p2—1 (@) o0 -pa—1
1 Ta-p)  T(a-p2) Zi:] nj(lnfj)a Pt 4 Ta—-p2) Zi:l le(lnfj)" P

() T@) voo o
[(a) Fa—pn ~ Fa—py 2ie 1ANENTP

¢ i In &iNa—pa— 1¢q(8(5))d
Xf (Inn)"'(In E)“"”*Mds—(1nt)“‘121rt:>br(a pzr)(a{ o
’ ’ FapD ~ Fa—pp) Zicl n(Ing;)a-r-1
_ a- 1¢q(g(s)) 1 f et € a1 $a(8(9))
B F(Ol) f(l ¥ I“(a,) . (Inn)*"(In S) b —S ds

+ (In?)

s
T2, n,(n g fe(ln 5™ (In f)a_m_lwds
L'(a) I'(a) 00 e
Te-p1)  Tla-p2) Yoy nj(Ingjya-r2-l S ;
3 o s
S M [ (in 2y 2800 g

(@ _ _I@ (In & )e-r-1
Fa—pn) ~ Tampn) 2ot 1IN EHP2

— (Inp)*!
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e Pq(8(5)) (Inn*! vt [ €\ Bo(8(5))
_‘flv G](t, S) S ds + A [F(a ” ) Z n](lné:j) P I (11’1 ;) Tds
N, | D1 94(8(5)
;mr(a—pz) f e S ds)
e ¢q(g( )) (ln Nl & jor-1 a=pi-l ¢q(g(S))
_j; Gilt. 5) A Z JF(a/ p)[f (ngp™* ( s) S

ff (f, - m_lczsq(g(s)) ds]
1 S

1 a-1
:fl [Gl(l, )+ : an) nG2(¢;, s))] ¢q(gs(s))ds

i=1
- f ' G(t, s)—‘bq(fT (S))ds,
1

where A is as (2.2). Moreover, by simple calculation, we have

DA G(1,5) =" D/,Gi(t, 5) + %(ln 1 ; n;G2(¢;, 9), (2.8)
and
) (In 1) £y = (in i)“—l—ﬂ, I<s<t<e,
PO = re =) (InH)*'#(In E)d‘f’l—l, l<t<s<e
It is easy to check that G(z, s) and # D“O+G(t, s) are uniformly continuous on [1, e] X [1, e]. O

Lemma 2.5. The functions G and G, given by (2.2) have the following properties:

(D) Gi(t,8) > s=(Int)*Ins(In $)* P71 Ve, s € [1, e;
(2) Gy(t, ) < (Ins)(In £)*P-1 Ve, s € [1,e;
(3) Gi(1,5) < gy (In 1) 1(1n€)a n-ls
4) G(t,5) < J(5), J(5) = 7557 1)(ln s)(lne)“‘”"1 +3 Z""l n,G2(&j, 5);
G(t,5) < J(5), () = g (In s)(lne)“ Pl L 32 miGa(é, s) forall £, s € [1, el;

(5) Hn )" J(s) < G(t,5) < o(In ), a_ﬂ_l —L _(In)** ' J(s) < D*G(, s) < o(In)**!, where

T ((x)

F(a 1)

a—p1— 1 a—p2—
_r(a)( D@ g Z’“r( P 1]

1 €. a- 1-1 _
i (G 1>+AZmr(

o =

)( EPTrT 1]

for Vt,s € [1, e].
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Proof. (1)For 1 < s <t < e, notice that p; > 1, we get (1 — s)”* < (1 — s). Hence,

Gi(t,5) =

Forl <t<s<e, weget

G(t,5) =

hence, (1) holds.

>

o )((mz)a '(In )a P _(In é)‘“)

1
=—|(nn)*"'(ne - Ins)* "' = (Int - Ins)*”" |

(@)

1 a1 a—-pi—1 a1 Ins_,_,
=T @ )[(ln N (Ine-Ins)* " —(n)* (1 - lnt) ]
L(ln Ho! [(lne —Ins)* P —(lne — In s)* 7" 1+p1]

(o)

%(lm)a (e —In s)* ' 1[1 _ (In )f"]

%(ln H*'(lne —Ins)*P7[1 - (1 —1ns)]

1
—(nH)*'Ins(lne —In s)@ 771,

I'(a)

1 |
— _(np*'(n Sz ——(In0)" Ins(in Y-t
S

[(a) Y

(2)For 1 < s <t <e,notice thata — p; — 1 > 0, we get

Gi(t,s) =

<_(ln e) P1
S

l“( )
L e X 2dx

<
I'a-1)

1

lﬂ( )

L & [(lntln S A i 1]
S R) S

((mr)“ I(in & £ynt — (in 5)“-1)

F()

(Intln & £yt = n €ye-1(In -)“-1]
S S

lntlng

F( ) N In¢ ln—

- e 1 _ a-2 a-2 .
F( )(lns)”(a/ 1)(In¢t) (ln) [lntlns ln ln

1
T(@-1)

N S

(In Sy (In 5210 £ 2 Insn <
S Ky Ky

In s(In $yem-1,
)

For1 <t<s<e,and @ > 2, we get

AIMS Mathematics

Gi(1,5) %(lnt)“ '(In i)a pi-1

e
< In s(In —)* 711,
"T(a-1) ns(ns)
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(3)By (2), fort,s € (1, e), we have

Gi(t, s) < m(1n H)*(In

hence, (3) holds.
(4) By (1) and (2), we get

G(1,5) =G4(t, s) +

1
<
T(a-1)
(5) By (1) and (3), we get

)ap11<

(InH)*!
A

a—1 E a—p1—1
_I‘(a/—l)(lnt) (In s) L

D niGaé )
j=1

1 [
(Ins)(in )"~ 4+ = 3 0Gal;e ) = J(s).
j=1

1 a-1 =
G(t.5) =Gi(t )+ B 3 ,Ga(6 )
j=1
b apet, DTSN L
F( )(ln )% " In s(In ) -ty A 2 n,G2(&}, 5))
l(ln t)a—l e )(ln s)(In - )a =l A Z n,G.(&;, s))]

- (InH)* " J(s).

By (3), we have
(nt)(x—l *®
G(t,5) =Gi(t, ) + ——— ) 1,G2(¢1r9)
j=1
1 ooty € aopt (N
S0 ;anxfj,s)
1 a—1 a—p|— 1 (lnt)a_] N ) 1 Na—p2—1 f a—p1—1
Sfa oo an A Zn,,r(a_pz)(lnfj) P (In o)

<L(1nt)“ l(ln )“ e

I'(a)
<o(Inn)*!,

hence, (5) holds. Similarly, we have

G(t, s) < J(s), J(s) T

AIMS Mathematics

_ 1 fﬂ—l 1
- _H_l)(lns)(lns) P Z

1 _
————(n)*™* 1 (s) <
a—u—1

( ng) !

A ZU}F(

(o)

2(§j’ S)

i=1

D/.G(t,s) < 7(Inn)* .

O
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Let E = {u(®)|u(t) € C[1,e],7 D‘I‘+u(t) € C[1, e]} be a Banach space with the norm

||lee(2)|| = max {max |u()|, max HDﬁﬁlu(t)l},
te[1,e] te[1,e]

and E is endowed with an order relation u < v if u(f) < v(¢),” D’l‘+ u(t) <f D’f .v(t). Moreover, we define
a normal cone of E by

K={ueE:u®20"Dl.ut)20, te[l,ell,

clearly, K is a normal cone, and define an operator

e H
Tt = f G, 2L Diu(s)
1

s, u € K.(x)
Problems (1.1) and (1.2) have a positive solution if and only if « is a fixed point of T in K.
Lemma 2.6. The operator T : K — E is continuous.

Proof. First, for u € P, by the continuity of G(z, 5), (In 5)°@,(f (s, u(s),” DY, u(s))), and the integrability
of (In s)7¢,
Go(f (s, u(s),” D u(s))) s

s

uek

Tu(t) = f G(t, s)
1
is well defined on K. It thus follows from the uniform continuity of G(¢, s) in [1,e] X [1, e] and

(Do (f(s,u(s),"” DY u(s)))
) ds

S

|Tu(ty) — Tu(t))| < fe |G(2, 5) — G(t1, $)|(In s)“(In s
1

that Tu € C[1, e], u € K. Furthermore, by the uniform continuity of # D‘I'+G(t, s)fort, s € [1,e], we get

H
8, (F (s, u<s>; DLt o e crt.el

"D (Tu)(1) = f DG, )
1

Let u,, u € K, u, — uin C'[1,e]. Since G(z, ), D/, G(t, 5) are uniformly continuous, there exists
M > 0 such that
max {G(t, 5)." D}.G(t,s)} < M. 1, s € [1,el.

On the other hand, since u, — u in C'[1, e], there exists T > 0 such that ||u,|| < T (n = 1,2,---), and
then |[u]] < . Furthermore, (Ins)¢,(f(s,xo,x1)) is continuous on [l,e] X R* x R*, so

(In 5)°¢,(f (s, x0, x1)) is uniformly continuous on [1,e] X [0, Y] X [0, Y]. Hence, for any &£ > O there

exists 6 > 0 such that, for any s, s» € [lel, x), x5 x, x € [0,7],

ls1 — 2] < 6, |xy — x| < 6, |x] — x7| < 6, we have
|(In 1)y (f (51, X9, X1)) — (In $2)°, (f (52, 5, X})| < €. (2.9)
By |lu, — u|| — 0, for the above ¢ > 0, there exists Ny such that, n > Ny, we have

(1) = u(@)l, 1" DY, (5) =" D u(s)] < lluy, — ull < 6, forany 1 € [1, e].
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Hence, for any 7 € [1, e], n > Ny, by (2.9), we have
|0 £)° 6, (F (1, (0.7 D0, (1) = (n 1), (F (1, u().” Doue))] < . (2.10)
Thus, forn > N, t € [1, e], by (2.10), we have
|(Tu,)(2) = (Tu)(@)|
fe ) (5. tta(s).7 Dgtun(s»)ds ) f G2V (s, u(s), ! D';u(s)))d
1 1

N

S
N

¢ d
f G(t, (1 5) ((In )76, (f (5. 1a(5)." D1 (59)) = (0 )°6, (F (s 1(5).” D)) =

1

¢ d
<M f1 (In )™ (0 $)“ By (s, a(5)." D, 1,(5))) = (In )6, (f (s, u<s>,Hanu(s>>>)f
< Meg fe(ln s)“é,
1 N
d

D (Tun) @) = "D (Tu)(0)]
¢ B ,H Dll+ 4 , ’Dp+

_ f DG, s)¢q(f(s u(s)s 1 M(S)))ds—f DG S)zf)q(f(s u(s), D, u(s)))d

! 1

! s

an

S

¢ d
= | [ DGt (50,505 D59 = 5y 56 D) 5

¢ d
<M fl (In 57 ((10.9)°,(F(s. (). D10, (59)) = (0 )°6, (F(s. u(s).” Dfu(9))) ==

SMsf(lns)_eé,
1 S

and hence, we get [|Tu, — Tullp — 0, |"D/.(Tu,) =" D/ .(Tw)ly — 0 (n — co). That is ||Tu, — Tul| —
O(n — o0), namely 7 is continuous in the space E. O

Lemma 2.7. T : K — K is completely continuous.

Proof. From Lemma 2.5, we have (Tu)(t) > 0,7 D‘l'+(Tu)(t) > 0,t € [1,e], then we have T(K) C K.
Now we will prove that TV is relatively compact for bounded V C K. Since V is bounded, there
exists D > 0 such that for any u € V, |lul| < D, and by the continuity of (In#)*¢,(f(z, xo, x1)) on
[1,e]x[0, D]x[0, D], there exists C > 0 such that |(In s)“¢,(f (s, u(s),” D’lﬁu(s)))l <Cforsell,e], ue
V. Hence, fort € [1,¢], u € V, we have

¢ $q(f (5 u(s),” D.u(s))
ITM(I)|=f G(t,s) g d
1

S

$o(f (s, u(s)." Dqﬁu(s»)d

S

S

= fe G(t, s)(In s)"¢(In 5)¢
1

¢ d
<C f J(s)(n s)< L2

1 S
= CB,,

AIMS Mathematics Volume 6, Issue 11, 12583-12598.
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where B, = fle J(s)(In 5)~“%. Similarly, we can derive
" DY.(Tu)(D| < CBy, te[l,e], ueV,

where B, = fle J(s)(In s)‘“’—ss, which shows that TV is bounded. Next we will verify that D‘lﬁ(TV) is
equicontinuous. Let #1,%, € [1,e],t; < t,,u € V, we get

"D/ (Tu)(12) ="' DY (Tu)(ty)|
(In 1)1 fe (In )* =" @o(f (s, u(s),” Dy, u(s))) s
1 Tla-p s

2 (In )1 gy (f (s, u(s),” DY, u(s))) s
1 - s

¢ (In )™ g (f (s, u(s),” D u(s))) s
1 Te—-pw s

I DT (s, u()," Duts))
1 Tae-p s

*In DT gy (fs us)," Diu()
1 Ta—pw s
f " (In %2 Je= 14 (1n $)~(In s)ecbq(f(s, u(s),” D/ u(s))) s

1

S

 Da(f (s, u(s),” D/ u(s))) '
) ds

S

— (n#)* '

<I((n )™ = (Ingy)*~'7)

1
(e — )

_ 1 " l_l a—1- —€
F(a—,u)f; (lns) H(n s)“(In s

()" = (ng)* ™)

+ ‘

<
(- )

+ ¢ [ f tz(ln t—z)“-l—ﬂ(lns)—f@— f t](ln t—l)a—l—ﬂ(lns)-f@].
e - [ S s 1 N s

Furthermore,
Tt d ¢ d
f (In 5y 111 s) <22 = (In p)*+-e f (In £y 11(In gy L2
1 S S 1 S )
Thus, we obtain

D (Tu)(ty) =" DY (Tu)(1))|

CB
((n )™t = (Ing)* ™) + 2 ((In5)* ™ = (In1y)* ™), Vu eV,

*Ta—p @ -1

where B, = fle(ln ?)a‘“‘l(ln s)‘fd—ss. From above and the uniform continuity of (In#)**#7¢, (Inf)*+~!,
we can derive that TV is relatively compact in C![1, e], and so we get that T : K — K is completely
continuous.

]
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3. Main result

For convenience, we denote

) { ¢ _ds\! - _ds\™!
@ = min (f J(s)(In 5) ET) ,(f J(s)(In s) E?) . (3.1
1 1

Theorem 3.1. Assume that (Hy) hold, and

(Hy) (In2)p,(f(t, x0, x1)) is continuous and nondecreasing on Xy, Xi;

(H,) For any t X xo X x; € [1,e] X R" X RY, there exists d > 0 such that (Int)*¢,(f(t,d,d)) < wd
hold. Then the boundary value problem (1.1,1.2) has the maximal and minimal positive solutions u*
and v* on [1, e], such that

0<|lu*|l<d, 0<|v* <d.

Moreover, for initial values uy(t) = d(Int)*~, vo(t) = 0, t € [1, e], define the iterative sequences {u,}
and {v,} by

u, = Tu,_y = T"ugy, v, = Tv,_1 = T"vy, (3.2)
then
lim u, = lim T"uy = u*, lim v, = lim T"v, = v*. (3.3)

Proof. By Lemma 2.7, we know that T : K — K is completely continuous. Now we show T is
nondecreasing. For any uy, u,,” D\,uy,” D, up € K and uy < wp,”" D/ uy <" D}, up, according to the
definition T and (H,), we know that Tu; < Tu,. Let K; = {x € K : ||x]| < d}. Next we prove that
T : Ky > Ky Ifu € K, then |lull < d, ie. |lully < d, 7D}, ully < d, by (4) of Lemma 2.5 and
(H)), (H»), we have

e H
(Tu)(t) = f G, S)¢q(f(sau(8)s, D/ u(s))) s
1

= f e J(s)(In s)™“(In sfMds
1

(3.4)
< wd f J(s)(In 5<%
1 S
=d, tel,el,
¢ H
D.ru = [ "Dj.Ge, gy Pl D)
1
< j:e 7(3)(111 s)_f(ln s)ewds (35)

< wd f J(s)(In s)-fé
1 R
=d, te[l,e],

then (3.4) and (3.5) show that ||Tu| = max {maxte[m |7 u(?)], maxe() e HD’f+|Tu(t)|} < d, hence
A(K,)) C K,.
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Let ug(t) = d(Int)®™!, t € [1, e], then uy(?) € Ky. Letu; = Tug, uy = T?up, then we have u;, u, € K.
We denote u,,.y = Tu, = T"ug (n = 0,1,2,---). In view of the fact that T : K; — K, it follows that
u, € T(K;) € K; (n=1,2,---). Since T is completely continuous, we assert that the sequence {u,}
has a convergent subsequence {u,, };>, such that lim;_,., u,, = u* € K.

Since u; = Tuy € K;, by Lemma 2.5 and (H;), we get

o0
n=1

e(bq(f(s’ uO(S)9H D;+ MO(S)))
) ds

s

Tuy(t) = fe G(t,s)(Ins) “(Ins
1

< wd(ln 1) f I n 5L (3.6)
1

=d(nt)*" = uy(t), t € [1,e],
which implies u; < u,. Hence, by (H)),

¢ H
ur(t) = Tuy (1) = f G(t, S)(lnS)—e(lns)e¢q(f(s’ul(s); D’lﬁul(s)))ds
1

‘ H
< f G, s)(lns)‘f(lns)f¢q(f (S’uo(s); D uo(s)))
1

ds =Tuo(t) = u (1), t €[1,e].

By the induction, we have u,,; < u, (n =0, 1,2, ---). Therefore, lim,_,, u, = u*. Using the continuity
of T and taking the limit n — oo in u,,; = Tu, yields Tu* = u*.

Let vo(r) = 0, t € [1,e], apparently vy(t) € K,. Letv, = Tvy, v, = T?v,, then we have v, €
fd, vy € fd. Letv,=Tv,.1 =T"vg(n=0,1,2,---), and since T : Ed - fd, we have v, € T(Ed) -
K, (n=1,2,3,---). It follows from the complete continuity of 7' that {va}72, 1s a sequentially compact
set. Since v, = Ty € K , we get

vi(t) =Tvp(t) = (TO)1) >0, t € [1,e].

Hence, we obtain
va(f) = Tvi(t) =2 (TO)(@) = vi(2), t € [1,e].

By induction, we have v, > v, (n = 0,1,2,---), 1 <t < e. Hence, there exists v* € K, such that
v, — v* as n — co. Applying the continuity of 7 and v,,; = T'v,, we have that Tv* = v*.

If f(z,0) # 0, 1 <t < e, then the zero function is not the solution of BVP (1.1, 1.2). Hence, v* is a
positive solution of BVP (1.1, 1.2).

It is well known that each fixed point of 7 in K is a solution of BVP (1.1, 1.2), so by above proof,
we get that u* and v* are positive solutions of the BVP (1.1, 1.2) on [1, e]. O

Remark 3.1. The iterative sequence in Theorem 3.1 begins with a simple function which is useful for
computational purpose.

Remark 3.2. u* and v* are the maximal and minimal solutions of the BVP (1.1, 1.2) in K, but «* and
v* may be coincident, and when u* and v* are coincident, the boundary value problem (1.1, 1.2) will
have a unique solution in K.
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4. Numerical examples

We consider the problem (1.1,1.2) withe = 2, u=2,p=3,p, =1, p1 = 3,;

=
M

1 o
apebiTe€=

)2,

[SI[%)

f(t,x,y) = (Int)"3x7 + y3, obviously, (In#)2¢,((In7)"3x2 + y3) = ((n1)ix? + Inry

[

_ @  T@
" T-p) Te-p) L&

l

S
ni(ng) ! —F—— [ 22— 7295r< ).

\

By simple calculation, we have f satisfies (Hy), (H;). Take d = 1.5,

) { ¢ _ds\ - _ds\™
@ = min (f J(s)(In s) E?) ,(f J(s)(In s) 57) ~ 2.5722,
1 1

then we have (In)2¢((In#)"#1.5% + 1.5%) = 3.1200 < 2.5722 - 1.5, so the assumptions(H,) hold. So
the assumptions of Theorem 3.1 are all satisfied. Hence, we deduce that the problem has a unique
solution, which can be obtained by the iteration algorithm given in the Theorem 3.1, for the initial
values uy() = 2.5(In t)%, vo(t) = 0, t € [1, e], we obtain the iterative sequence {u, vi}(k = 1,2,...) on
[1,e] by (3.2).

1

5. Conclusions

The maximal and minimal iterative positive solutions are investigated for a singular Hadamard
fractional differential equation boundary value problem in this paper. Moreover, iterative schemes are
established for approximating the maximal and minimal positive solutions based upon these properties.
The iterative sequence in Theorem 3.1 begins with a simple function which is useful for computational

purpose.
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