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Abstract: Let G be a graph. For a setH of connected graphs, anH-factor of a graph G is a spanning
subgraph H of G such that every component of H is isomorphic to a member ofH . A graph G is called
an (H ,m)-factor deleted graph if for every E′ ⊆ E(G) with |E′| = m, G − E′ admits an H-factor. A
graph G is called an (H , n)-factor critical graph if for every N ⊆ V(G) with |N| = n, G − N admits an
H-factor. Let m, n and k be three nonnegative integers with k ≥ 2, and write F = {P2,C3, P5,T (3)}
andH = {K1,1,K1,2, · · · ,K1,k,T (2k + 1)}, where T (3) and T (2k + 1) are two special families of trees.
In this article, we verify that (i) a (2m + 1)-connected graph G is an (F ,m)-factor deleted graph if its
binding number bind(G) ≥ 4m+2

2m+3 ; (ii) an (n + 2)-connected graph G is an (F , n)-factor critical graph if
its binding number bind(G) ≥ 2+n

3 ; (iii) a (2m + 1)-connected graph G is an (H ,m)-factor deleted graph
if its binding number bind(G) ≥ 2

2k−1 ; (iv) an (n + 2)-connected graph G is an (H , n)-factor critical
graph if its binding number bind(G) ≥ 2+n

2k+1 .

Keywords: graph; binding number;H-factor; (H ,m)-factor deleted graph; (H , n)-factor critical
graph
Mathematics Subject Classification: 05C70

1. Introduction

We discuss only finite simple graphs in this paper. Let G = (V(G), E(G)) be a graph, where V(G)
denotes the vertex set of G and E(G) denotes the edge set of G. The number of vertices of a graph G
is called the order of G. For a graph G and x ∈ V(G), we denote by dG(x) the degree of x in G, and
by NG(x) the set of vertices adjacent to x in G. Note that dG(x) = |NG(x)|. Let X be a vertex subset
of G. We use G[X] to denote the subgraph of G induced by X, and write G − X = G[V(G) \ X] and
NG(X) =

⋃
x∈X

NG(x). For E′ ⊆ E(G), we use G − E′ to denote the subgraph derived from G by deleting
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the edges in E′. We use I(G) to denote the set of isolated vertices of G, and write i(G) = |I(G)|. The
number of connected components of G is denoted by ω(G). We denote by κ(G) and λ(G) the vertex
connectivity and the edge connectivity of G, respectively. The vertex connectivity of G is simply called
the connectivity of G. For two graphs G1 and G2, we denote by G1 ∪G2 the union of G1 and G2, and
by G1 ∨ G2 the join of G1 and G2. We use Kn, Pn and Cn to denote the complete graph, the path and
the cycle of order n, respectively. Kn,m is the complete bipartite graph with the bipartition (X,Y), where
|X| = m, |Y | = n. We denote by T a tree, and by Lea f (T ) the set of leaves in T . An edge of T incident
with a leaf is called a pendant edge. Especially, the number of leaves in T is equal to that of pendant
edges in T under the case that the order of T is at least 3.

For a set X, we use |X| to denote the cardinality of X. Woodall [15] introduced a parameter, binding
number of a graph G, denoted by bind(G), which is defined by

bind(G) = min
{
|NG(X)|
|X|

: ∅ , X ⊆ V(G) and NG(X) , V(G)
}
.

For a setH of connected graphs, anH-factor of a graph G is a spanning subgraph H of G such that
every component of H is isomorphic to a member ofH . An H-factor is also referred as a component
factor. A graph G is called an (H ,m)-factor deleted graph if for every E′ ⊆ E(G) with |E′| = m,
G − E′ admits an H-factor. Obviously, an (H , 0)-factor deleted graph is equivalent to a graph having
anH-factor. An (H , 1)-factor deleted graph is simply called anH-factor deleted graph. A graph G is
called an (H , n)-factor critical graph if for every N ⊆ V(G) with |N| = n, G − N admits an H-factor.
Clearly, an (H , 0)-factor critical graph is equivalent to a graph having anH-factor.

Tutte [12] obtained a necessary and sufficient condition for a graph to have a {K2,Cn : n ≥ 3}-factor.
Egawa, Kano and Yan [2] gave a shorter proof. Kano, Lee and Suzuki [5] showed two results for
graphs to admit path and cycle factors. Klopp and Steffen [10] posed some properties for the existence
of {K1,1,K1,2,Cm : m ≥ 3}-factors in graphs. Amahashi and Kano [1] got a criterion for a graph with
a {K1, j : 1 ≤ j ≤ k}-factor. Kano, Lu and Yu [6] derived a result for a graph having a {K1,2,K1,3,K5}-
factor. Kano and Saito [8] posed a sufficient condition for a graph to admit a {K1, j : k ≤ j ≤ 2k}-factor.
Zhou, Bian and Pan [23], Zhou [22, 21], Zhou, Sun and Liu [27], Zhou, Yang and Xu [30], Kelmans
[9], Johnson, Paulusma and Wood [4], Gao, Wang and Chen [3] studied the existence of path-factors in
graphs and derived some results for graphs to have path factors. Zhou, Bian and Sun [24] presented two
results on the existence of component factors in graphs. Wang and Zhang [14], Zhou [20], Zhou, Liu
and Xu [26] established some relationships between binding number and graph factors. Some other
results on graph factors were derived by Yuan and Hao [17, 18], Wang and Zhang [13], Wu, Yuan and
Gao [16], Lv [11], Zhou, Zhang and Xu [31], Zhou[19], Zhou, Liu and Xu [25], Zhou, Sun and Pan
[28], Zhou, Xu and Sun [29]. The following results on component factors of graphs are known.

Theorem 1. (Tutte [12]). A graph G admits a {K2,Cn : n ≥ 3}-factor if and only if

i(G − X) ≤ |X|,

for any X ⊂ V(G).

Theorem 2. (Amahashi and Kano [1]). Let k be an integer with k ≥ 2. A graph G admits a {K1, j : 1 ≤
j ≤ k}-factor if and only if

i(G − X) ≤ k|X|,
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for any X ⊂ V(G).

Theorem 3. (Kano, Lu and Yu [6]). A graph G admits a {K1,2,K1,3,K5}-factor if

i(G − X) ≤
|X|
2
,

for any X ⊂ V(G).

In this article, we investigate the existence of component factors in graphs and get four results on
component factors with given properties in graphs, which are shown in Sections 2 and 3.

2. Graph with a {P2,C3, P5,T (3)}-factor

In this section, we always assume that F = {P2,C3, P5,T (3)}, where T (3) is defined as follows:
for any {1, 3}-tree R (dR(x) ∈ {1, 3} for each x ∈ V(R)), a new tree TR is derived from R by inserting
a new vertex of degree 2 into each edge of R, and by adding a new pendant edge to each leaf of R.
Then the tree TR is a {1, 2, 3}-tree admitting |E(R)| + |Lea f (R)| vertices of degree 2 and possesses the
same number of leaves as R. The collection of such {1, 2, 3}-trees TR generated from all {1, 3}-trees R
is denoted by T (3).

Kano, Lu and Yu [7] derived a characterization for a graph with an F -factor.

Theorem 4. (Kano, Lu and Yu [7]). A graph G admits an F -factor if and only if

i(G − X) ≤
3
2
|X|,

for any X ⊂ V(G).

Using Theorem 4, we shall verify the following two theorems on the existence of F -factors with
given properties.

Theorem 5. A (2m + 1)-connected graph G is an (F ,m)-factor deleted graph if its binding number
bind(G) ≥ 4m+2

2m+3 , where m is a nonnegative integer.

Theorem 6. An (n + 2)-connected graph G is an (F , n)-factor critical graph if its binding number
bind(G) ≥ 2+n

3 , where n is a nonnegative integer.

Remark 1. We now show that Theorem 5 is best possible in the following sense. That is to say,
we cannot replace (2m + 1)-connected graph G and bind(G) ≥ 4m+2

2m+3 by (2m)-connected graph G and
bind(G) ≥ 4m+2

2m+4 in Theorem 5.
Next, we construct a graph G = K2m ∨ ((m + 1)K2 ∪ (2K1)), where m = 0 or 1. Then bind(G) = 4m+2

2m+4
and G is (2m)-connected. Let G′ = G − E′, where E′ ⊆ E((m + 1)K2) with |E′| = m. We select
X = V(K2m) ⊆ V(G′). Thus, we derive

i(G′ − X) = 2m + 2 > 3m =
3
2
|X|,

which implies that G′ has no F -factor by Theorem 4, namely, G is not an (F ,m)-factor deleted graph.

Remark 2. Now, we show that bind(G) ≥ 2+n
3 in Theorem 6 cannot be replaced by bind(G) ≥ 2+n

4 . In
the above sense, the result in Theorem 6 is best possible.
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We construct a graph G = Kn+2 ∨ (4K1), where n is a nonnegative integer. Obviously, G is (n + 2)-
connected, and we easily see bind(G) = 2+n

4 . Let G′ = G − D for any D ⊆ V(Kn+2) with |D| = n. We
choose X = V(Kn+2) \ D. Then |X| = 2. Thus, we derive

i(G′ − X) = 4 > 3 =
3
2
|X|.

In light of Theorem 4, G′ has no F -factor, that is, G is not an (F , n)-factor critical graph.

In what follows, we verify Theorems 5 and 6.

Proof of Theorem 5. Let G′ = G − E′ for any E′ ⊆ E(G) with |E′| = m. Then V(G′) = V(G) and
E(G′) = E(G) \ E′. To prove Theorem 5, it suffices to verify that G′ admits an F -factor. We assume
that G′ does not admit F -factor. Then it follows from Theorem 4 that

i(G′ − X) >
3
2
|X|, (2.1)

for some subset X of V(G′).
If X = ∅, then by (2.1) we admit i(G′) ≥ 1. On the other hand, it follows from λ(G) ≥ κ(G) ≥ 2m+1

that G′ is connected, which contradicts that i(G′) ≥ 1. Hence, X , ∅.
In what follows, we shall consider two cases.

Case 1. X is not a vertex cut set of G.
In this case, we derive ω(G − X) = ω(G) = 1. If |X| ≥ 2

3 (m + 1), then we get

i(G′ − X) = i(G − X − E′) ≤ ω(G − X − E′) ≤ ω(G − X) + m = m + 1 ≤
3
2
|X|,

which contradicts (2.1).
If |X| < 2

3 (m + 1), then we possess

λ(G − X) ≥ κ(G − X) ≥ κ(G) − |X| > 2m + 1 −
2
3

(m + 1) =
4m + 1

3
> m,

and so
λ(G − X) ≥ m + 1. (2.2)

In terms of (2.2), we admit

λ(G′ − X) = λ(G − X − E′) ≥ λ(G − X) − m ≥ (m + 1) − m = 1,

which implies that G′ − X is a connected graph. Hence, ω(G′ − X) = 1. Combining this with X , ∅
and (2.1), we obtain

3
2
≤

3
2
|X| < i(G′ − X) ≤ ω(G′ − X) = 1,

which is a contradiction.
Case 2. X is a vertex cut set of G.

In this case, we possess ω(G − X) ≥ ω(G) + 1 = 2. Combining this with κ(G) ≥ 2m + 1, we derive

|X| ≥ 2m + 1. (2.3)
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We shall discuss the following two subcases.
Subcase 2.1. i(G − X) ≤ 1.

In light of (2.3), we have

i(G′ − X) = i(G − X − E′) ≤ i(G − X) + 2m ≤ 2m + 1 ≤ |X| ≤
3
2
|X|,

which contradicts (2.1).
Subcase 2.2. i(G − X) ≥ 2.

Since i(G − X) ≥ 2, we have I(G − X) , ∅ and NG(I(G − X)) , V(G). In terms of the definition of
bind(G), we derive

bind(G) ≤
|NG(I(G − X))|
|I(G − X)|

≤
|X|

i(G − X)
.

Combining this with (2.1), (2.3) and bind(G) ≥ 4m+2
2m+3 , we have

|X| ≥ bind(G) · i(G − X)

≥
4m + 2
2m + 3

· i(G − X)

≥
4m + 2
2m + 3

(i(G − X − E′) − 2m)

=
4m + 2
2m + 3

(i(G′ − X) − 2m)

>
4m + 2
2m + 3

(
3
2
|X| − 2m

)
=

3(2m + 1)
2m + 3

|X| −
4m(2m + 1)

2m + 3
,

namely,
|X| < 2m + 1,

which contradicts (2.3). This completes the proof of Theorem 5. �

Proof of Theorem 6. Let G′ = G − D for any D ⊆ V(G) with |D| = n. It suffices to verify that G′

admits an F -factor. On the contrary, we assume that G′ does not have F -factor. Then it follows from
Theorem 4 that

i(G′ − X) >
3
2
|X|, (2.4)

for some subset X of V(G′).
Claim 1. |X| ≥ 2.
Proof. If |X| ≤ 1, then we obtain

λ(G′ − X) = λ(G − D ∪ X) ≥ κ(G − D ∪ X) ≥ κ(G) − |D ∪ X| ≥ (n + 2) − (n + 1) = 1,

by G being an (n + 2)-connected graph, and so

i(G′ − X) = 0,

which contradicts (2.4). Claim 1 is verified. �
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In terms of (2.4) and Claim 1, we get

i(G − D ∪ X) = i(G − D − X) = i(G′ − X) >
3
2
|X| ≥ 3. (2.5)

From (2.5), we know I(G −D∪ X) , ∅ and NG(I(G −D∪ X)) , V(G). Combining these with (2.5),
Claim 1 and the definition of bind(G), we derive

bind(G) ≤
|NG(I(G − D ∪ X))|
|I(G − D ∪ X)|

≤
|D ∪ X|

i(G − D ∪ X)

<
|D| + |X|

3
2 |X|

=
2n + 2|X|

3|X|
=

2
3

+
2n

3|X|

≤
2
3

+
n
3

=
2 + n

3
,

which contradicts bind(G) ≥ 2+n
3 . We finish the proof of Theorem 6. �

3. Graph with a {K1,1,K1,2, · · · ,K1,k,T (2k + 1)}-factor

In this section, we always assume that H = {K1,1,K1,2, · · · ,K1,k,T (2k + 1)}, where k ≥ 2 is an
integer and T (2k + 1) is defined as follows: Let R be a tree that satisfies the following conditions: for
each x ∈ V(R) − Lea f (R),

(a) dR−Lea f (R)(x) ∈ {1, 3, · · · , 2k + 1}
and

(b) 2 (the number of leaves adjacent to x in R)+dR−Lea f (R)(x) ≤ 2k + 1.
For such a tree R, we derive a new tree TR as follows:

(c) insert a new vertex of degree 2 into each edge of R − Lea f (R)
and

(d) for each vertex x of R − Lea f (R) with dR−Lea f (R)(x) = 2r + 1 < 2k + 1, add k − r−(the number of
leaves adjacent to x in R) pendant edges to x.
Then the set of such trees TR for all trees R satisfying conditions (a) and (b) is denoted by T (2k + 1).

Kano, Lu and Yu [7] derived a necessary and sufficient condition for a graph to admit anH-factor.

Theorem 7. (Kano, Lu and Yu [7]). Let k be an integer with k ≥ 2. Then a graph G admits anH-factor
if and only if

i(G − X) ≤
(
k +

1
2

)
|X|,

for every X ⊆ V(G).

Lemma 1 (Zhou, Bian and Sun [24]). Let G be a graph and β ≥ 1 be a real number. Then the following
three statements are equivalent.

(i) i(G − S ) ≤ β|S | for all S ⊂ V(G).
(ii) β|NG(X)| ≥ |X| for all independent set X of G.
(iii) β|NG(Y)| ≥ |Y | for all Y ⊂ V(G).

Applying Theorem 7, we shall prove the following two theorems on the existence ofH-factors with
given properties.

AIMS Mathematics Volume 6, Issue 11, 12460–12470



12466

Theorem 8. Let k and m be two nonnegative integers with k ≥ 2. Then a (2m + 1)-connected graph G
is an (H ,m)-factor deleted graph if its binding number bind(G) ≥ 2

2k−1 .

Theorem 9. An (n + 2)-connected graph G is an (H , n)-factor critical graph if its binding number
bind(G) ≥ 2+n

2k+1 , where n and k are two nonnegative integers with k ≥ 2.

Remark 3. We now explain that Theorem 8 is best possible in some sense, namely, G being (2m + 1)-
connected and bind(G) ≥ 2

2k−1 in Theorem 8 cannot be replaced by G being (2m)-connected and
bind(G) ≥ 2

2k . We show this by the following example.
Let k ≥ 2 and r ≥ 0 be two integers, and m = 1. We construct a graph G = K2m∨((2k)K1∪(m+r)K2).

Clearly, G is (2m)-connected. Set Y = V(2kK1). Then Y , ∅ and NG(Y) , V(G). Thus, we derive
bind(G) =

|NG(Y)|
|Y | = 2m

2k = 2
2k . Let G′ = G − E′ for any E′ ⊆ E((m + r)K2) with |E′| = m = 1. Let

X = V(K2m) ⊆ V(G′). Then |X| = 2m = 2 and we get

i(G′ − X) = 2k + 2 > 2k + 1 = 2
(
k +

1
2

)
=

(
k +

1
2

)
|X|.

In light of Theorem 7, G′ has noH-factor, that is, G is not (H ,m)-factor deleted.

Remark 4. We now claim that bind(G) ≥ 2+n
2k+1 in Theorem 9 cannot be replaced by bind(G) ≥ 2+n

2k+2 . To
show this, we construct a graph G = Kn+2∨(2k+2)K1, where n and k are two nonnegative integers with
k ≥ 2. Obviously, G is (n + 2)-connected. Select Q = V((2k + 2)K1). Then Q , ∅ and NG(Q) , V(G).
Furthermore, we admit bind(G) =

|NG(Q)|
|Q| = 2+n

2k+2 . Let G′ = G − D for any D ⊆ V(Kn+2) with |D| = n,
and X = V(Kn+2) \ D. Then |X| = 2. Thus, we admit

i(G′ − X) = 2k + 2 > 2k + 1 = 2
(
k +

1
2

)
=

(
k +

1
2

)
|X|.

According to Theorem 7, G′ has noH-factor, namely, G is not (H , n)-factor critical.

Proof of Theorem 8. Let G′ = G − E′ for any E′ ⊆ E(G) with |E′| = m. Then V(G′) = V(G) and
E(G′) = E(G) \ E′. To verify Theorem 8, it suffices to prove that G′ possesses an H-factor. By
contradiction, we assume that G′ has noH-factor. Then by Theorem 7 there exists some vertex subset
X of G′ such that

i(G′ − X) >
(
k +

1
2

)
|X|. (3.1)

If X = ∅, then it follows from (3.1) that i(G′) ≥ 1. On the other hand, by G being (2m+1)-connected,
|E′| = m and G′ = G − E′, we admit

λ(G′) = λ(G − E′) ≥ λ(G) − m ≥ κ(G) − m ≥ (2m + 1) − m = m + 1 ≥ 1,

which implies that G′ is connected, and so i(G′) = 0, which contradicts that i(G′) ≥ 1. Therefore,
X , ∅.

Next, we shall discuss two cases.
Case 1. X is not a vertex cut set of G.

In this case, we have ω(G − X) = ω(G) = 1. If |X| ≥ 2
2k+1 (m + 1), then by (3.1) we derive

2k + 1
2
|X| < i(G′ − X) = i(G − X − E′) ≤ ω(G − X − E′) ≤ ω(G − X) + m = m + 1 ≤

2k + 1
2
|X|,
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which is a contradiction.
If |X| < 2

2k+1 (m + 1), then it follows from |E′| = m, G′ = G − E′ and k ≥ 2 that

λ(G′ − X) = λ(G − X − E′) ≥ λ(G − X) − m ≥ κ(G − X) − m

≥ κ(G) − |X| − m > (2m + 1) −
2

2k + 1
(m + 1) − m

= 1 +
(2k − 1)m − 2

2k + 1
≥ 1 −

2
2k + 1

=
2k − 1
2k + 1

> 0,

which implies that G′ − X is connected. Thus, we have ω(G′ − X) = 1. Then according to (3.1), k ≥ 2
and X , ∅, we get

k +
1
2
≤

(
k +

1
2

)
|X| < i(G′ − X) ≤ ω(G′ − X) = 1,

which is a contradiction.
Case 2. X is a vertex cut set of G.

In this case, we have ω(G−X) ≥ ω(G) + 1 = 2. Note that G is (2m + 1)-connected. Thus, we obtain

|X| ≥ 2m + 1. (3.2)

According to (3.2), k ≥ 2, bind(G) ≥ 2
2k−1 and Lemma 1, we get

i(G′ − X) = i(G − X − E′) ≤ i(G − X) + 2m < i(G − X) + 2m + 1 ≤
2k − 1

2
|X| + |X| =

(
k +

1
2

)
|X|,

which contradicts (3.1). Therefore, it follows from Theorem 7 that G′ admits an H-factor, which
implies that G is an (H ,m)-factor deleted graph. Theorem 8 is proved. �

Proof of Theorem 9. Let G′ = G − D for any D ⊆ V(G) with |D| = n. It suffices to verify that G′

possesses an H-factor. By contradiction, we assume that G′ has no H-factor. Then it follows from
Theorem 7 that

i(G′ − X) >
(
k +

1
2

)
|X| (3.3)

for some vertex subset X of G′.
Case 1. |X| ≤ 1.

In this case, we derive

λ(G′ − X) = λ(G − D − X) ≥ κ(G − D − X) ≥ κ(G) − |D| − |X| ≥ (n + 2) − n − 1 = 1,

which implies that G′ − X is connected, and so i(G′ − X) = 0, which contradicts (3.3).
Case 2. |X| ≥ 2.

It follows from (3.3) that

i(G − D ∪ X) = i(G − D − X) = i(G′ − X) >
(
k +

1
2

)
|X| ≥ 2k + 1. (3.4)

According to (3.4), we easily see I(G − D ∪ X) , ∅ and NG(I(G − D ∪ X)) , V(G). Combining these
with (3.4) and the definition of bind(G), we have

bind(G) ≤
|NG(I(G − D ∪ X))|
|I(G − D ∪ X)|

≤
|D ∪ X|

i(G − D ∪ X)
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<
|D| + |X|

(k + 1
2 )|X|

=
2n + 2|X|

(2k + 1)|X|
=

2
2k + 1

+
2n

(2k + 1)|X|

≤
2

2k + 1
+

n
2k + 1

=
2 + n
2k + 1

,

which contradicts that bind(G) ≥ 2+n
2k+1 . This completes the proof of Theorem 9. �

4. Conclusions

In this paper, we establish the relationships between binding number and component factors of
graphs, and derive some binding number conditions for graphs to be (H ,m)-factor deleted graphs or
(H , n)-factor critical graphs. Furthermore, we claim that the bounds on binding numbers in the results
are best possible.
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