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Abstract: The stability problem on the magnetohydrodynamics (MHD) equations with partial or no
dissipation is not well-understood. This paper focuses on the 3D incompressible MHD equations with
mixed partial dissipation and magnetic diffusion. Our main result assesses the stability of perturbations
near the steady solution given by a background magnetic field in periodic domain. The new stability
result presented here is among few stability conclusions currently available for ideal or partially
dissipated MHD equations.
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1. Introduction

In recent few years, there have been substantial developments concerning the MHD equations,
especially there is only partial or fractional dissipation. The MHD equations govern the motion of
electrically conducting fluids such as plasmas, liquid metals, and electrolytes. The fundamental
concept behind MHD is that magnetic fields can induce currents in a moving conductive fluid, which
in turn polarizes the fluid and reciprocally changes the magnetic field itself. The set of equations that
describe MHD are a combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s
equations of electromagnetism. Since their initial derivation by the Nobel Laureate H. Alfvén [1] in
1924, the MHD equations have played vital roles in the study of many phenomena in geophysics,
astrophysics, cosmology and engineering (see, e.g., [2, 3]).

This paper establishes the stability of perturbations near a background magnetic field of the 3D
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MHD equations with mixed partial dissipation and magnetic diffusion in periodic domain.

ou+u-Vu=-VP+vAyu+B-VB, x€Q, t>0,
OB+u-VB=nANB+B-Vu, xe€Q, t>0, (1.1)
V-u=V-B=0, x€Q, t>0,

where u denotes the velocity field of the fluid, P the total pressure, B the magnetic field, v > O andn > 0
are the viscosity and the magnetic diffusivity. We define the 3D periodic space domain Q = [0, L]> X R,
the periodic solution means u(x + e;,t) = u(x,t) (i = 1,2,3), for all x and ¢ > 0, where ¢; are the
standard basis vectors, e; = (1,0, 0)". We know that (1.1) admits the following steady state solution

u® =(0,0,0), B” =(1,0,0), PO =0.

It is clear that a special solution of (1.1) is given by the zero velocity field and the background magnetic
fields B® = (1,0, 0). The perturbation (u, b) with b = B — B obeys,

ou+u-Vu=-VP+vAu+b-Vb+9b, xe€Q, t>0,
ob+u-Vob=nAb+b-Vu+0ou, xeQ, t>0, (1.2)
V-u=V-b=0, xeQ, t>0,

where, for notational convenience, we write
2, 2
0; =0,, V,=1(01,02), 0,=07+0;.

In addition, for convenience, we define the norm for the LP(€2) space, for p € [1, oo], is denoted by || 1| ,..
The inner product of f and g in the L”(€2) space is denoted by (f, g) = f f fQ fgdxidx,dx; = fQ fgdx.
Respectively, the horizontal flow is defined in Q with [, udx=0and f  ,bdx=0.

This paper aims at the stability problem on the perturbation of (1.1) near (u?, B©?). Equivalently,
we establish a small data global well-posedness result for (1.2) supplemented with the initial condition

u(x,0) = up(x), b(x,0) = by(x).

Our main result can be stated as follows.
Theorem 1.1. Consider (1.2) with initial data (uy, by) € H*(Q) satisfies V-uy = V-by = 0, f[O,L]Z updx =
0 and O.LP bodx = 0. Then there exists a constant 6 = 6(v,n) > 0 such that, if
lI(eto, bo)llz2 < 6, (1.3)
then (1.2) has a unique global solution
(u, b) € L=(0, 00; HX(Q)), Vyu, Vb € L*(0, 003 H*(Q)), (1.4)
satisfying

! t
sup (lu(Dll + I6(D)Il5.) + 2Vf IVhu(D)ll7, dT + 2Tlf IVib(D)ll7. dT < C&, (1.5)
0 0

7€[0,1]

foranyt > 0and C = C(v,n) is a constant.
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The MHD equation, especially those with partial dissipation have recently attracted considerable
interests. There are substantial developments on two fundamental problems, the global regularity and
stability problems, which have been successfully established by many authors via different approaches
[4-7]. In particular, it is also worth mentioning the beautiful work of [8], which made further progress
by providing the stability of perturbations near a background magnetic field of the 3D incompressible
MHD equation with mixed partial dissipation and deal with the H>-estimate. To give a more complete
views of current studies on the stability, we also mention some of exciting results in [9-12]. In this
paper, we mainly deal with the H?-estimate for the solution of (1.2). The stability of the incompressible
MHD equation with mixed partial dissipation is not well-solved, except in the periodic case. Our study
of the stability problem on (1.2) is inspired by the recent important result in [13], which is different
with the whole region is that helps to solve the periodic problem.

We employ the bootstrapping argument to prove the desired H>-stability. And we define the H>-
energy E(t) by

f !
E(r) = sup (lu(r)3, +||b(T)||,2L,z)+2Vf IVl dT+277f IVub(D)Il7 d,
0 0

7€[0,f]

and prove that, for a constant C > 0 and any ¢ > 0,
E(1) < E(0) + CE(f)2. (1.6)

Once (1.6) is established, an application of the bootstrapping argument would imply the desired
global stability. The details are given in section 2. Due to the presence of the anisotropic dissipation,
we make use of anisotropic estimates for triple products (see Lemma 2.1 in section 2).

The proof of Theorem 1.1 is not trivial. A natural starting point is to bound ||u||z + ||b||z via the
energy estimates. However, due to the lack of the vertical dissipation, some of the nonlinear terms can
not be controlled in terms of ||ul|zs +||b||5» or the dissipation parts ||V,u||zs and ||V,,b]|gs. Thus, we show
the stability of equations (1.1) by bootstrapping argument which will be shown in section 3, and we
also show the uniqueness in that section.

2. Proof of Theorem 1.1 and anisotropic estimates

This section applies the bootstrapping argument to prove Theorem 1.1. In addition, we provide the
anisotropic inequality to be used in the proof of (2.1) in the subsequent section.

2.1. Proof of Theorem 1.1

Roughly speaking, the bootstrapping argument starts with an ansatz that E(¢) is bounded, say
E(t) <M,
and show that E(7) actually admits a smaller bound, say
E@®) < lM,
2
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when the initial condition is sufficiently small. A rigorous statement of the abstract bootstrapping
principle can be found in T. Tao’s book (see [14]). To apply the bootstrapping argument to (2.1), we
assume that

1
Et)ysM=—— 2.1
(<M= . @.1)
When (2.1) holds, we have
1
CE(1): < —.
(12 < >
It then follows from (1.6) that
1
E(t) < E0) + EE(t) or E(t) <2E(0), (2.2)
if we choose ¢ > 0 sufficiently small such that
M
6 < —,
4
then (1.3) and (2.2) imply that
1
E@®) < -M,
0 <

the bootstrapping argument then leads to the desired global bound
E(@) <M,

this completes the proof of Theorem 1.1.
As usual, the Sobolev space H'(Q) = {f € L*(Q) : Vf € L*(Q)}. In addition, we define the
following Hilbert space,
H,y(Q) = (f € LX(Q) : Vuf € LX(Q)),

that features the inner product (f, g) HIQ) = (fs @z + (Vif, Vg2 @)-

The rest of this section provides the anisotropic inequality. The MHD system examined in this
paper involves the estimates of quite a few triple terms. Anisotropic inequality appears to be necessary
to deal with such partially dissipated system.

Lemma 2.1. Let f € H'(Q), g € H;(Q), he L*(Q). Then,

f [fghldx < C(If1l + IV, 1) 2 If 1L + 185 £11) 2 1gl12 (lgll + 11Vglk) 2 1Al
Q

The proof of Lemma 2.1 can be found in [9].
3. Proof of kernal part of bootstrapping

This section proves the major estimate in (1.6), namely
E(1) < E(0) + CE(1)?.

where E(f) is defined in (1.5). The core of the proof is to bound the H*>-norm of (u, b) suitably. For
the sake of clarity, the proof is divided to two main parts, the first one is devoted to the H>-stability
and the second one is to the uniqueness. The local existence can be obtained by a standard approach
of Friedrichs’ method of cutoff in Fourier space (see, e.g., [15]), we omit the details here.
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3.1. The H*-stability

Due to the equivalence of ||(u, b)||2 with ||(u, b)||;2 + ||(t, b)|| 2, it suffices to bound the L>-norm and
the H?-norm of (u, b). By a simple energy estimate and V - u = V - b = 0, we find that the L?-norm of
(u, b) obeys

(I3 + b5 + ZVI IVau(ll; dr + 2nf IVub(@)Il3 dT = [[u(O)II3 + 15O)I. (3.1
0 0

The rest of the proof focuses on the H>-norm, applying d2(i = 1,2,3) to (1.2) and then dotting by
(0%u, 87b), we find

1d 3
2 dr Z(Il@?u”% +1107b153) + VIO Vaully + A7 Vbl = I + L + I + Iy + I, (3.2)
i=1
where

3

Iy = Zfé’?alb - 0fu + 870,u - 07b dx,
i=1 vQ

3

L=~ fa?(u - Vu) - 8fudx,

2 Zl )
3

I; = Z f[a%(b - Vb) — b - V&b - 8u dx,
i=1 V&

3

I =—- f@?(u - Vb) - 0?b dx,

f Zl )
3

Is = Z f[af(b -Vu) — b -Vdtu] - 9?b dx.
i=1 Y&

Note that

fb-va,?b.a%udHfb-va,?u-a,?bdxzo.
Q Q

Integrating by parts and u(x + e;,1) = u(x,t) (i = 1,2,3), I, = 0. To bound ;, we decompose it into
two pieces

3
L =- Z f (- Vu) - Ofudx = Iy + In.
i=1 V&

I, involves the favorable partial derivatives in x; and x,, respectively. Its handling is not difficult. In
contrast, I, has partial in terms of x3 and the control of I,, is delicate.
By Lemma 2.1 with f = 6*u, g = 8>*Vu, h = 8?u and Poincaré’s inequality, we obtain

2 2
1o :—ZZCl;f@fu-()iz_kaafudx
Q

i=1 k=1
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2 2
<C Y > U0kully + 105V yll)* (165wl + 10505 ulla)* 107Vl + 1624V V adlp)?

i=1 k=1

1
2—k 21192
10; ™ Vul ;|07 ull,
1 1 1 1
<C(llullgz + IVaellg2) 2 (leellgz + 11V pullgr2)? (el + 1V el g2) >l eell 2

3 1
<CIIVaull o llul o el 2

2
<CIIVpullp lleel g2,
where we have used the Poincaré’s inequality
llullgz < CIIV pul 2.

We further decomposed 15, into two terms

Iy = — f 8§(u . VM) . (9%1/1 dx = — f Hg(uh -Vou +us - 0314) . 0§udx = Iy + o).
Q Q

By Lemma 2.1,
2
Doy == ) C} f Oy, - 85V - 2udx
k=1 Q
2

1
<C Z(H@%_"thllz + V403V ) (102 Fally + 119303V ) 211650l

=1
k k a2
(105unlly + IVrO5unll2) 2 ||05ull>

1 1 1 1
<C(lluellzzz + NV nellz2)? leell gz + NV poall2)? el o el + 11V el [122) > el 2
2
<Cllual |2Vl 2.
Using Lemma 2.1 and V - u = 0, we obtain

2
I = - Z C§ f 5§u3 . é’%_k(%u . 6§u dx
k=1 Q

Ch fg OV, - 05 03u - Hudx

2
k=1
2

_ _ 1 _ _ L3 g 4
<C Z(||3’§ "Wonllz + IV405 ' Vaunll) 2105 Viuallz + 1103057 Viuslln) 21163 ku||22
=1

3—k 3—k L
(105" ull> + IVa05 " ull2) 2 ||05ull2

1 1 1 1
<C(llullgz + IVallg2)2 (leellgz + 11Vl g2 ) oall 2, (el + 11V pall 2) 2 [eall 2

<Cllull IV ullZ ..
Combining (3.3)—(3.5), we find

2
I < Cllull 21V aully, -

(3.3)

(3.4)

(3.5)
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We now turn to the estimates of /5,

3 2

By Lemma 2.1,

g
I

2 2
PNe: f &b -V b Fudx
Q

i=1 k=1

2 2
1 1 ks _
<C Z Z(Ilafbllz +[IV,8;bll2)2 (105 bll> + 10305 bl12)2 IV8;*DlI (IIVE; bl

i=1 k=1

+ VAV bl)* 162 ull,

1
<C(IIBllz2 + IV4Blle2) > Wl + IV4Ble2) 2 BN, (bl + V4Bl el
<Cllull IV 4Dl

Similar to I, I3, is naturally split into two terms

2
Iz = Z CIZ< f 8§b . V@%‘kb . 6%14 dx = I35 + I325.
k=1 Q
By Lemma 2.1,
Iy =2 f 03b - Vb - udx
Q

<C(I95bllz + IV403bl12)* (193112 + 110503b112) 2 IV3BI1; (IVsblL + IV, Vsb112)* |1 B3ull.
<C(IBlls + IV4bllz)* (bl + 1Bllz) 21BN (1Bl + Vb2 el
<Cllull 2 1Vabll. -

Also
Ly = f &b - Vb - Hudx
Q

<C(IVbll, + IV, Vb)* (VD) + ||33Vbllz)%||<9§b||2%(||<9§bllz + IV,02B112)21183ull,
<C(Ibllre + I1V4bll2)? (1Bl + ”b”Hz)%Hb”[%{z(”b”Hz + IV3bll2) 2l
<Cllull Vbl
Combining(3.6)—(3.8) yields
L5 < Cllull|IVabll,..
For 14,
3
Li=-)
=1

1

2
Z ch f Fu-Vor*b-0tbdx = I + L.

k=1 Q

(3.6)

(3.7)

(3.8)
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By Lemma 2.1,

£

|

|
1+
A
=

) ]

o5
2.
<
<
D
e
=
T
D
-5
S
QU
=

i=1 k=1

+ IV, VO bll2) 262Dl

<Cllull + IVaull)> el + IV nellz2) 21BN, (Wl + IV4Bl2)* B2
<Cl|bl 2|V bl 2 IVl 2. (3.9)

We decompose 14, into two terms

2

]42 = — Z C§ f 8§u . Vﬁ%"‘b . 6%19 dx = 1421 + 1422.
k=1

Q

Using Lemma 2.1,
1421 =2 f (93” . Vag,b : 8%19 dx
Q

1 1 1 1
<C(|05ully + IV403ull)> (185ull> + 18:05ull2) 2 IVbI1: (IV3bll> + IV, VD3b112)2 (1835l

1
<Clulls + IVatullz)> (el + Neellz2) NG, 1Bl + V3l ) (1l
<ClIbllg IV abll 21Vl g2 (3.10)

Similarly
_ 2 2
1422—f63u-Vb-63bdx
Q

1 1 1
<C(|[Vbll> + IV, Vbllo)* (IVBI|, + 185VbI1) 2 1185ull; (103ull> + IV,83ull2)? 103Dl

1 1
<C(Iblly2 + IVbll2)* 1Bl + ”b”Hz)%Hu”;_Iz(”u”Hz + [IVpullz2) 2 1Dl 2
<ClIbll g2 IV bl 21|V pl 2. (3.11)

Combining all the estimates(3.9) through (3.11) yields
Ly < Clbll2 IV abll 2V el 2.

It remains to estimate /s,

=) cgfgafb VO u- b dx = Isy + Isy.

3 2
i=1 k=1

By Lemma 2.1,

2 2
Isi=) > ¢ fg &b - VO u - 87b dx
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2 2
<C > > (65Dl + 1904 bl1)* (I65Bla + 11950 blI) IV S ull3 1V 67wl

i=1 k=1
+ VAV ully)? 102Dl

1 1 1 1
<C(|IDllm2 + IVabllg2) > llBll 2 + IIVthIHZ)éIIMII;IZ(IIMIIH2 + [[Viudllg2) 2 16l g2
<ClIBll2 IVl 2] V1Dl g2 (3.12)

The difficult term is Isp, which is further decomposed into two terms
2
Is, = Z C/; f (9§b . V&%‘ku . 6§bdx =I5y + I5p.
k=1 Q

By Lemma 2.1,

1521 =2 f a3b . Vﬁgu : 8%1? dx
Q

1 1 1 1
<C(|05bll> + IV403b11)> (185bll> + 118305b112)2 IV sull: (IVDsulla + IV, VD5ull2)?[|83bl1>.

1 1 1 1
<CIbllg2 + IVabllg2)2 Dl g2 + 11612 ) aell o (el + 11V putll 2) 2 11512
<CIID||g2 IVl 2|V 1D 2. (3.13)

Similarly, /s, can be estimated as follows

Isy = f &b - Vu - b dx
Q
1
<CIVully + IV Vull)> (IVully + 1105V ulle) 1035113 (103b1lz + 1V,83b112)* 13Dl

<Clullze + IVatllz)* (el + lellz) 2161 (1Bl + 1V4BlL2) 2 1B
<ClIbllg2 IV el | 22l V1Dl 2. (3.14)

Combining (3.12)—(3.14), we have
Is < ClIbllg2 IV pull 21| V1Dl 2.

Therefore, if we set

f !
E@) = sup (lu(@)ll, + 1b()Il7.) + 2Vf IVl dr + 277f IVib(OIl}, dr.
0 0

7€[0,7]

By Holder’s inequality, the time integral of the bounds for I, I5, I, and /5 can be estimated as follows

t t
fIIzIdT Scf”u(T)”HZ”VhM(T)”i]sz
0 0

t
<C sup IIM(T)Ilmf V(DI dr < CE()?,
0

7€[0,¢]
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t t
f|13|dT Scf”u(T)”HZ”Vhb(T)”i]sz
0 0

t
<C sup ||M(T)||H2f IVab(D)II72 d7 < CE(1)3,
0

7€[0,¢]

fo LldT <C fo @ IV a2 Vbl dT < CE@)?E@)? E()? = CE®)?,

fo sl <C fo IOl IVl IVl de < CE@EWHE®® = CEW).
Integrating (3.2) in time and combining with (3.1), we find
E(1) < E(0) + CE(1)?.
A bootstrapping argument implies that, there is ¢ > 0, such that, if E(0) < 6%, then
E(t) < C&°
for a pure constant C and for all > 0, which implies H>-stability.

3.2. Uniqueness

This subsection proves the uniqueness part of Theorem 1.1. We show that two solutions
(D, PO, pMy and (u®, PP, b?) of (1.2) in the regularity class (1.4) must coincide. Their difference
@@, P, b) with

T=uV—y® P=ph_p® p=ph_p0

satisfies, according to (1.2)

AU +uV Vi+7u-Vu® = VP + v A+ bV - Vb +b - Vb + 8,b,
8b+uV Vb +7-Vb® = Ayb+ bV Vi +b-Vu® + 0,7, (3.15)
V-u=V-b=0.

Basic energy estimates show that

1d — -~
id_t(lrﬁ“% + 11615 + VIV, + 7lVabll; = Ky + K + K3 + Ka,

where

K, = —fﬁ'Vu(z) ‘udx,
Q

f b-Vb?® . Udx,
Q

Ky = —fzz-w;@) bdx,

K

Q
K, = fZ vu® - bdx.
Q
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By Lemma 2.1, K, K>, K3, K4 can be bounded as follows
Ky <C(IVu®lly + [1V,Vu®|) 2 (V@] + ||33VM(2)||2)%|W|2%(|W|2 + IV, ([l
SCIIVhVu(z)IIZ%(IIVM(Z)IIz + 105V 1) 2 [l |V 5l
SgllVﬂﬂlﬁ + Clai IV, Vu® L (IVu® Il + 18:Vu?||). (3.16)

_ 1 — —_
K <CUIVEPNly + IV, VBPIL) (V625 + 105V 1) 2 16112, (1Bll2 + 1V ,b112) [l
<CIIV, VB2 |2 (IVEP L, + 18:VPI) B2 V4Bl IV 4l
V — P
sguvh'ﬁu% + gnvhbui + ClIBIGIVAVEPGAIVE? |, + 10: VB2 (3.17)

! 1 |~
Ks <CUIVB@lly + 194V PIR)? (VB2 + 1185V5 1) [l (dl» + 1Vll)* 1Bl
1 1 Lo~
<CIVAVBIE (VD@ Ily + 105 Vh 1) [ 1V, 1V Bl
V —_—
SglthﬁH% + gIIVhbH% + ClBIV V2 IRAVEPL + 105 V6 1), (3.18)

Ky <C(IVu@|l, + 1V, V4@ ()2 (V6@ + 105V 1) 2 1BI12 (1511, + 11V,bIL) 2 1Bl
1 —_ —_
<CIIV, Vu® |2 (IVu® |l + 10:Vu@ 1) Bl IV bl
V —~ P
< IVablls + CIBIEI,Vu a(1Vu s + 10:9u ). (3.19)
Combining (3.16)—(3.19), we set Y(¢) = (|[u(?)ll5 + IIZ(I)Ilg),
d —_
Z YO+ AV + 7lI,b5 < a@Y (o). (3.20)

where
a(t) = CIIV,Vu@ L (IVu®|l, + 10;Vu@|l2) + CIIVLVDDN5AIVEPl, + (10:VD]0).

Since (u®, b?) is in the regularity class (1.4). For any T > 0, we have

T T
f a(t) dt SCf IV VL (IVu® |y + 1185Vu|l)
0 0
+ IV, VO IEIVEP L, + 115V6 2 10)* dt

T
2)(12 2)(12 2)112
SCf IV + IV, 2 G 16217, dt
0

T T
<C f IVuuI7, dt + C sup 16?17, f IV P17, dt < C(T) < +oo.
0 0

H
e[0.4]
Gronwall’s inequality applied to (3.20) implies that, for any 7" > 0,
GO + B SAFO)3 + IBO)]I3)eh «O
<C(@O)Il5 + 1bO)I13)- (3.21)
In particular, the initial values of the two solutions in the regularity class (1.4), then (3.21) implies

Y(1) = [[u(n)ll; + ||?;(r)||§ = 0 for any T > 0. This completes the proof of the uniqueness.
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4. Conclusions

In this paper, we gave the stability of the 3D incompressible MHD equations near a background
magnetic field with horizontal dissipation in periodic domain by bootstrapping argument. The main
part of bootstrapping argument relies on proof of inequality (2.1). We get through it by the anisotropic
inequality, and Poincaré’s inequality helps a lot in periodic domain.
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