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Abstract: This work is devoted to study optimization problems arising in energy distribution systems
with storage. We consider a simplified network topology organized around four nodes: the load aggre-
gator, the external grid, the consumption and the storage. The imported power from the external grid
should balance the consumption and the storage variation. The merit function to minimize is the total
price the load aggregator has to pay in a given time interval to enforce this balance.
Two optimization problems are considered. The first one is linear and standard. It can be solved
through classical optimization methods. The second problem is obtained from the previous one by
taking into account a power subscription, which makes it piecewise linear. We establish mathematical
properties on both these models.
Finally, a new method based on a sliding window algorithm is derived. It allows to reduce drastically
the computational time and makes feasible real time simulations. Numerical results are performed on
real data to highlight both models and to illustrate the performance of the sliding window algorithm.
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1. Introduction

Recently, large scale electric energy storage technologies have been developing fast and many of
its applications are investigated (see [3, 4, 6, 14]). There is a growing interest in integrating storage in
distribution networks to improve their economy. Indeed, the use of storage capabilities allows the load
aggregator to have more flexibility in managing energy transaction and delivery. For example, we can
buy extra energy and store it when the price is low and use the stored energy to deliver to customers
when the price is high.

In order to develop decision tools aimed to reach economic objectives, the load aggregator must
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have predictions on both the consumption and the price. There are many methods developed for both
price and consumption forecasting, such as those studied in [9,11,12], which are based on time series.
In this work, we focus on the optimal storage strategy for given prices and consumptions. The next step
that is not considered in this paper, would be to integrate uncertainties faced by the load aggregators
both for prices and consumption.

The best energy management is presented as a solution of an optimization problem in which the
merit function represents the effective energy cost. The decision variables are the operations of charg-
ing and discharging of the storage. We impose as constraints the physical limitations of the storage
system (capacity and charging/discharging rates). Let us mention that our models have no spatial de-
pendency; they can be obtained by geographical clustering. As a consequence, we do not consider
transmission losses and transmission constraints in the formulation. Such models are known as stan-
dard discrete-time optimal control problems (see [5, 8] ) and are widely used in the literature (for
instance [16–18]). The definition of the merit function can lead to different type of models that we will
consider in this paper.

Another important issue is the possibility to develop decision tools. To this end, it is necessary
to perform real time simulations. The classical numerical optimization methods turn out to be very
expensive when large scale problems are considered. For this reason, we introduce a sliding window
algorithm inspired by the domain decomposition methods, which is based on same principles as exist-
ing methods such as limited foresight and myopic approach (see [7, 13]) or Rolling horizon approach
horizon [10, 15]. These methods consist in computing successively optimal solutions on a staggered
grid. However, in our case, we allow two successive intervals to overlap with variable length and we
discuss the influence of the overlap length on the efficiency of our algorithm.

The paper is organized as follows. In Section 2, we describe the distribution system modeling in-
cluding storage. We present a first (linear) optimization problem which can be presented as a linear
programming. This problem is classical and was used in [16–18]. In order to take into account more
realistic situations, we introduce a more advanced (piecewise linear) optimization problem which in-
cludes a power subscription in the cost function. Next we prove some qualitative properties satisfied
by the solutions of both problems. Finally we recall some classical numerical methods to approximate
the solutions.

Section 3 is dedicated to present in details the sliding window method. In Section 4 we perform
numerous numerical simulations in order to illustrate both the models and the algorithms. Finally, in
Section 5 we give a few concluding remarks and perspectives.

2. Distribution system modeling

2.1. System description

The model that we use in this paper is inspired by [18]. The model is obtained by clustering
geographically the nodes of the same kind. This lets us with only four nodes:

• the load aggregator which is in charge of importing and distributing the energy;
• the external grid where traditional or renewable energy can be purchased;
• consumption which is the mutualised consumption of all the customers;
• the storage that can be used by the load aggregator to store or to deliver additional energy.
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We consider a time interval [0,T ] which is discretized with regularly spaced times (ti)0≤i≤N such
that ti+1 = ti + δt, where δt is the time step. For simplicity, δt is set to 1 (typically one hour). The
following quantities will denote average values on the time interval [ti−1, ti] (expressed in terms of
Watt), (see Figure 1): Li will be the consumption, Ci and Di denote the charged and discharged power,
respectively, and Ui is the imported power. There are losses during the charging and discharging
operations. The efficiencies of these processes are denoted by ηC and ηD, respectively, and are assumed
to belong to (0, 1). The state of charge at time ti will be denoted by S i (expressed in terms of Watt
Hour). The quantity Li is assumed to be known and Ci, Di and Ui are the decision variables that will
be computed by the load aggregator.

Figure 1. Distribution system.

Given an initial value of the storage S 0, the state of charge at time ti, 1 ≤ i ≤ N, is defined recursively
by

S i = S i−1 + ηCCi − Di. (2.1)

Let us notice that S i can be written equivalently as

S i = S 0 +

i∑
k=1

(ηCCk − Dk). (2.2)
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The variables Ci, Di and S i are bounded by their operation limits, expressed as

S min ≤ S i ≤ S max, (2.3)

0 ≤ Ci ≤ Cmax, (2.4)

0 ≤ Di ≤ Dmax. (2.5)

Here S min and S max are respectively the minimum and the maximum energy storage capacities, Cmax

and Dmax are respectively the charging and discharging power limits.
For simplicity, the external stock of energy is assumed to be infinite. The load aggregator must

enforce the power balance, given by

Ui = Li + Ci − ηDDi. (2.6)

We derived above the modeling of the physical constraint, that will be unchanged in the various
economic situations we will consider from now on; each economical model (power delivery with or
without subscription) will be governed by the choice of the merit function to minimize.

2.2. The model without subscription

For the sake of simplicity, we first consider a linear merit function which corresponds to the simplest
economical model. In short, the load aggregator imports power from the external grid at a given price.

2.2.1. Formulation

The average price for the imported electricity from the external grid on [ti−1, ti] is denoted by Pi and
is assumed to be known and fixed. Therefore, the total cost of imported power on [0,T ] is given by

N∑
i=1

PiUi.

According to (2.6), and since Li is fixed, minimizing this cost is equivalent to minimize the following
merit function

J(C,D) =

N∑
i=1

Pi(Ci − ηDDi). (2.7)

For a given S 0 ∈ [S min, S max], the optimization problem can be written as

min
C,D∈RN

J(C,D),

s.t. ∀1 ≤ i ≤ N,


S i = S i−1 + ηCCi − Di,

S min ≤ S i ≤ S max,

0 ≤ Ci ≤ Cmax,

0 ≤ Di ≤ Dmax

(P1)

Remark 2.1. Let us notice that the investment cost of the storage system does not appear in the merit
function J. Indeed, it would appear as a constant with respect to decision variables C and D of Problem
(P1).
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2.2.2. Properties

The Problem (P1) does not necessarily have a unique solution since J is not strictly convex. Here
we are going to prove that all the minimizers of J satisfy some qualitative properties.

Physically, the charging and discharging operations cannot be realized simultaneously. Theoreti-
cally, we should add the constraint CiDi = 0 to Problem (P1). The first result we present shows that
this constraint is automatically taken into account in the optimization problem, thus it is not necessarily
to include it as a constraint in the resolution.

Theorem 2.2. Let (C∗,D∗) be a solution of Problem (P1). Then C∗i D∗i = 0 for all 1 ≤ i ≤ N.

Proof. Assume that there exists j such that C∗j D
∗
j > 0. Let us define

Ci =

C∗i if i , j,

(C∗j −
1
ηC

D∗j)
+ if i = j,

Di =

D∗i if , j,

(ηCC∗j − D∗j)
− if i = j,

where x+ and x− will denote respectively the positive part and the negative part of a given number x,
i.e. x+ = max(x, 0) and x− = −min(x, 0). This definition ensures for all i

0 ≤ Ci ≤ C∗i ,

0 ≤ Di ≤ D∗i ,

so C and D satisfy constraints (2.4) and (2.5). Let S ∗ and S be the state of charge related to (C∗,D∗)
and (C,D), respectively. Then according to (2.2), we have

S i = S 0 +

i∑
k=1
k, j

(ηCCk − Dk) + ηCC j − D j,

= S 0 +

i∑
k=1
k, j

(ηCC∗k − D∗k) + (ηCC∗j − D∗j)
+ − (ηCC∗j − D∗j)

−.

Since x+ − x− = x, we deduce

S i = S 0 +

i∑
k=1
k, j

(ηCC∗k − D∗k) + (ηCC∗j − D∗j) = S ∗i .

Therefore, we have S = S ∗, so S satisfies constraint (2.3).
However, since ηCηD < 1, we have

C j − ηDD j = (C∗j −
1
ηC

D∗j)
+ − ηD(ηCC∗j − D∗j)

−,

< (C∗j − ηDD∗j)
+ − (C∗j − ηDD∗j)

− = C∗j − ηDD∗j.
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Then, the merit function is given by

J(C,D) =
∑
i, j

Pi(Ci − ηDDi) + P j(C j − ηDD j),

<
∑
i, j

Pi(C∗i − ηDD∗i ) + P j(C∗j − ηDD∗j) = J(C∗,D∗).

This contradicts the optimality of (C∗,D∗). �

Next theorem describes the energy storage level at final time N before and after the time (S 0 −

S min)/Dmax, which is the minimal time to empty the storage S at maximum discharge rate Dmax.

Theorem 2.3. Let (C∗,D∗) be a solution of Problem (P1) and S ∗ be the associated state of charge. We
have the following alternatives:

(i) if N ≤ (S 0 − S min)/Dmax, then S ∗N = S 0 − NDmax;

(ii) if N > (S 0 − S min)/Dmax, then the energy storage level reverts to its minimum value at time N, i.e.
S ∗N = S min.

Proof. We start by proving (i). Let us define C∗i = 0 and D∗i = Dmax. Obviously C∗ and D∗ satisfy
constraints (2.4) and (2.5). Moreover the hypothesis on N ensures that the associated state of charge
S ∗ satisfies constraint (2.3). We are going to show that this define an optimal solution. Let C and D
be two vectors satisfying constraints (2.4) and (2.5) such that the associated state of charge S satisfies
constraint (2.3). We have

J(C∗,D∗) − J(C,D) = −

N∑
i=1

Pi(Ci + ηD(Dmax − Di) ≤ 0.

Therefore, (C∗,D∗) is an optimal solution. Let us notice that the solution is unique in this case. It
follows immediately that S ∗i = S 0 − NDmax.

Now let us turn to the proof of (ii). In order to obtain a contradiction, suppose that S ∗N > S min. If
D∗i = Dmax, for all 1 ≤ i ≤ N, then according to the hypothesis on N, we have

S ∗N = S 0 − NDmax < S min.

This contradicts the hypothesis S ∗N > S min, so there exists i such that D∗i < Dmax. Let us define
j = max{i : D∗i < Dmax}. This ensures that S ∗k > S ∗N , for all k such that j ≤ k < N.

Let C and D be two vectors defined by

(Ci,Di) =


(C∗i ,D

∗
i ) if i , j,

(C∗j − ε1, 0) if i = j and C∗j > 0,
(0,D∗j + ε2) if i = j and C∗j = 0,

with

ε1 = min
(S ∗N − S min

ηC
,C∗j

)
AIMS Mathematics Volume 6, Issue 11, 11815–11836.
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and
ε2 = min

(
S ∗N − S min,Dmax − D∗j

)
.

This definition ensures that C and D satisfy constraints (2.4) and (2.5). Let S be the state of charge
related to C and D. We are going to check that S satisfy constraint (2.3). First, for i ≤ j, we have
S i = S ∗i . Next, for i > j, we have in one hand S i < S ∗i ≤ S max. It remains to prove that S min ≤ S i. In
order to do so, let us notice that

ηCC j − D j ≥ (ηCC∗j − D∗j) + S min − S ∗N . (2.8)

Indeed, two cases can be distinguished:

• if C∗j = 0, then ηCC j − D j = −D∗j − ε2 ≥ −D∗j + S min − S ∗N;
• if C∗j > 0, then ηCC j − D j = ηC(C∗j − ε1) ≥ ηCC∗j + S min − S ∗N .

Therefore we have according to (2.8)

S i = S 0 +

i∑
k=1
k, j

(ηCC∗k − D∗k) + (ηCC j − D j),

≥ S 0 +

i∑
k=1
k, j

(ηCC∗k − D∗k) + (ηCC∗j − D∗j) + S min − S ∗N .

Then thanks to (2.2), we conclude

S i ≥ S ∗i + S min − S ∗N ≥ S min.

Finally, we prove that (C,D) realizes a lower value for J than (C∗,D∗). This is immediate since

C j − ηDD j < (C∗j − ηDD∗j).

This contradicts the optimality of (C∗,D∗).
�

2.2.3. Resolution methods

We rewrite Problem (P1) in the following standard matrix form which is suitable for the application
of the classical resolution methods:

min
C,D∈RN

(
PT −ηDPT

) CD
 ,

s.t a ≤ A (ηCC − D) ≤ b,

0 ≤ C ≤ c,

0 ≤ D ≤ d,

AIMS Mathematics Volume 6, Issue 11, 11815–11836.
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where C and D are the decision variables corresponding to charge and discharge, respectively, P ∈ RN

is the price vector and a, b, c, d ∈ RN are the given vectors defined by

a = (S min − S 0)1,

b = (S max − S 0)1,

c = Dmax1,

d = Cmax1,

with 1 = (1, · · · , 1)T . Finally, A ∈ MN(R) is the matrix defined by

A =


1 0 · · · 0
...

. . .
. . .

...
...

. . . 0
1 · · · · · · 1

 .
With this formalism, we can see that (P1) is expressed in the framework of linear programming. It can
be solved either by the simplex method or the interior point method for very large scale problems. We
refer the reader to [1] for a complete description of both methods.

Remark 2.4. Let us notice that it is possible to reformulate (P1) using only one decision vector ∆

defined by ∆ = ηCC − D. Indeed, we can write the merit function as

J(∆) =

N∑
i=1

Pi

( 1
ηC

∆+
i + ηD∆−i

)
.

Hence, we consider the problem

min
∆∈RN

J(∆),

s.t. ∀1 ≤ i ≤ N,

S min − S 0 ≤
∑i

k=1 ∆k ≤ S max − S 0,

−Dmax ≤ ∆i ≤ ηCCmax.

(P1’)

Both Problems (P1) and (P1’) are equivalent in the following sense:

1. If (C∗,D∗) is a solution of Problem (P1), then ∆∗ = ηCC∗ − D∗ is a solution of Problem (P1’).

2. If ∆∗ is a solution of Problem( P1’), then (C∗,D∗) = ( 1
ηC

∆∗+,∆∗−) is a solution of Problem (P1).

Dealing with only one variable allows to use less memory, however the problem is now nonlinear and
its resolution requires a larger computational effort.

2.3. The model with subscription

In this section, we take into account a more realistic economical model. Instead of buying power
freely from the external grid, as in the previous model, the load aggregator is now limited by a power
subscription.

AIMS Mathematics Volume 6, Issue 11, 11815–11836.
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2.3.1. Framework

We start from the same nodes as in the previous model (see Figure 1). Let us assume that the
load aggregator has a subscription for a given power Us. The price of this subscription is a constant
which has no influence on the optimization problem that will follow. Therefore we will not take it into
account. This subscription is based on the two alternatives:

• if the imported power Ui does not exceed Us, its price is Pi;
• else, the imported power Ui is still imported with price Pi, but the exceeding power Ui − Us is

penalized with a higher price Qi.

Therefore the cost of the imported power is

N∑
i=1

PiUi +

N∑
i=1

Qi(Ui − Us)+,

where
(Ui − Us)+ = max (Ui − Us, 0) .

As previously, using equation (2.6), this cost can be reformulated using only the decision variables C
and D. Thus we obtain the following merit function to minimize

Js(C,D) =

N∑
i=1

Pi(Ci − ηDDi) +

N∑
i=1

Qi(Li − Us + Ci − ηDDi)+. (2.9)

The optimization problem is then expressed as

min
C,D∈RN

Js(C,D),

s.t. ∀1 ≤ i ≤ N,


S i = S i−1 + ηCCi − Di,

S min ≤ S i ≤ S max,

0 ≤ Ci ≤ Cmax,

0 ≤ Di ≤ Dmax.

(P2)

Remark 2.5. The model without subscription can be seen as a particular case of the current model
with Us large enough.

2.3.2. Properties

The results presented here state that the solutions of (P2) satisfy the same properties as the solutions
of (P1).

Theorem 2.6. Let (C∗,D∗) be a solution of Problem (P2). Then C∗i D∗i = 0 for all 1 ≤ i ≤ N.

Theorem 2.7. Let (C∗,D∗) be a solution of Problem (P2) and S ∗ be the associated state of charge. We
have the following alternatives:

(i) if N ≤ (S 0 − S min)/Dmax, then S ∗N = S 0 − NDmax;
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(ii) if N > (S 0 − S min)/Dmax, then the energy storage level reverts to its minimum value at time N, i.e.
S ∗N = S min.

The proofs of the latest theorems are similar as in the model without subscription. The additional
term in the merit function Js does not raise any technical difficulty to adapt the proof.

2.3.3. Resolution method

The Problem (P2) is piecewise linear and classically can be written as a linear program as follows
(see [2]). We introduce an auxiliary variable q ∈ RN and the merit function

Ĵs(C,D, q) =

N∑
i=1

Pi(Ci − ηDDi) +

N∑
i=1

Qiqi.

Next we consider the following optimization problem

min
C,D,q∈RN

Ĵs(C,D, q),

s.t. ∀1 ≤ i ≤ N,



S i = S i−1 + ηCCi − Di,

S min ≤ S i ≤ S max,

0 ≤ Ci ≤ Cmax,

0 ≤ Di ≤ Dmax,

qi ≥ 0,
qi ≥ Li + Ci − ηDDi − Us.

(̂P2)

We now establish the equivalence between Problems (P2) and (̂P2).

Proposition 2.8.

1. If (C?,D?) is a solution of Problem (P2), then by setting

q?i = (Li − Us + C?
i − ηDD?

i )+, (2.10)

the triplet (C?,D?, q?) is a solution of Problem (̂P2).

2. If (C?,D?, q?) is a solution of Problem (̂P2), then (C?,D?) is a solution of the Problem (P2).

Proof. First, we notice that if (C,D, q) satisfies the constraints of Problem (̂P2), then we have

Ĵs(C,D, q) ≥ Js(C,D).

1. By definition (2.10) of q?, the triplet (C?,D?, q?) satisfies the constraints of Problem (̂P2). Let
(C,D, q) a triplet satisfying the constraints of Problem (̂P2). We have

Ĵs(C,D, q) ≥ Js(C,D) ≥ Js(C?,D?) = Ĵs(C?,D?, q?).

The last equality follows from the definition (2.10) of q?. Therefore, (C?,D?, q?) is a solution of
Problem (̂P2).

AIMS Mathematics Volume 6, Issue 11, 11815–11836.
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2. The couple (C?,D?) trivially satisfies the constraints of Problem (P2). Let (C,D) a couple satis-
fying the constraints of Problem (P2) and let

qi = (Li − Us + Ci − ηDDi)+.

This definition ensures that

Js(C,D) =

N∑
i=1

Pi(Ci − ηDDi) +

N∑
i=1

Qiqi,

therefore
Js(C,D) = Ĵs(C,D, q) ≥ Ĵs(C?,D?, q?) ≥ Js(C?,D?).

Thus (C?,D?) is a solution of Problem (P2).

�

The equivalent reformulation (̂P2) leads to a linear programming problem, we can thus use the same
numerical methods as for Problem (P1).

3. Sliding window algorithm

In many concrete applications, the computation of the solutions of (P1) or (P2) can be included in a
decisional system which aims to apply an optimal storage strategy. Therefore it is crucial to compute
the solution in real time. When one considers a long period of time, the computing time can quickly
become very large. In order to overcome this difficulty, we propose to apply iteratively the optimization
method on small overlapping time intervals recovering the whole time period. This approach leads to
a resolution method that can be seen as a sliding window algorithm.

Let us notice that this method has similarities with existing algorithms like limited foresight and
myopic approach [7, 13]. However we can point out some differences: The length of the overlap be-
tween consecutive intervals is variable in our method and the influence of this length is discussed; also
in these existing methods there is a boundary condition imposed at the final time of each subinterval,
while this is not the case in our method.

The main idea is to decompose the global problem on the discrete time interval [|0,N|] into a succes-
sion of simulations on small time subintervals. The solutions are then concatenated in order to obtain
an approximated solution of the global problem.

In the following, we assume that the subintervals are large enough to enter the second alternative
of Theorems 2.3 and 2.7. Therefore this theorems ensure that the storage level will be equal to S min at
the end of each simulation. This creates artificial boundary conditions that will lead to a non optimal
global solution. In order to avoid these artifacts, we impose that two successive sub-intervals must
overlap.

Now we present in details the suggested method. Let L ∈ N∗, L ≤ N, the length of the time window.
The other parameter of the method is the length of the overlap, that we will denote by r < L. We define
the subintervals [|ai, bi|] ⊂ [|0,N|], with bi − ai = L, using the following procedure:

• a0 = 0;

AIMS Mathematics Volume 6, Issue 11, 11815–11836.
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• ai = bi−1 − r, i > 0.

In order to compute the solution on the subinterval [|ak, bk|], we need an initial condition S k
0 for

the state of charge at time ak. Since ak belongs to the sub-interval [|ak−1, bk−1|], we can set this initial
condition as the value of the state of charge computed at time ak obtained during the simulation on the
subinterval [|ak−1, bk−1|]. This method is summarized in Algorithm 1.

Algorithm 1
Require: L, r and S 0

S = (S 0)
for k = 0, 1, 2... do

solve Problem (P1) or (P2) on [| ak, bk |] with the last component of S as initial state of charge
compute S k = (S k

1, ..., S
k
L) with equation (2.3)

S ← concatenation of S and (S k
1, · · · , S

k
L−r)

end for

Figure 2 illustrates how the proposed algorithm works in the first iterations. In black is displayed
what we call the reference solution, which was computed directly on the whole time interval [|0,N|]
(without the Sliding Window Algorithm). The first iteration generates a solution on the time interval
[|a0, b0|] = [|0, L|]. The state of charge at time L − r is used as the initial condition for the second
iteration, which is then computed on the interval [|a2, b2|] = [|L − r, 2L − r|].

0 10 20 30 40 50 60 70 80 90 100

Time (h)

2

4

6

8

10

12

14

S
ta

te
 o

f 
c
h
a
rg

e
 S

 (
M

W
h
)

Reference solution

SWA solution on [a1,b1]

0 10 20 30 40 50 60 70 80 90 100

Time (h)

2

4

6

8

10

12

14

S
ta

te
 o

f 
c
h
a
rg

e
 S

 (
M

W
h
)

Reference solution

SWA solution on [a1,b1]

SWA solution on [a2,b2]

Figure 2. The first iteration (left) and the second iteration (right) of the sliding window
algorithm.

The choice of the parameters L and r and their effect on the quality of the approximation, as well as
their effect on the CPU time, will be discussed in section 4.
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4. Numerical results and discussion

Simulations are performed with MATLAB® on a personal computer with an Intel Core i7 processor
running at 2,8 GHz. The storage parameters are set as in Table 1 to reproduce all the figures except
for Figure 4 where the effect of maximum storage S max is studied and then is variable. The values for
consumption and prices are coming from real life data for a small town of about 10, 000 inhabitants.
All the simulations are performed with a simplex algorithm using the function linprog. The dual
feasibility tolerance is set by default to 1e − 07 and the primal feasibility tolerance is set by default to
1e − 04.

Table 1. Storage parameters values.

S min 2 MWh
S max 12 MWh
Cmax,Dmax 2.5 MW
ηC, ηD 0.95

4.1. Model without subscription

To validate the model (P1), we consider a time frame of 24 hours. Figure 3 represents the evolution
of the state of charge together with the price. We notice that the results agree with the basic intuition:
the state of charge S tends to increase when the price is low and to decrease when the price is high.
To point out the advantage of using storage we compare the cost with and without storage. In this
example the cost without storage is 1.0353e + 04 (euros), against 1.0175e + 04 (euros) when storage is
considered.

As stated in Theorem 2.3, we can see from Figure 3 that the state of charge level S reverts to its
minimum (S 24 = S min = 2).

Next, we study the influence of the maximum storage capacity S max on the cost. We can see in
Figure 4 that the merit function decreases when storage capacity increases. However, as it can be
excepted, there is a threshold for the storage capacity (about 20 MWh for these data) beyond which the
total cost stays constant.
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Figure 3. State of charge variation versus the price (Model (P1)).
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Figure 4. Variation of the optimal value with respect to the maximum storage capacity
(Model (P1)).
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4.2. Model with subscription

Now we present the results obtained with model (P2). The subscription Uab is set to 7 MW, and the
price curve Q is taken equal to P.

The evolution of the state of charge and of the price are shown in Figure 5. We compare the cost
with and without storage: In this example the cost without storage is 1.1016e + 04 (euros), against
1.0749e + 04 (euros) when the storage is considered. The evolution of the state of charge has a similar
shape as the one obtained with model (P1) and displayed in Figure 3.
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Figure 5. State of charge variation versus the price (Model (P2)).

Similarly as in the model without subscription case, we study the influence of the maximum storage
capacity on the optimal energy cost. The results are displayed on Figure 6. The threshold value beyond
which it is no longer interesting to increase the storage capacity (here about 10 MWh) is not the same
as in model (P1) because it depends on the subscribed power. Indeed, we also show in Figure 6 the
influence of the subscribed power on the optimal energy cost. The behaviour is similar: the energy
cost does not decrease when the subscribed power goes beyond a threshold value (here about 8 MW).
Since it can be excepted that the cost of the subscription increases with the power subscribed, the load
aggregator should not subscribe to a power greater than this threshold value.

In order to emphasize the differences between the two models, we compare the imported powers for
each model, displayed on Figures 7 and 8. The consumption curve and the price curve are also plotted
in order to see their impact for both models. Let us recall that the consumption does not intervene in
model (P1). We notice that the shape of the imported power curve are slightly different. In model (P2),
the imported power tends to be equal to Us most of the time in order to avoid the penalties. There are
only two short time intervals in which this is not the case and this corresponds to time intervals when
the price is very low. In contrast, the curve obtained with model (P1) is mostly driven by the price all
the time.
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Figure 6. Variation of the optimal value (Model (P2)) with respect to the maximum storage
capacity (left) and the subscribed power Us (right).
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Figure 7. Imported power variation versus the consumption and the price (Model (P1)).
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Figure 8. Imported power variation versus the consumption and the price (Model (P2)).

4.3. The sliding window algorithm

In this section, we are going to compare the solution obtained by the sliding window algorithm with
the reference solution computed in one step on the whole time frame [|0,N|]. Before giving the criteria
used for this comparison, we need to introduce a few notations:

• (C,D) represents the reference solution, S the associated state of charge and m the optimal value
(equal to J(C,D) or Js(C,D), depending on the model);
• (C swa,Dswa) represents a solution computed with the sliding window algorithm with a given L

and r that will be specified for each simulation, S swa the associated state of charge and mswa the
optimal value (equal to J(C swa,Dswa) or Js(C swa,Dswa), depending on the model).

To analyze the efficiency of the method and the sensitivity of the parameters L and r, we use the three
following criteria:

• the CPU time (in seconds);

• the relative L1 error on the state of charge E1 =

∑N
i=1 |S i − S swa

i |∑N
i=1 S i

;

• the relative error on the optimal value E2 =
|m − mswa|

m
.

The first numerical simulations we present here are dedicated to illustrate how the sliding window
algorithm works. Therefore we consider a short period of time with N = 100, L = 30 and r = 5.

The evolution of the state of charge for both the reference solution and the sliding window solution
are displayed in Figure 9 (model (P1)) and in Figure 10 (model (P2)). We remark that in Figure 9 both
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curves coincide, which is not the case in Figure 10. Since the solutions of problems (P1) and (P2) are
not unique, it is also useful to compare their optimal value. For model (P1), we obtain E1 = 4.33e− 05
and E2 = 6.79e − 11, while for model (P2), we find E1 = 1.78e − 01 and E2 = 6.38e − 04. As we can
expect from Figure 9, these errors are very small for model (P1). For model (P2), although the L1 error
is important, the optimal values are close. It means that the two methods have probably converged
toward different minimizers.
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Figure 9. State of charge for the reference solution and the sliding window solution with
L = 30 and r = 5 (model (P1)).
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Figure 10. State of charge for the reference solution and the sliding window solution with
L = 30 and r = 5 (model (P2)).

AIMS Mathematics Volume 6, Issue 11, 11815–11836.



11833

Since the main objective of the sliding window algorithm is to decrease the CPU time, we are going
to compute simulations on a much longer time frame. We set N = 2160 hours, which correspond to
a three months simulation. Let us recall that the sliding window algorithm is characterized by two
parameters: The length of the time window L and the length of the overlap r.

The next series of results has a double goal. First, we want to emphasize that the gain in CPU time
obtained with the sliding window algorithm does not deteriorate too much the accuracy of the solution.
Secondly, we want to study the impact of the choice of the parameters L and r on the accuracy and
the CPU time. Therefore, we are going to perform a number of simulations with the sliding window
algorithm and with different values of L and r. Each of these simulations will be compared to the
reference solution.

The results presented in Tables 2 and 3 display the values of errors E1, E2 and the CPU time for
models (P1) and (P2), respectively, while varying the time window L and keeping the length of the
overlap r constant to 5. Similar results are presented in Tables 4 and 5, but this time we set the time
window L to 40 while varying the length of the overlap r.

In model (P1), the reference solution is computed with the same algorithm parameters as in Sub-
section 4.1. The CPU time to compute the reference solution is approximately 390 seconds. We can
observe from Table 2 that increasing the time window L, both errors E1 and E2 decrease while the CPU
time increase. We can observe from Table 4 that the length of the overlap r has less influence on the
errors than to the length of the time window L has. Indeed, the CPU time increases with r; however for
r ≥ 15, we do not observe a significant decrease in both errors.

The total CPU time to compute the reference solution with this method is approximately 1077
seconds. We can observe from Table 3 that the length of the time window L does not have much
influence on both errors E1 and E2. As for model (P1), we notice that the parameter r should not be
too small. However, for r ≥ 15 there is no significant improvement.

Table 2. Errors and CPU time for the sliding window algorithm with varying L and fixed
r = 5 (model (P1)).

L E1 E2 CPU time (s)
20 2.30e − 01 4.26e − 04 2.07
40 1.82e − 01 1.71e − 04 1.50
60 1.38e − 01 9.06e − 05 1.78

100 1.03e − 01 1.95e − 05 2.10
140 8.57e − 02 4.00e − 05 3.35
180 3.72e − 02 9.62e − 05 5.07
220 4.48e − 02 2.41e − 06 7.55
580 1.99e − 02 1.72e − 11 10.01
700 1.41e − 02 1.24e − 11 15.62
820 1.11e − 02 4.42e − 10 23.51
2160 0 0 390
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Table 3. Errors and CPU time for the sliding window algorithm with varying L and fixed
r = 5 (model (̂P2)).

L E1 E2 CPU time (s)
20 3.34e − 01 4.47e − 03 15.80
40 2.36e − 01 1.71e − 03 7.55
60 1.80e − 01 1.40e − 03 6.25

100 1.15e − 01 1.90e − 04 5.21
140 8.48e − 02 5.18e − 04 5.86
180 7.70e − 02 3.80e − 04 7.82
220 4.54e − 02 5.54e − 05 10.88
580 1.60e − 02 2.27e − 05 54.98
700 2.28e − 02 3.00e − 04 82.79
820 6.70e − 03 2.10e − 05 105.78

2160 0 0 1077

Table 4. Errors and CPU time for the sliding window algorithm with fixed L = 40 and
varying r (model (P1)).

r E1 E2 CPU time (s)
5 1.82e − 01 1.71e − 04 1.50

10 1.45e − 01 2.07e − 06 1.94
15 1.34e − 01 3.8e − 08 2.18
20 1.30e − 01 1.39e − 08 2.69
25 1.17e − 01 2.00e − 08 3.31
30 1.10e − 01 1.91e − 08 4.35
35 1.05e − 01 2.01e − 08 9.35

Table 5. Errors and CPU time for the sliding window algorithm with fixed L = 40 and
varying r (modèle (̂P2)).

r E1 E2 CPU time (s)
5 2.36e − 01 1.71e − 03 8.54

10 1.92e − 01 5.73e − 04 9.88
15 1.56e − 01 2.51e − 04 12.37
20 1.40e − 01 1.38e − 04 15.65
25 1.35e − 01 1.68e − 04 21.42
30 1.16e − 01 9.58e − 05 32.68
35 1.05e − 01 8.07e − 05 67.80
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5. Conclusion and perspectives

We have presented and studied two optimization problems arising from the modeling of an energy
distribution system with storage. We have proven some qualitative mathematical properties of the mod-
els. In addition we have performed several numerical experiments that allowed to study the influence
of the storage and to confirm the theoretical properties: indeed the storage is an interesting ingredient
to decrease the energy cost.

Next, we have proposed and investigated a sliding window algorithm as a way to compute an ap-
proximation of a solution in case of large scale problems in a very short time. This new algorithm is
characterized by two parameters: The length of the time window and the length of the overlap. We
have shown in numerical examples that by choosing suitably these parameters, we can obtain a very
good compromise between the CPU time and the accuracy of the solution.

Several interesting extensions of this work could be considered:

• Consider the consumption and price uncertainties. It could be done by introducing stochastic
variables in the problem, that allow to better take into account the variability of these quantities.
• Take into account distributed generation such as renewable energy. This can be made either by

having prediction models of renewable production, or by including stochastic variables in the
model. In the modeling point of view, a node can be added for the distributed generation. The
load aggregator can then buy energy in limited quantities via this node at a certain price that can
be different from the energy price purchased from the external grid. It is then possible to add
constraints to the problem, such as the obligation to use in priority the energy produced locally.
• Reformulate the problem in order to evaluate the economic benefits of storage with respect to the

investment and the maintenance costs of the storage units. The benefits will thus depend on the
storage parameters and the time period considered. Such a model would be multi-objective.
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