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Abstract: The generalized time fractional Fisher equation is one of the significant models to describe
the dynamics of the system. The study of effective numerical techniques for the equation has important
scientific significance and application value. Based on the alternating technique, this article combines
the classical explicit difference scheme and the implicit difference scheme to construct a class of
explicit implicit alternating difference schemes for the generalized time fractional Fisher equation.
The unconditional stability and convergence with order O

(
τ2−α + h2

)
of the proposed schemes are

analyzed. Numerical examples are performed to verify the theoretical analysis. Compared with the
classical implicit difference scheme, the calculation cost of the explicit implicit alternating difference
schemes is reduced by almost 60%. Numerical experiments show that the explicit implicit alternating
difference schemes are also suitable for solving the time fractional Fisher equation with initial weak
singularity and have an accuracy of order O

(
τα + h2

)
, which verify that the methods proposed in this

paper are efficient for solving the generalized time fractional Fisher equation.
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1. Introduction

Fractional derivatives provide an excellent tool for describing some phenomena with hereditary and
memory properties and make up for the defects of integer order derivatives such as many parameters
and unclear meanings. Fractional partial differential equations (FPDEs) are important mathematical
models that describe many natural phenomena such as physics, chemistry, and biology [1–4]. It is to
be noted that the research of FPDEs has gained much interest in the last few decades [5–8].

The generalized fractional Fisher equation is the most classical and simplest nonlinear reaction-
diffusion equation and plays an important role in describing the dynamics of the system. In this paper,
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we consider the following generalized time fractional Fisher equation [2, 9]:
Dα

t u(x, t) = ∂2u
∂x2 + f (x, t, u(x, t)),

u(x, 0) = µ(x), x ∈ [0, L],
u(0, t) = v1(t), u(L, t) = v2(t), t ∈ (0,T ],

(1.1)

where µ(x), v1(t), v2(t) are the given functions with proper smoothness. The nonlinear source term
f (x, t, u(x, t)) satisfies the Lipschitz condition with respect to u, that is

| f (x, t, u) − f (x, t, v)| ≤ l|u − v|,

where 0 < l < 1 is called the Lipschitz constant for function f (·, ·, ·). The Caputo fractional derivative
Dα

t is defined by

Dα
t u(x, t) =

1
Γ(1 − α)

∫ t

0

∂u(x, ξ)
∂ξ

dξ
(t − ξ)α

, 0 < α < 1,

where Γ(·) is the Gamma function.
For α = 1, f (u) = u(1 − u), Eq (1.1) becomes the integer order Fisher equation which was initially

proposed by Fisher to investigate the dynamics of the temporal spatial propagation of a virile gene in an
infinite domain [10]. The equation represents the evolution of the population due to the two competing
processes and changes in the interaction of diffusion and nonlinear reaction can be observed. This
equation arises in heat and mass transfer, biology, and ecology. This equation and its modified form are
also widely used in chemical kinetics [11], branching Brownian motion [12], epidemics [13] and other
fields. The benefit of using fractional Fisher equation in physical processes is its nonlocal property.
It indicates that the upcoming system state is also reliant on its past states. So, fractional models are
more precise. Because most FPDEs do not have exact solutions, studying the numerical solutions of the
generalized fractional Fisher equation has important scientific significance and engineering application
value [14–16].

Many scholars have adopted various techniques, such as Haar wavelet method [17], residual power
series method [18], homotopy analysis transform method [19], Jacobi wavelet collocation method [20],
B-spline collocation method [21] to obtain the numerical solutions of the fractional Fisher equation.
Zhang et al. [22] constructed a fully discrete scheme for the time fractional Fisher equation based
on the finite difference method and local discontinuous Galerkin finite element method. The stability
and error estimation of the scheme were discussed. Alquran et al. [23] analyzed the time fractional
Fisher equation both analytically and numerically. A technique combining Sinc-collocation and finite
difference method was used to solve the equation numerically. Atangana [24] presented further useful
properties of the Caputo-Fabrizio fractional derivative and applied it to modify the Fisher equation.
Then, he used the iterative method to solve the modified equation. The works above are interesting and
instructive, but the computational efficiency of the numerical scheme is still a key issue that needs to
be considered.

Finite difference method is one of the dominant numerical methods for solving FPDEs. Since its
relatively simple programming and high computational efficiency, the finite difference method has
been widely used in various fields of natural science and engineering technology. Several finite
difference schemes have been proposed to solve FPDEs [25–28]. Based on the L1 approximation of
the modified fractional derivative and the idea of Du Fort-Frankel scheme, Liao et al. [29] proposed
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unconditionally stable explicit difference schemes for time fractional diffusion equations. Liu et
al. [30] constructed a numerical scheme for the time fractional diffusion equation with a nonlinear
source term based on the finite element method and finite difference approximation. Khader and
Saad [31] used the properties of Chebyshev polynomials to reduce the fractional Fisher equation to a
system of ordinary differential equations, which was solved by the finite difference method. Zhang
and Yang [32] constructed a class of explicit-implicit difference scheme and implicit-explicit
difference scheme for time fractional reaction-diffusion equation. The numerical experiments verified
the calculation efficiency of the schemes was improved by nearly 41% compared with the implicit
difference scheme.

The aim of this work is to provide effective numerical methods to solve the generalized time
fractional Fisher equation. We construct explicit implicit alternating difference schemes and the
schemes can improve calculation efficiency on the basis of ensuring good accuracy. We combine the
explicit scheme and implicit scheme into two-step schemes, in which half of the step length is
calculated by the explicit scheme and the other half of the step length is calculated by the implicit
scheme. In this way, only one tridiagonal matrix needs to be solved in each double step, hence the
calculation efficiency is improved. The present methods also can be applied to solve the time
fractional Fisher equation with initial weak singularity.

2. Explicit implicit alternating scheme for the generalized time fractional Fisher equation

2.1. The construction of explicit implicit alternating scheme

To derive the proposed scheme, we first divide the solution area Ω = {(x, t)|0 ≤ x ≤ L, 0 ≤ t <
T } into equidistant rectangular grids. Take two positive integers M and N, denote h = L

M , τ = T
N ,

xi = ih(0 ≤ i ≤ M), tk = kτ(0 ≤ k ≤ N). Let uk
i represent the numerical approximation of u(xi, tk).

Second-order central difference scheme is adopted to approximate ∂2u
∂x2 in the Eq (1.1).

∂2u(xi, tn)
∂x2 =

u(xi−1, tn) − 2u(xi, tn) + u(xi+1, tn)
h2 + O(h2).

The time fractional derivative can be approximated by L1 formula [33, 34],

Dα
t u(x, tk)

=
τ−α

Γ(2 − α)

k−1∑
j=0

[
u
(
x, tk− j

)
− u

(
x, tk− j−1

)] [
( j + 1)1−α − j1−α

]
+ O(τ2−α)

=
τ−α

Γ(2 − α)

c0u(x, tk) − ck−1u(x, t0) −
k−1∑
j=1

(c j−1 − c j)u(x, tk− j)

 + O(τ2−α),

(2.1)

where c j = ( j + 1)1−α − j1−α, j = 0, 1, ..., k − 1.
In order to establish the explicit implicit alternating difference scheme for Eq (1.1), we give the

classical explicit difference scheme and classical implicit difference scheme of Eq (1.1) first.
The explicit difference scheme is:

Dα
t u(xi, tn) =

1
h2

(
un−1

i+1 − 2un−1
i + un−1

i−1

)
+ f

(
xi, tn−1, un−1

i

)
. (2.2)
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The implicit difference scheme is:

Dα
t u(xi, tn) =

1
h2

(
un

i+1 − 2un
i + un

i−1
)

+ f
(
xi, tn, un

i
)
. (2.3)

Let f (xi, tn, un
i ) = f n

i , p = ταΓ(2 − α), r =
p

h2 .

The above schemes can be rewritten as:
when n = 1, we have

u1
i = ru0

i−1 + (1 − 2r)u0
i + ru0

i+1 + p f 0
i , (2.4)

− ru1
i−1 + (1 + 2r)u1

i − ru1
i+1 = u0

i + p f 1
i , (2.5)

when n > 1, we have

un+1
i = run

i−1 + (1 − 2r − c1)un
i + run

i+1 +

n−1∑
j=1

(c j − c j+1)un− j
i + cnu0

i + p f n
i , (2.6)

− run+1
i−1 + (1 + 2r)un+1

i − run+1
i+1 = (1 − c1)un

i +

n−1∑
j=1

(c j − c j+1)un− j
i + cnu0

i + p f n+1
i . (2.7)

Divide the grid points into two groups according to the parity of the time index n. Based on the
alternating method, we use the explicit scheme in the odd-numbered time layer and the implicit scheme
in the even-numbered time layer:

u2n+1
i = ru2n

i−1 + (1 − 2r − c1)u2n
i + ru2n

i+1 +

2n−1∑
j=1

(c j − c j+1)u2n− j
i + c2nu0

i + p f 2n
i , (2.8)

− ru2n+2
i−1 + (1 + 2r)u2n+2

i − ru2n+2
i+1 = (1 − c1)u2n+1

i +

2n∑
j=1

(c j − c j+1)u2n+1− j
i + c2n+1u0

i + p f 2n+2
i . (2.9)

Therefore, we can give the explicit implicit alternating scheme for the generalized time fractional
Fisher Eq (1.1) as follows.u2n+1 = (v1I − rG1) u2n +

∑2n−1
j=1 v j+1u2n− j + c2nu0 + p f 2n + g2n,

(I + rG1) u2n+2 = v1u2n+1 +
∑2n

j=1 v j+1u2n+1− j + c2n+1u0 + p f 2n+2 + g2n+2,
(2.10)

where v j = c j−1 − c j( j = 1, 2, ...,N), un = (un
1, u

n
2, ..., u

n
M−1)T (n = 0, 1, ...,N), f n = ( f n

1 , f n
2 , ..., f n

M−1)T (n =

0, 1, ...,N), gn = (−run
0, 0, ..., 0,−run

M)T (n = 0, 1, ...,N), and

G1 =



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


(M−1)×(M−1)

.
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2.2. The existence and uniqueness of the explicit implicit alternating scheme solution

Obviously, the matrix (I + rG1) is strictly diagonally dominant, thus.

Theorem 2.1. The explicit implicit alternating scheme (2.10) for the generalized time fractional Fisher
Eq (1.1) has a unique solution.

2.3. Stability of the explicit implicit alternating scheme

In order to facilitate numerical analysis, we substitute the Eq (2.8) into the Eq (2.9) to eliminate
u2n+1

i and obtain

− ru2n+2
i−1 + (1 + 2r)u2n+2

i − ru2n+2
i+1

=(1 − c1)

ru2n
i−1 + (1 − 2r − c1)u2n

i + ru2n
i+1 +

2n−1∑
j=1

(c j − c j+1)u2n− j
i + c2nu0

i + p f 2n
i


+

2n∑
j=1

(c j − c j+1)u2n+1− j
i + c2n+1u0

i + p f 2n+2
i

=rv1u2n
i−1 + [v1(v1 − 2r) + v2]u2n

i + rv1u2n
i+1 +

2n−1∑
j=1

(v1v j+1 + v j+2)u2n− j
i

+ (v1c2n + c2n+1)u0
i + v1 p f 2n

i + p f 2n+2
i .

(2.11)

Suppose that ũn
i is the approximate solution of difference scheme (2.11), the round-off error εn

i is
defined as εn

i = ũn
i − un

i , n = 0, 1, ...,N, i = 0, 1, ...,M, and εn
i satisfies the discretized Eq (2.11). Denote

f̃ n
i = f (xi, tn, ũn

i ), we have

− rε2n+2
i−1 + (1 + 2r)ε2n+2

i − rε2n+2
i+1

=rv1ε
2n
i−1 + [v1(v1 − 2r) + v2]ε2n

i + rv1ε
2n
i+1 +

2n−1∑
j=1

(v1v j+1 + v j+2)ε2n− j
i

+ (v1c2n + c2n+1)ε0
i + v1 p( f̃ 2n

i − f 2n
i ) + p( f̃ 2n+2

i − f 2n+2
i ).

(2.12)

Since f (x, t, u(x, t)) satisfies the Lipschitz condition with respect to u, we have∣∣∣ f̃ n
i − f n

i

∣∣∣ ≤ l
∣∣∣ũn

i − un
i

∣∣∣ = l
∣∣∣εn

i

∣∣∣ .
Supposing that ||εn||∞ = max

0≤i≤M
|εn

i |, we can get the following theorem.

Theorem 2.2. The explicit implicit alternating scheme (2.10) for the generalized time fractional Fisher
Eq (1.1) is unconditionally stable, and we have

||εn||∞ ≤ K||ε0||∞, n = 0, 1, ...,N, (2.13)

where K is a positive number independent of n, h and τ .
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Proof. Suppose that ||εn||∞ = max
0≤i≤M

|εn
i | = |ε

n
m|,

when n = 1, obviously we have∣∣∣ε1
m

∣∣∣ ≤ r
∣∣∣ε0

m−1

∣∣∣ + (1 − 2r)
∣∣∣ε0

m

∣∣∣ + r
∣∣∣ε0

m+1

∣∣∣ + p
∣∣∣ f̃ 0

m − f 0
m

∣∣∣
≤ r

∣∣∣ε0
m−1

∣∣∣ + (1 − 2r)
∣∣∣ε0

m

∣∣∣ + r
∣∣∣ε0

m+1

∣∣∣ + pl
∣∣∣ε0

m

∣∣∣ ≤ (1 + pl)
∣∣∣ε0

m

∣∣∣ ≤ K
∣∣∣ε0

m

∣∣∣ . (2.14)

That is ||ε1||∞ ≤ K||ε0||∞.

Assume that ||εn||∞ ≤ K||ε0||∞ holds for n = 1, 2, ..., 2s + 1. Now we prove that the inequality (2.13)
also holds for n = 2s + 2.

Using (2.11), we have∣∣∣ε2s+2
m

∣∣∣ ≤ − r
∣∣∣ε2s+2

m−1

∣∣∣ + (1 + 2r)
∣∣∣ε2s+2

m

∣∣∣ − r
∣∣∣ε2s+2

m+1

∣∣∣
≤

∣∣∣−rε2s+2
m−1 + (1 + 2r)ε2s+2

m − rε2s+2
m+1

∣∣∣
≤

∣∣∣∣∣∣∣rv1ε
2s
m−1 + [v1(v1 − 2r) + v2]ε2s

m + rv1ε
2s
m+1 +

2s−1∑
j=1

(v1v j+1 + v j+2)ε2s− j
m

∣∣∣∣∣∣∣
+

∣∣∣(v1c2s + c2s+1)ε0
m + v1 p( f̃ 2s

m − f 2s
m ) + p( f̃ 2s+2

m − f 2s+2
m )

∣∣∣
≤

∣∣∣∣∣∣∣rv1ε
2s
m−1 + [v1(v1 − 2r) + v2]ε2s

m + rv1ε
2s
m+1 +

2s−1∑
j=1

(v1v j+1 + v j+2)ε2s− j
m

∣∣∣∣∣∣∣
+ (v1c2s + c2s+1)

∣∣∣ε0
m

∣∣∣ + v1l
∣∣∣ε2s

m

∣∣∣ + l
∣∣∣ε2s+2

m

∣∣∣ .

(2.15)

Then

∣∣∣ε2s+2
m

∣∣∣ ≤ ∣∣∣∣∣∣∣ rv1

1 − l
ε2s

m−1 +
[v1(v1 − 2r) + v2]

1 − l
ε2s

m +
rv1

1 − l
ε2s

m+1 +

2s−1∑
j=1

(v1v j+1 + v j+2)
1 − l

ε2s− j
m

∣∣∣∣∣∣∣
+

(v1c2s + c2s+1)
1 − l

∣∣∣ε0
m

∣∣∣ +
v1l

1 − l

∣∣∣ε2s
m

∣∣∣
≤

(v2
1 + v2) + v1l

1 − l

∣∣∣ε2s
m

∣∣∣ +

2s−1∑
j=1

(v1v j+1 + v j+2)
1 − l

∣∣∣ε2s− j
m

∣∣∣ +
(v1c2s + c2s+1)

1 − l

∣∣∣ε0
m

∣∣∣ .
(2.16)

Since
∑2s−1

j=1 v j+1 < 1, we obtain

∣∣∣ε2s+2
m

∣∣∣ ≤ (v2
1 + v2) + v1l

1 − l

∣∣∣ε2s
m

∣∣∣ + K1

∣∣∣ε0
m

∣∣∣ ≤ (K1 + K2)
∣∣∣ε0

m

∣∣∣ ≤ K
∣∣∣ε0

m

∣∣∣ .
That is ||ε2s+2||∞ ≤ K||ε0||∞.

Therefore, there exists a positive K independent of n, h and τ , such that ||εn||∞ ≤ K||ε0||∞, n = 0, 1, ...,N.
The proof is completed. �

2.4. Convergence of the explicit implicit alternating scheme

First, we analyze the accuracy of the explicit implicit alternating scheme. The explicit scheme and
implicit scheme are expanded by Taylor series at the point un+1

i , respectively. Let RE and RI represent
the local truncation errors of the explicit scheme and implicit scheme, respectively. According to
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Stynes et al. [35], we assume that utt, uxxxx are bounded over the intervals [0,T ] and [0, L]. That is,
there exists a positive constant F, such that

|utt| ≤ F, |uxxxx| ≤ F. (2.17)

The local truncation error of the explicit scheme is:

RE = −uxx + τuxxt −
τ2

2
uxxtt −

h2

12
uxxxx − τ

∂ f (u)
∂t

+ O
(
τ2−α + h2

)
.

The local truncation error of the implicit scheme is:

RI = −uxx − τuxxt −
τ2

2
uxxtt −

h2

12
uxxxx + τ

∂ f (u)
∂t

+ O
(
τ2−α + h2

)
.

τuxxt, τ
∂ f (u)
∂t in RE and τuxxt, τ

∂ f (u)
∂t in RI have the same forms but opposite signs. Therefore, two error

terms can be cancelled out by using the explicit scheme and implicit scheme alternately. Thus, the
accuracy of the explicit implicit alternating scheme is second order in space and 2 − α order in time.

Suppose that u(xi, tn) and un
i are the exact solution and numerical solution of the differential

equation, respectively. Denote en
i = u(xi, tn) − un

i , i = 0, 1, ...,M, n = 1, 2, ...,N. Apparently, e0 = 0.
Substitute en

i = u(xi, tn) − un
i into Eq (2.10), we havee2n+1 = (v1I − rG1) e2n +

∑2n−1
j=1 v j+1e2n− j + c2ne0 + p

(
f (u2n) − f 2n

)
+ pR2n+1,

(I + rG1) e2n+2 = v1e2n+1 +
∑2n

j=1 v j+1e2n+1− j + c2n+1e0 + p
(

f (u2n+2) − f 2n+2
)

+ pR2n+2,
(2.18)

where Rn = O(τ2−α + h2). Thus, there exists K > 0, such that ||ταRn|| ≤ Kτα(τ2−α + h2).

Theorem 2.3. Suppose that u(x, t) satisfies the smooth condition (2.17), the explicit implicit alternating
scheme (2.10) for the generalized time fractional Fisher Eq (1.1) is convergent, and we have

||u(xi, tn) − un
i ||∞ ≤ C(τ2−α + h2), i = 0, 1, ...,M, n = 0, 1, ...,N, (2.19)

where C is a positive constant.

Proof. Suppose that ||εn||∞ = max
0≤i≤M

|εn
i | = |ε

n
m|,

when n = 1, obviously we have∣∣∣e1
m

∣∣∣ ≤ r
∣∣∣e0

m−1

∣∣∣ + (1 − 2r)
∣∣∣e0

m

∣∣∣ + r
∣∣∣e0

m+1

∣∣∣ + p
∣∣∣ f (u0

m) − f 0
m

∣∣∣ +
∣∣∣pR1

∣∣∣
≤ ταR1 ≤ Kτα(τ2−α + h2) = c−1

0 Kτα(τ2−α + h2).
(2.20)

That is ||e1||∞ ≤ c−1
0 Kτα(τ2−α + h2).

Assume that ||en||∞ ≤ c−1
n−1Kτα(τ2−α + h2) holds for n = 1, 2, ..., 2s + 1. Now we prove that the

inequality (2.19) also holds for n = 2s + 2.
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Using (2.11), we have∣∣∣e2s+2
m

∣∣∣ ≤ − r
∣∣∣e2s+2

m−1

∣∣∣ + (1 + 2r)
∣∣∣e2s+2

m

∣∣∣ − r
∣∣∣e2s+2

m+1

∣∣∣
≤

∣∣∣−re2s+2
m−1 + (1 + 2r)e2s+2

m − re2s+2
m+1

∣∣∣
≤

∣∣∣∣∣∣∣rv1e2s
m−1 + [v1(v1 − 2r) + v2]e2s

m + rv1e2s
m+1 +

2s−1∑
j=1

(v1v j+1 + v j+2)e2s− j
m

∣∣∣∣∣∣∣
+

∣∣∣(v1c2s + c2s+1)e0
m + v1 p( f (u2s

m ) − f 2s
m ) + p( f (u2s+2

m ) − f 2s+2
m )

∣∣∣ +
∣∣∣pR2s+2

∣∣∣
≤

∣∣∣∣∣∣∣rv1e2s
m−1 + [v1(v1 − 2r) + v2]e2s

m + rv1e2s
m+1 +

2s−1∑
j=1

(v1v j+1 + v j+2)e2s− j
m

∣∣∣∣∣∣∣
+ v1l

∣∣∣e2s
m

∣∣∣ + l
∣∣∣e2s+2

m

∣∣∣ +
∣∣∣pR2s+2

∣∣∣ .

(2.21)

Then ∣∣∣e2s+2
m

∣∣∣ ≤ ∣∣∣∣∣∣∣ rv1

1 − l
e2s

m−1 +
[v1(v1 − 2r) + v2]

1 − l
e2s

m +
rv1

1 − l
e2s

m+1 +

2s−1∑
j=1

(v1v j+1 + v j+2)
1 − l

e2s− j
m

∣∣∣∣∣∣∣
+

v1l
1 − l

∣∣∣e2s
m

∣∣∣ +
|pR2s+2|

1 − l

≤
(v2

1 + v2) + v1l
1 − l

∣∣∣e2s
m

∣∣∣ +

2s−1∑
j=1

(v1v j+1 + v j+2)
1 − l

∣∣∣e2s− j
m

∣∣∣ +
|pR2s+2|

1 − l
.

(2.22)

Since
∑2s−1

j=1 v j+1 < 1, we have∣∣∣e2s+2
m

∣∣∣ ≤ c−1
2s−1K1τ

α(τ2−α + h2) + c−1
2s+1K2τ

α(τ2−α + h2) ≤ c−1
2s+1Kτα(τ2−α + h2).

That is ||e2s+2||∞ ≤ c−1
2s+1Kτα(τ2−α + h2).

From

lim
n→∞

c−1
n

nα
= lim

n→∞

n−α

(n + 1)1−α − n1−α = lim
n→∞

n−1

(1 +
1
n

)1−α − 1
=

1
1 − α

.

Then, there exists C1 > 0, such that

||en||∞ ≤ c−1
n−1Kτα(τ2−α + h2) ≤ K

c−1
n−1

nα
nατα(τ2−α + h2) ≤

K
1 − α

nατα(τ2−α + h2) ≤ C1Tα(τ2−α + h2).

Therefore
||u(xi, tn) − un

i ||∞ ≤ C(τ2−α + h2), i = 0, 1, ...,M, n = 0, 1, ...,N.

The proof is completed. �

3. Implicit explicit alternating scheme for the generalized time fractional Fisher equation

Similar to the construction of the explicit implicit alternating scheme for the generalized time
fractional Fisher equation, the implicit explicit alternating scheme is established. In the
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odd-numbered layer, using the implicit scheme to calculate; and in the even-numbered layer, using the
explicit scheme to calculate. The implicit explicit alternating scheme for the generalized time
fractional Fisher equation is as follows:(I + rG1) u2n+1 = v1u2n +

∑2n−1
j=1 v j+1u2n− j + c2nu0 + p f 2n+1 + g2n+1,

u2n+2 = (v1I − rG1) u2n+1 +
∑2n

j=1 v j+1u2n+1− j + c2n+1u0 + p f 2n+1 + g2n+1.
(3.1)

The numerical analysis of the implicit explicit alternating scheme can be proved similarly.

Theorem 3.1. Suppose that u(x, t) satisfies the smooth condition (2.17), the implicit explicit alternating
scheme (3.1) for the generalized time fractional Fisher Eq (1.1) is uniquely solvable, unconditionally
stable and convergent, and we have

||u(xi, tn) − un
i ||∞ ≤ C(τ2−α + h2), i = 0, 1, ...,M, n = 0, 1, ...,N,

where C is a positive constant.

A class of schemes proposed in this paper retain the absolute stability of the implicit scheme, and
reduce the number of solving the implicit solutions about 50%. So the calculation efficiency can be
improved. The explicit implicit alternating scheme (2.10) and implicit explicit alternating scheme (3.1)
are two-step schemes and the difference is just the order of using explicit scheme and implicit scheme.
Therefore, the calculation efficiency of the explicit implicit alternating scheme is the same as that of the
implicit explicit alternating scheme. In numerical experiments, we only consider the explicit implicit
alternating scheme (2.10) for the generalized time fractional Fisher equation.

Remark 3.1. Note that we get the convergence order of the explicit implicit alternating difference
scheme under the condition given in (2.17) on the solution u of the Eq (1.1). In general, the solution
u(x, t) and its derivatives have weak singularity near t = 0. Therefore, the temporal convergence order
of scheme (2.10) and scheme (3.1) are obviously lower than 2−α order when the solution u(x, t) is non-
smooth. In fact, the convergence order of the explicit implicit alternating schemes of the generalized
time fractional Fisher Eq (1.1) is O(τα + h2) in this case (see reference [35]). We also confirm this
conclusion in the numerical experiment.

4. Numerical experiments

All experiments are performed on Intel Core i5-8265 CPU. The results are coded by Matlab R2017b.
Example 1. The time fractional Fisher equation [36]:

∂αu (x, t)
∂tα

=
∂2u
∂x2 + u(1 − u) + g1(x, t),

u(x, 0) = 0, 0 ≤ x ≤ 1,
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

(4.1)

where g1(x, t) = 24t4−αsin(2πx)/Γ(5 − α) + 4π2t4sin(2πx) − t4sin(2πx)(1 − t4sin(2πx)).
The exact solution of Eq (4.1) is u(x, t) = t4sin(2πx).

Compare two numerical scheme solutions with the exact solution at t = 0.6. The computational
results can be seen in Table 1. These data show that the accuracy of explicit implicit alternating
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scheme (2.10) and implicit scheme are similar, and the errors with the exact solution are both small.
The absolute error graph of the explicit implicit alternating scheme is shown in Figure 1 for different
values of fractional order derivative.

Take α = 0.4, we compare the explicit implicit alternating scheme solution with the exact solution.
It can be seen from Figure 2 that the numerical solution is in excellent agreement with the exact solution
at different moments, indicating that the explicit implicit alternating scheme (2.10) is a high precision
scheme.

Table 1. Exact solution and numerical solutions for different α with M = N = 100 at t = 0.6.

α
x

0.2 0.4 0.6 0.8

0.4
Exact solution 1.2326E-01 7.6177E-02 -7.6177E-02 -1.2326E-01
Scheme (2.10) solution 1.2319E-01 7.6116E-02 -7.6188E-02 -1.2324E-01
Implicit scheme solution 1.2331E-01 7.6211E-02 -7.6205E-02 -1.2331E-01

0.6
Exact solution 1.2326E-01 7.6177E-02 -7.6177E-02 -1.2326E-01
Scheme (2.10) solution 1.2314E-01 7.6089E-02 -7.6160E-02 -1.2320E-01
Implicit scheme solution 1.2334E-01 7.6229E-02 -7.6225E-02 -1.2334E-01

0.95
Exact solution 1.2326E-01 7.6177E-02 -7.6177E-02 -1.2326E-01
Scheme (2.10) solution 1.2328E-01 7.6178E-02 -7.6233E-02 -1.2333E-01
Implicit scheme solution 1.2365E-01 7.6422E-02 -7.6424E-02 -1.2366E-01
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Figure 1. Absolute error of scheme (2.10) with M = N = 100 at t = 0.6.
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Figure 2. Exact solution and numerical solution of scheme (2.10) at different time with
α = 0.4.

For testing the temporal convergence order (Order1) and the spatial convergence order (Order2) of
the explicit implicit alternating scheme (2.10), denote E∞(h, τ) = max

0≤n≤N
||u(xi, tn) − un

i ||∞. Compute the

Order1 and Order2 by the standard formulas [33, 37]:

Order1 = log2

(
E∞ (h, 2τ)
E∞ (h, τ)

)
,Order2 = log2

(
E∞ (2h, τ)
E∞ (h, τ)

)
.

Table 2. Error, temporal convergence orders and CPU time of two numerical schemes (h =
1

200 ).

α N
Scheme (2.10) Implicit scheme

E∞(h, τ) Order1 CPU time(s) E∞(h, τ) Order1 CPU time(s)

0.4
20 3.7238E-02 —— 0.0126 2.1760E-03 —— 0.0166
40 1.3150E-02 1.50 0.0266 6.9341E-04 1.65 0.0390
80 4.5280E-03 1.54 0.0606 2.4218E-04 1.52 0.0839

0.5
20 4.7618E-02 —— 0.0126 2.3465E-03 —— 0.0167
40 1.7708E-02 1.43 0.0266 7.7885E-04 1.59 0.0388
80 6.5023E-03 1.46 0.0605 2.7649E-04 1.49 0.0841

0.6
20 6.1869E-02 —— 0.0125 2.6446E-03 —— 0.0172
40 2.4386E-02 1.34 0.0266 9.4330E-04 1.49 0.0388
80 9.4376E-03 1.37 0.0608 3.5375E-04 1.41 0.0839

Here we choose M = 200,N = 20, 40, 80. The computation results are recorded in Table 2. These
results demonstrate that temporal convergence orders of the explicit implicit alternating scheme (2.10)

AIMS Mathematics Volume 6, Issue 10, 11449–11466.



11460

are close to 2 − α. This verifies the Theorem 2.3. Error results and convergence orders in spatial
direction are listed in Table 3. From Table 3, we can see that the spatial convergence orders of explicit
implicit alternating scheme (2.10) are almost second order, which are the same as the implicit scheme.
Tables 2, 3 also show that compared with the implicit scheme, the explicit implicit alternating scheme
can reduce the CPU time and storage.

Table 3. Error, spatial convergence orders and CPU time of two numerical schemes (τ = h2).

α M
Scheme (2.10) Implicit scheme

E∞(h, τ) Order2 CPU time(s) E∞(h, τ) Order2 CPU time(s)

0.4
8 5.5983E-02 —— 0.0109 5.7266E-02 —— 0.0110
16 1.3648E-02 2.04 0.1267 1.3966E-02 2.04 0.1310
32 3.3879E-03 2.01 1.9428 3.4698E-03 2.01 2.0239

0.5
8 5.5189E-02 —— 0.0108 5.6702E-02 —— 0.0111
16 1.3454E-02 2.04 0.1265 1.3825E-02 2.04 0.1311
32 3.3399E-03 2.01 1.9423 3.4339E-03 2.01 2.0241

0.6
8 5.4380E-02 —— 0.0109 5.6125E-02 —— 0.0110
16 1.3255E-02 2.04 0.1264 1.3677E-02 2.04 0.1307
32 3.2899E-03 2.01 1.9421 3.3956E-03 2.01 2.0232
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Figure 3. Comparison of CPU time among two schemes.

We will further compare the computational costs of two numerical methods and indicate the
effectiveness of the explicit implicit alternating scheme (2.10).

Take α = 0.4,N = 200 and M = 100, 200, 400, 600, 800, 1000. From Figure 3, we can see that the
CPU time of two numerical schemes is almost the same when M ≤ 100. This conclusion is consistent
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with the results in Table 3. But as the number of spatial grids increases, the advantages of the explicit
implicit alternating scheme become more and more obvious. When M = 1000, the calculation cost of
the explicit implicit alternating scheme is reduced by almost 60% compared with the implicit scheme.
It shows that when the calculation accuracy is almost similar, the explicit implicit alternating scheme
(2.10) is more efficient for solving the time fractional Fisher equation.

To verify the Remark 3.1 and show the explicit implicit alternating scheme (2.10) is effective for
solving the time fractional Fisher equation with weak singularity at the initial time, we discuss the
following equation.

Example 2. The time fractional Fisher equation with initial weak singularity [36]:


∂αu (x, t)
∂tα

=
∂2u
∂x2 + u(1 − u) + g2(x, t),

u(x, 0) = 0, 0 < x < π,

u(0, t) = u(π, t) = 0, 0 < t ≤ 1,

(4.2)

where g2(x, t) = Γ(1 + α)sin(x) + tαsin(x) − tαsin(x)(1 − tαsin(x)).
The exact solution of Eq (4.2) is u(x, t) = tαsin(x).

Compare two numerical scheme solutions with the exact solution at t = 0.6. We can see from
Table 4 that the explicit implicit alternating scheme approximates the exact solution better than the
implicit scheme. The absolute error graph is shown in Figure 4 for different values of fractional order
derivative.

Table 4. Exact solution and numerical solutions for different α with M = N = 100 at t = 0.6.

α
x

0.2 0.4 0.6 0.8

0.4
Exact solution 4.7916E-01 7.7529E-01 7.7529E-01 4.7916E-01
Scheme (2.10) solution 4.7881E-01 7.7462E-01 7.7462E-01 4.7881E-01
Implicit scheme solution 4.7864E-01 7.7452E-01 7.7452E-01 4.7864E-01

0.6
Exact solution 4.3262E-01 7.0000E-01 7.0000E-01 4.3262E-01
Scheme (2.10) solution 4.3207E-01 6.9898E-01 6.9898E-01 4.3207E-01
Implicit scheme solution 4.3168E-01 6.9856E-01 6.9856E-01 4.3168E-01

0.95
Exact solution 3.6179E-01 5.8540E-01 5.8540E-01 3.6179E-01
Scheme (2.10) solution 3.6205E-01 5.8560E-01 5.8560E-01 3.6205E-01
Implicit scheme solution 3.6127E-01 5.8459E-01 5.8459E-01 3.6127E-01

Take α = 0.4, we compare the explicit implicit alternating scheme solution with the exact solution.
It can be seen from Figure 5 that the numerical solution is in a good agreement with the exact solution
at different moments, indicating that the explicit implicit alternating scheme (2.10) is also suitable for
solving the time fractional Fisher equation with initial weak singularity.
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Figure 4. Absolute error of scheme (2.10) with M = N = 100 at t = 0.6.
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Figure 5. Exact solution and numerical solution of scheme (2.10) at different time with
α = 0.4.

We will discuss the temporal convergence order and the spatial convergence order of the explicit
implicit alternating scheme (2.10).

Table 5 exhibits that the temporal convergence order of the explicit implicit alternating scheme
(2.10) reaches α order, which matches Remark 3.1. And it is more accurate than the implicit scheme.
Under the assumption of a nonsmooth solution, the time convergence order is lower than 2 − α order.
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We also can see that compared with the implicit scheme, the explicit implicit alternating scheme can
reduce the computational costs. The discussion of convergence order in spatial direction and CPU time
of two numerical schemes are given in Table 6. The calculation results show the spatial accuracy and
the CPU time of two numerical schemes are almost the same and spatial convergence orders almost
reach second order.

Table 5. Error, temporal convergence orders and CPU time of two numerical schemes (h =
1

200 ).

α N
Scheme (2.10) Implicit scheme

E∞(h, τ) Order1 CPU time(s) E∞(h, τ) Order1 CPU time(s)

0.4
48 4.4048E-02 —— 0.0312 3.6214E-02 —— 0.0468
96 3.3382E-02 0.40 0.0748 2.9932E-02 0.27 0.1062
192 2.5299E-02 0.40 0.2152 2.3780E-02 0.33 0.2760

0.5
48 3.0975E-02 —— 0.0315 2.8502E-02 —— 0.0486
96 2.1903E-02 0.50 0.0757 2.1016E-02 0.44 0.1188
192 1.5488E-02 0.50 0.2158 1.5170E-02 0.47 0.2817

0.6
48 2.0309E-02 —— 0.0317 1.9521E-02 —— 0.0508
96 1.3399E-02 0.60 0.0792 1.3169E-02 0.57 0.1198
192 8.8398E-03 0.60 0.1973 8.7730E-03 0.59 0.3031

Table 6. Error, spatial convergence orders and CPU time of two numerical schemes (τ = h4).

α M
Scheme (2.10) Implicit scheme

E∞(h, τ) Order2 CPU time(s) E∞(h, τ) Order2 CPU time(s)

0.4
4 1.8920E-02 —— 0.0459 1.8926E-02 —— 0.0452
8 5.1389E-03 1.88 7.2350 5.0223E-03 1.91 7.2377
16 1.3470E-03 1.93 1857.23 1.3267E-03 1.92 1857.85

0.5
4 1.8877E-02 —— 0.0468 1.8882E-02 —— 0.0454
8 4.8374E-03 1.96 7.2325 4.8374E-03 1.96 7.2439
16 1.2160E-03 1.99 1856.02 1.2160E-03 1.99 1859.95

0.6
4 1.8684E-02 —— 0.0471 1.8689E-02 —— 0.0457
8 4.7993E-03 1.96 7.2382 4.7993E-03 1.96 7.2450
16 1.2072E-03 1.99 1848.37 1.2072E-03 1.99 1856.72

Based on the analysis of the data in Tables 1–6 and the description of Figures 1–5, we can see the
correctness of the theories and the effectiveness of the numerical algorithms.
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5. Conclusions

In order for the difference scheme to be widely used, its computational efficiency is very important.
Adjusting the implementation details and reorganizing the operation process are typical strategies. We
construct a class of explicit implicit alternating schemes for solving the generalized time fractional
Fisher equation. It is proved theoretically and numerically that proposed schemes are unconditionally
stable having an accuracy of order O

(
τ2−α + h2

)
. Numerical experiments show that explicit implicit

alternating schemes are also suitable for solving the time fractional Fisher equation with initial weak
singularity and have an accuracy of order O

(
τα + h2

)
.

The explicit implicit alternating schemes show the numerical advantages of symmetrical
discretization: the methods have good accuracy and can decrease the computation costs in solving the
generalized time fractional Fisher equation. Based on the above reasons, explicit implicit alternating
schemes have broad application prospects. In the future, we would like to extend the methods to solve
other nonlinear time fractional partial differential equations.
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