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1. Introduction

Let Rm×n denote the set of all real m × n matrices. O ∈ Rm×n represents a matrix with all zero
elements. For A ∈ Rm×n, the notation A ≥ O (A > O) denotes that all elements of matrix A are
nonnegative (positive), and in this case matrix A is called nonnegative (positive) matrix. For two
matrices A, B ∈ Rm×n, A ≥ B (A > B) means that A − B ≥ O (A − B > O). The nonnegative (positive)
vectors, by identifying them with n×1 matrices, are denoted by x ≥ 0 (x > 0). A real rectangular matrix
A is said to be semimonotone if A† ≥ O [14], here A† is the Moore-Penrose inverse of A, see [2, 20] or
Section 2.

Real rectangular linear system of the form

Ax = b, (1.1)

where A ∈ Rm×n and b ∈ Rm×1, appear in many areas of applications, for example, finite difference
discretization of partial differential equations with suitable boundary conditions. There are two forms
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of splitting iteration methods for solving the rectangular linear system (1.1):

(1). Assume A has the single splitting [4]
A = U − V, (1.2)

then the approximate solution of (1.1) is generated by

xk+1 = U†V xk + U†b, (1.3)

where U† is the Moore-Penrose inverse of U, the matrix U†V is called the iteration matrix of
(1.3). The splitting A = U − V is called a proper splitting if R(A) = R(U) and N(A) = N(U) [4],
where R(·) and N(·) is the range and kernel of a given matrix, respectively. It should be remarked
that the uniqueness of proper splittings was provided in [13]. Let ρ(C) be the spectral radius of
the real square matrix C, then for the proper splitting A = U − V , the iteration scheme (1.3)
converges to the minimal norm least squares solution x = A†b of (1.1) for any initial vector x0

if and only if ρ(U†V) < 1 [4, Corollary 1]. Note that if A = U − V is not a proper splitting, the
iteration scheme (1.3) may not converge to the minimal norm least squares solution x = A†b of
(1.1) for any initial vector x0 even for ρ(U†V) < 1, see [4, 11]. If the iteration scheme (1.3) is
convergent, then we say that the proper single splitting A = U − V is a convergent splitting. The
convergence of the iteration scheme (1.3) for proper splittings of A has been studied extensively
in [4, 6, 7, 9, 11, 12, 14].

(2). Assume A has the double splitting
A = P − R − S , (1.4)

then the approximate solution of (1.1) is generated by [9]

xk+1 = P†Rxk + P†S xk−1 + P†b (1.5)

with the aid of the Moore-Penrose inverse of P. It should be remarked that the double splitting
was first introduced by Woźnicki in [19] for nonsingular matrix, and was extended to rectangular
matrices in [9, 11]. The iteration scheme (1.5) can be rewritten in the following equivalent form(

xk+1

xk

)
=

(
P†R P†S

I O

) (
xk

xk−1

)
+

(
P†b
0

)
, i = 1, 2, · · · , (1.6)

here I is the identity matrix with appropriate size, and W =

(
P†R P†S

I O

)
is the iteration matrix

of (1.6). The splitting A = P − R − S is called a double proper splitting if R(A) = R(P) and
N(A) = N(P) [9]. For double proper splitting (1.4), the iterative method (1.5) or (1.6) converges
to the unique least squares solution of minimum norm of (1.1) if and only if ρ(W) < 1. The
convergence of the iteration scheme (1.6) for double proper splittings of A has been studied in
[9, 11, 16].

Comparison theorems between the spectral radii of iteration matrices are useful tools to analyze the
convergence rate of iteration methods or to judge the effectiveness of preconditioners [8–10, 12, 15].
Comparison theorems between the spectral radii of iteration matrices arising from different splittings
of one matrix are actually the comparison of convergence rate between the different iteration methods,
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while comparison theorems between the spectral radii of matrices arising from the splittings of different
matrices are in fact the comparison of effectiveness of different preconditioners [12, 15]. Some
comparison theorems of single proper splittings of a semimonotone matrix are established recently
in [3, 9, 11], and comparison theorems of single proper splittings of different semimonotone matrices
are proposed in [3, 12]. Comparison theorems for double proper splittings of a rectangular matrix can
be found in [1,3], and which for double proper splittings of different rectangular matrices can be found
in [3, 9, 11].

In this paper, we further investigate the proper nonnegative splitting (see Section 2) of a rectangular
matrix. New convergence theorems for the single proper nonnegative splitting of a semimonotone
matrix are given, and the comparison theorems of proper nonegative splittings of different rectangular
matrices are presented. The remainder of the paper is organized as follows. In Section 2, we give
some relevant definitions, notations and earlier results, which are used in the paper. In Section 3, we
present the new convergence theorems for the single proper nonnegative splitting of a semimonotone
matrix and the comparison theorems of single proper nonnegative splittings of different semimonotone
matrices. In Section 4, some comparison theorems of double proper nonegative splittings of different
rectangular matrices are presented. We end this paper with some conclusions in Section 5.

2. Preliminaries

For a matrix A ∈ Rm×n, the matrix X ∈ Rn×m, satisfying the four Penrose equations: AXA = A,
XAX = X, (AX)T = AX and (XA)T = XA, is called the Moore-Penrose inverse of A (BT denotes the
transpose of B). It always exists and is unique, and is denoted by A†, i.e., X = A†, see [2, 20].

For nonnegative matrix, there are well known results which are shown next.

Lemma 2.1. [21, Theorem 2.20] Let A be the nonnegaitve n× n matrix, then A has a nonnegative real
eigenvalue equal to its spectral radius.

Lemma 2.2. [21, Theorem 2.21] Let A, B be n × n matrices, if A ≥ B ≥ O, then ρ(A) ≥ ρ(B).

Lemma 2.3. [5, Theorem 2-1.11] Let B ≥ O and x ≥ 0 be such that Bx − αx ≥ 0, then α ≤ ρ(B).

Lemma 2.4. [21, Theorem 3.16] Let X ∈ Rn×n and X ≥ O. Then ρ(X) < 1 if and only if (I − X)−1

exists and (I − X)−1 =
∑∞

k=0 Xk ≥ O.

Using the notation of the nonnegative matrix, single proper regular, single proper weak regular and
single proper nonnegative splittings of a real rectangular matrix, which are the natural extensions of
the regular, weak regular and nonnegative splittings of a real square matrix [5, 21], are defined as

Definition 2.5. For A ∈ Rm×n, the splitting A = U − V is called

(1). a single proper regular splitting if it is a proper splitting such that U† ≥ O and V ≥ O [7,
Definition 1], [9, Definition 1.2];

(2). a single proper weak regular splitting of the first type if it is a proper splitting such that U† ≥ O
and U†V ≥ O; a proper weak regular splitting of the second type if it is a proper splitting such
that U† ≥ O and VU† ≥ O [7, Definition 1], [9, Definition 1.2];

(3). a single proper nonnegative splitting if it is a proper splitting such that U†V ≥ O [11, Definition
3.1].
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It should be remarked that Jena et al. [9] only considered the proper weak regular splitting of
the first type, they name it as proper weak regular splitting. The existence of the proper splitting is
discussed in [4], there is an example in [4] to show how to construct such splitting.

For the proper splitting A = U − V of a semimonotone matrix A, the fact that U = A + V is a proper
splitting implies that ρ(A†V) < 1 and I+A†V is invertible, so we have U† = (I+A†V)−1A† [14, Theorem
2.2] and U†V = (I + A†V)−1A†V . The next lemma shows the relation between the eigenvalues of U†V
and A†V .

Lemma 2.6. [14, Lemma 2.6] Let A = U − V be a proper splitting of real m × n matrix A. Let
µi, 1 ≤ i ≤ s and λ j, 1 ≤ j ≤ s be the eigenvalues of U†V and A†V, respectively. Then for every j, we
have 1 + λ j , 0. Also, for every i, there exists j such that µi =

λ j

1+λ j
, and for every j, there exists i such

that λ j =
µi

1−µi
.

The definitions of double proper regular, double proper weak regular and double proper nonnegative
splittings for a real rectangular matrix can be given in a similar way.

Definition 2.7. For A ∈ Rm×n, the splitting A = P − R − S is called

(1). a double proper regular splitting if it is a proper splitting such that P† ≥ O, R ≥ O and S ≥ O [9,
Definition 3.4], [1, Definition 2.7];

(2). a double proper weak regular splitting if it is a proper splitting such that P† ≥ O, P†R ≥ O and
P†S ≥ O [9, Definition 3.5], [1, Definition 2.7];

(3). a double proper nonnegative splitting if it is a proper splitting such that P†R ≥ O and P†S ≥ O
[11, Definition 4.1].

The double proper splittings of a rectangular matrix are generalizations of the double splittings of a
square matrix. Double splittings of a square nonsingular matrix are given in [17–19].

3. Single proper nonnegative splittings

In this section, two convergence theorems of the single proper nonnegative splitting of a
semimonotone matrix are given, and the comparison theorems of the single proper nonegative splittings
of different semimonotone matrices are presented.

Recall that for the convergent proper nonnegative splitting A = U − V of a semimonotone matrix
A ∈ Rm×n, A† ≥ U† holds, see [11, Theorem 3.9 (a)]. In fact, for the proper nonnegative splitting
A = U − V of a semimonotone matrix A ∈ Rm×n, we have the same result, which is shown in the
following lemma.

Lemma 3.1. Let A = U − V be a proper nonnegative splitting of a semimonotone matrix A ∈ Rm×n,
then A† ≥ U†.

Proof. Given that A = U − V is a proper nonnegative splitting of a semimonotone matrix A, so we
have A† ≥ O and U†V ≥ O. The fact A = U − V is a proper splitting yields A† = (I − U†V)−1U†, so
U† = (I − U†V)A† = A† − U†VA† [4, Theorem 1]. Therefor A† − U† = U†VA† ≥ O, i.e., A† ≥ U†. �

Now we are going to the new convergence results.
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Theorem 3.2. Let A = U − V be a proper nonnegative splitting of a semimonotone matrix A ∈ Rm×n,
and U ≥ O, then ρ(U†V) =

ρ(A†U)−1
ρ(A†U) < 1.

Proof. Note that for semimonotone matrix A and U ≥ O, we have A†U ≥ O. The following proof is
the same as that in [11, Lemma 3.4], we omit it here. �

Theorem 3.3. Let A = U − V be a proper nonnegative splitting of a semimonotone matrix A ∈ Rm×n,
and V ≥ O, then ρ(U†V) =

ρ(A†V)
1+ρ(A†V) < 1.

Proof. Note that A is a semimonotone matrix and V ≥ O, therefore A†V ≥ O, the following proof is
omitted because it is the same as that in [11, Lemma 3.5]. �

Remark 3.4. For a general rectangular matrix A, A†U ≥ O or A†V ≥ O can guarantee the
convergence of the single proper nonnegative splitting [11], while for a semimonotone matrix A,
U ≥ O or V ≥ O is sufficient to ensure the convergence of the single proper nonnegative splitting.
For the single proper regular or single proper weak regular splitting of a semimonotone matrix A,
ρ(U†V) =

ρ(A†V)
1+ρ(A†V) < 1 holds without additional conditions [4, 9].

The following example shows that even U ≥ O, ρ(U†V) < 1 does not hold for the single proper
nonnegative splitting of a general rectangular matrix.

Example 3.5. Let A =

( 1
5 0 0
1
20 − 1

8 0

)
be splitted as A = U − V with U =

( 1
5 0 0
1

15
1
4 0

)
and

V =

(
0 0 0
1
60

3
8 0

)
. Then we have A† =


5 0
2 − 8
0 0

, U† =


5 0
−4

3 4
0 0

 and U†V =


0 0 0
1

15
3
2 0

0 0 0

, so

A = U − V is a single proper nonnegative splitting of general rectangular matrix A. Although U ≥ O,
ρ(U†V) = 1.5000 > 1. �

Another example given below demonstrates that the condition U ≥ O or V ≥ O can not be dropped
for the single proper nonnegative splitting of a semimonotone matrix.

Example 3.6. Let A =

(
5 −1 0
−5 2 0

)
be splitted as A = U − V with U =

(
0 −1 0
−8 0 0

)
and

V =

(
−5 0 0
−3 − 2 0

)
. Then A† =


2
5

1
5

1 1
0 0

 ≥ O, U†V =


3
8

1
4 0

5 0 0
0 0 0

 ≥ O, so A = U − V is a

single proper nonnegative splitting of semimonotone matrix A, but U � O, hence ρ(U†V) < 1 does not
hold, in fact, ρ(U†V) = 1.3211 > 1. �

In what follows, we consider the comparison results between the spectral radii of matrices arising
from the single proper nonnegative splittings of different semimonotone matrices. Let A1, A2 ∈ R

m×n

be two semimonotone matrices, A1 = U1 − V1 and A2 = U2 − V2 be the proper nonnegative splittings
of A1 and A2, respectively. Comparing ρ(U†1V1) with ρ(U†2V2), we have the following comparison
theorem.

Theorem 3.7. Let A1, A2 ∈ R
m×n be two semimonotone matrices, A1 = U1 − V1 and A2 = U2 − V2 be

the proper nonnegative splittings of A1 and A2 respectively. If A†2 ≥ A†1 and U2 ≥ U1 ≥ O, then

ρ(U†1V1) ≤ ρ(U†2V2) < 1.
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Proof. As A1 and A2 are semimonotone matrices, A1 = U1 − V1 and A2 = U2 − V2 are the proper
nonnegative splittings and U2 ≥ U1 ≥ O, it follows from Theorem 3.2 that ρ(U†i Vi) < 1 for i = 1, 2.
Thus all we need to show is ρ(U†1V1) ≤ ρ(U†2V2).

For i = 1, 2, we know that

ρ(U†i Vi) =
ρ(A†i Ui) − 1

ρ(A†i Ui)
.

Note that U1 ≥ O, then A†2 ≥ A†1 and U2 ≥ U1 ≥ O leads to A†2U2 ≥ A†1U1 ≥ O, and Lemma 2.2 yields
ρ(A†1U1) ≤ ρ(A†2U2). Let f (λ) = λ−1

λ
, then f (λ) is a strictly increasing function for λ > 0. Hence the

inequality ρ(U†1V1) ≤ ρ(U†2V2) holds. �

From Theorem 3.7, the following corollaries can be obtained.

Corollary 3.8. Let A ∈ Rm×n be a semimonotone matrix, A = U1 − V1 = U2 − V2 be two proper
nonnegative splittings of A. If U2 ≥ U1 ≥ O, then

ρ(U†1V1) ≤ ρ(U†2V2) < 1.

From Corollary 3.8, it is easy to see that for a semimonotone matrix A, the assumption U2 ≥ U1 is
equivalent to V2 ≥ V1. Hence, based on Corollary 3.8 and Theorem 3.3, we can give out the similar
result for different semimonotone matrices A1 and A2.

Theorem 3.9. Let A1, A2 ∈ R
m×n be two semimonotone matrices, A1 = U1 − V1 and A2 = U2 − V2 be

the proper nonnegative splittings of A1 and A2 respectively. If A†2 ≥ A†1 and V2 ≥ V1 ≥ O, then

ρ(U†1V1) ≤ ρ(U†2V2) < 1.

Proof. As A1 and A2 are semimonotone matrices, A1 = U1 − V1 and A2 = U2 − V2 are the proper
nonnegative splittings and V2 ≥ V1 ≥ O, it follows from Theorem 3.3 that ρ(U†i Vi) < 1 for i = 1, 2.
Thus all we need to show is ρ(U†1V1) ≤ ρ(U†2V2).

For i = 1, 2, it follows from Theorem 3.3 that

ρ(U†i Vi) =
ρ(A†i Vi)

1 + ρ(A†i Vi)
.

Note that V1 ≥ O, then A†2 ≥ A†1 and V2 ≥ V1 ≥ O leads to A†2V2 ≥ A†1V1 ≥ O, and Lemma 2.2 yields
ρ(A†1V1) ≤ ρ(A†2V2). Let f (λ) = λ

1+λ
, then f (λ) is a strictly increasing function for λ > 0. Hence the

inequality ρ(U†1V1) ≤ ρ(U†2V2) holds. �

If we consider the proper nonnegative splittings A = U1 − V1 = U2 − V2 of a semimonotone matrix
A ∈ Rm×n, we have the next corollary.

Corollary 3.10. Let A ∈ Rm×n be a semimonotone matrix, A = U1 − V1 = U2 − V2 be two proper
nonnegative splittings of A. If V2 ≥ V1 ≥ O, then

ρ(U†1V1) ≤ ρ(U†2V2) < 1.
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Theorem 3.9 extends Theorem 6 in [12] from single proper regular splittings to single proper
nonnegative splittings of different semimonotone matrices. Corollary 3.10 extends Theorem 3.2 in [9]
from single proper regular splittings to single proper nonnegative splittings of a semimonotone matrix
A.

An example given below to shows that ρ(U†1V1) ≤ ρ(U†2V2) < 1 holds under the conditions A†2 ≥ A†1
and V2 ≥ V1 ≥ O for single proper nonnegative splittings instead of single proper regular splittings of
semimonotone matrices A1 and A2.

Example 3.11. Let A1 =

(
4 − 1 0
0 2 0

)
and A2 =

(
2 − 1 0
0 2 0

)
. Set U1 =

(
5 − 1 0
0 4 0

)
,

V1 =

(
1 0 0
0 2 0

)
and U2 =

(
5 − 1 0
0 4 0

)
, V2 =

(
3 0 0
0 2 0

)
. It is easy to see that A†1 =


1
4

1
8

0 1
2

0 0

,
A†2 =


1
2

1
4

0 1
2

0 0

 and U†1V1 =


1
5

1
10 0

0 1
2 0

0 0 0

, U†2V2 =


3
5

1
10 0

0 1
2 0

0 0 0

. Moreover, V2 ≥ V1 ≥ O but

U1 = U2 � O. So, A1 = U1 − V1 and A2 = U2 − V2 are two single proper nonnegative splittings,
instead of single proper regular splittings, of semimonotone matrices A1 and A2. But we still have
ρ(U†1V1) = 0.5 ≤ ρ(U†2V2) = 0.6. �

In what follows, we are moving to present a comparison result when both proper nonnegative
splittings A1 = U1 − V1 and A2 = U2 − V2 are convergent splittings.

Theorem 3.12. Let A1 and A2 be two semimonotone matrices, A1 = U1 − V1 and A2 = U2 − V2 be
the convergent proper nonnegative splittings of A1 and A2 respectively. Let x ≥ 0 and y ≥ 0 be two
nonzero vectors such that U†1V1x = ρ(U†1V1)x and U†2V2y = ρ(U†2V2)y. Suppose that either V1x ≥ 0
with ρ(U†1V1)x > 0 or V2y ≥ 0 with y > 0 and ρ(U†2V2)y > 0. Further, assume that A†1 ≤ A†2 and
O ≤ U†2 ≤ U†1 . Then

ρ(U†1V1) ≤ ρ(U†2V2) < 1.

Proof. Let us consider the case of V1x ≥ 0 with ρ(U†1V1)x > 0. It follows from the convergence of the
proper nonnegative splitting A2 = U2 − V2 and Lemma 2.4, we get (I − U†2V2)−1 ≥ O, so that

A†1 ≤ A†2 = (U2 − V2)†

= [U2(I − U†2V2)]†

= (I − U†2V2)−1U†2
≤ (I − U†2V2)−1U†1 .

Multiplying it on the right of both sides by V1x gets

A†1V1x ≤ (I − U†2V2)−1U†1V1x.

Note that A†1V1x = (I − U†1V1)−1U†1V1x =
ρ(U†1V1)

1−ρ(U†1V1)
x and U†1V1x = ρ(U†1V1)x, we have

ρ(U†1V1)

1 − ρ(U†1V1)
x ≤ ρ(U†1V1)(I − U†2V2)−1x,

AIMS Mathematics Volume 6, Issue 1, 794–805.



801

i.e.,
1

1 − ρ(U†1V1)
x ≤ (I − U†2V2)−1x,

which, by Lemma 2.3, implies
1

1 − ρ(U†1V1)
≤

1

1 − ρ(U†2V2)
.

Therefore, the required inequality ρ(U†1V1) ≤ ρ(U†2V2) holds.
The case of V2y ≥ 0 with y > 0 and ρ(U†2V2)y > 0 can be proved in a similar way. �

When we pay our attention to different convergent proper nonnegative splittings of a semimonotone
matrix A, from Theorem 3.12, the next corollary is obtained.

Corollary 3.13. Let A be a semimonotone matrix, A = U1 − V1 = U2 − V2 be convergent proper
nonnegative splittings of A. Let x ≥ 0 and y ≥ 0 be two nonzero vectors such that U†1V1x = ρ(U†1V1)x
and U†2V2y = ρ(U†2V2)y. Suppose that either V1x ≥ 0 with ρ(U†1V1)x > 0 or V2y ≥ 0 with y > 0 and
ρ(U†2V2)y > 0. Further, assume that O ≤ U†2 ≤ U†1 . Then

ρ(U†1V1) ≤ ρ(U†2V2) < 1.

In addition to the requirement of A be semimonotone, Corollary 3.13 is the same as Theorem 3.11
in [11]. For single proper regular splittings A = U1 − V1 = U2 − V2, [9] has a more concise result, see
Theorem 3.3 of [9].

4. Double proper nonnegative splittings

In this part, we will provide the comparison theorem of double proper nonnegative splittings of
different rectangular matrices.

Let A1, A2 ∈ R
m×n, A1 = P1−R1−S 1 and A2 = P2−R2−S 2 be double proper nonnegative splittings

of A1 and A2, respectively. Then, we define

W1 =

(
P†1R1 P†1S 1

I 0

)
and W2 =

(
P†2R2 P†2S 2

I 0

)
.

First result comparing ρ(W1) with ρ(W2) is stated as the following theorem, which concerns the
semimonotone matrices A1 and A2.

Theorem 4.1. Let A1, A2 ∈ R
m×n be two semimonotone matrices having the same null space, A1 =

P1 − R1 − S 1 and A2 = P2 − R2 − S 2 be their double proper nonnegative splittings such that P1 ≥ O
and P2 ≥ O. If P†1A1 ≥ P†2A2 and P†1S 1 ≤ P†2S 2, then

ρ(W1) ≤ ρ(W2) < 1.

Proof. Note that A1 and A2 are semimonotone matrices and P1 ≥ O and P2 ≥ O, then it follows
from [11, Theorem 4.5] that both double proper nonnegative splittings are convergent, i.e., ρ(W1) < 1
and ρ(W2) < 1. Assume that ρ(W1) = 0, then the conclusion holds clearly. Assume that ρ(W1) , 0,
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from Definition 2.7 we have W1, W2 ≥ O, then by Lemma 2.1 (Perron-Frobenius theorem), there exists
a vector

x =

(
x1

x2

)
≥ 0, x , 0,

in conformity with W1 such that W1x = ρ(W1)x, i.e.,

P†1R1x1 + P†1S 1x2 = ρ(W1)x1,

x1 = ρ(W1)x2.

Hence, we have

W2x − ρ(W1)x =

(
P†2R2x1 + P†2S 2x2 − ρ(W1)x1

x1 − ρ(W1)x2

)
=

(
(P†2R2 − P†1R1)x1 −

1
ρ(W1) (P

†

1S 1 − P†2S 2)x1

0

)
:=

(
∆

0

)
.

Since A1 and A2 have the same null space, then P†1P1 = P†2P2 [9,11]. As P†1S 1 ≤ P†2S 2 and 0 < ρ(W1) <
1 then

∆ = (P†2R2 − P†1R1)x1 −
1

ρ(W1)
(P†1S 1 − P†2S 2)x1

≥ (P†2(P2 − A2)x1 − P†1(P1 − A1)x1).

Therefore, in terms of P†1A1 ≥ P†2A2, we have

W2x − ρ(W1)x ≥

(
P†2(P2 − A2)x1 − P†1(P1 − A1)x1

0

)
=

(
(P†1A1 − P†2A2)x1

0

)
≥ 0.

Thus, by Lemma 2.3, we have ρ(W1) ≤ ρ(W2) < 1. �

When we consider the double proper nonnegative splittings A = P1 − R1 − S 1 = P2 − R2 − S 2 of a
semimonotone matrix A, the following Corollary is a direct result of Theorem 4.1.

Corollary 4.2. Let A ∈ Rm×n be a semimonotone matrix, A = P1 − R1 − S 1 = P2 − R2 − S 2 be double
proper nonnegative splittings such that P1 ≥ O and P2 ≥ O. If P†1 ≥ P†2 and P†1S 1 ≤ P†2S 2, then

ρ(W1) ≤ ρ(W2) < 1.

As for general rectangular matrices A1 and A2, comparing ρ(W1) with ρ(W2), we have the following
comparison result, which is a slight modification of Theorem 4.1.
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Theorem 4.3. Let A1, A2 ∈ R
m×n be two matrices having the same null space, A1 = P1 − R1 − S 1 and

A2 = P2 − R2 − S 2 be their double proper nonnegative splittings such that A†1P1 ≥ O and A†2P2 ≥ O. If
P†1A1 ≥ P†2A2 and P†1S 1 ≤ P†2S 2, then

ρ(W1) ≤ ρ(W2) < 1.

The next example shows that the converse of Theorem 4.3 is not true.

Example 4.4. Let A1 =

(
−2 1 0
0 − 2 0

)
and A2 =

(
−2 1 0
0 − 4 0

)
, A1 and A2 have the

same null space. If A1 and A2 be splitted as A1 = P1 − R1 − S 1 and A2 = P2 − R2 − S 2,

respectively, here P1 =

(
−5 0 0
0 − 4 0

)
, R1 =

(
−2 − 1 0
0 − 1 0

)
, S 1 =

(
−1 0 0
0 − 1 0

)
and

P2 =

(
−6 0 0
0 −5 0

)
, R2 =

(
−3 − 1 0
0 − 1 0

)
, S 2 =

(
−1 0 0
0 0 0

)
, then we have P†1A1 =

2
5 −1

5 0
0 1

2 0
0 0 0

 , P†2A2 =


1
3 −1

6 0
0 4

5 0
0 0 0

 , P†1R1 =


2
5

1
5 0

0 1
4 0

0 0 0

, P†2R2 =


1
2

1
6 0

0 1
5 0

0 0 0

, P†1S 1 =


1
5 0 0
0 1

4 0
0 0 0

 , P†2S 2 =


1
6 0 0
0 0 0
0 0 0

, A†1P1 =


5
2 1 0
0 2 0
0 0 0

 and A†2P2 =


3 5

8 0
0 5

4 0
0 0 0

. So A1 = P1−R1−S 1

and A2 = P2 − R2 − S 2 are two double proper nonnegative splittings which satisfy the conditions
A†1P1 ≥ O and A†2P2 ≥ O. We then have ρ(W1) = 0.6899 < 0.7287 = ρ(W2), but P†1S 1 � P†2S 2,
P†1A1 � P†2A2. �

For general rectangular matrices A1 and A2, comparing ρ(W1) with ρ(W2), we also have comparison
result:

Theorem 4.5. Let A1, A2 ∈ R
m×n be two matrices, A1 = P1 − R1 − S 1 and A2 = P2 − R2 − S 2 be

their double proper nonnegative splittings. If P†1S 1 ≤ P†2S 2 and P†1S 1 − P†2S 2 ≤ P†2R2 − P†1R1, then
ρ(W1) ≤ ρ(W2) < 1 for 0 < ρ(W2) < 1.

Theorem 4.5 is a generalization of [1, Theorem 4.9], the proof is similar to that of [1, Theorem 4.9],
hence we omit it.

What we need to pay attention to here is that when A1 and A2 have the same null space, the
assumption P†1S 1 − P†2S 2 ≤ P†2R2 − P†1R1 in Theorem 4.5 becomes P†1A1 ≥ P†2A2, so we have the
following corollary.

Corollary 4.6. Let A1, A2 ∈ R
m×n be two matrices having the same null space, A1 = P1 − R1 − S 1 and

A2 = P2 − R2 − S 2 be their double proper nonnegative splittings. If P†1A1 ≥ P†2A2 and P†1S 1 ≤ P†2S 2,
then ρ(W1) ≤ ρ(W2) < 1 for 0 < ρ(W2) < 1.

5. Conclusion

In this paper, new convergence theorems for single proper nonnegative splitting of a semimonotone
matrix, and some comparison theorems for single and double proper nonnegative splittings of different
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rectangular matrices are given. The obtained results generalize the corresponding results in [1,3,9,12]
and supplement the comparison results of proper nonnegative spllitings of matrices in [9,11]. Applying
the comparison results to judge the efficiency of the preconditioners for rectangular linear systems need
further study.

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 11861059).

Conflict of interest

The authors declare no conflict of interest.

References

1. K. Appi Reddy, T. Kurmayya, Comparison results for proper double splittings of rectangular
matrices, Filomat, 32 (2018), 2273–2281.

2. A. Ben-Israel, T. N. E. Greville, Generalized Inverses. Theory and Applications, Springer, New
York, 2003.

3. A. K. Baliarsingh, D. Mishra, Comparison results for proper nonnegative splittings of matrices,
Results Math., 71 (2017), 93–109.

4. A. Berman, R. J. Plemmons, Cones and iterative methods for best squares least square solution of
linear systems, SIAM J. Numer. Anal., 11 (1974), 145–154.

5. A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM,
Philadelphia, 1994.

6. J.-J. Climent, A. Devesa, C. Perea, Convergence results for proper splittings, Recent Advances in
Applied and Theoretical Mathematics, (2000), 39–44.

7. J.-J. Climent, C. Perea, Iterative methods for least squares problems based on proper splittings, J.
Comput. Appl. Math., 158 (2003), 43–48.

8. L. Elsner, A. Frommer, R. Nabben, H. Schneider, D. B. Szyld, Conditions for strict inequality in
comparisons of spectral radii of splittings of different matrices, Linear Algebra Appl., 363 (2003),
65–80.

9. L. Jena, D. Mishra, S. Pani, Convergence and comparison theorems for single and double
decompositions of rectangular matrices, Calcolo, 51 (2014), 141–149.

10. S.-X. Miao, Comparison theorems for nonnegative double splittings of different monotone
matrices, J. Inf. Comput. Math. Sci., 9 (2012), 1421–1428.

11. D. Mishra, Nonnegative splittings for rectangular matrices, Comput. Math. Appl., 67 (2014),
136–144.

12. S.-X. Miao, Y. Cao, On comparison theorems for splittings of different semimonotone matrices, J.
Appl. Math., 2014 (2014), 329490.

AIMS Mathematics Volume 6, Issue 1, 794–805.



805

13. N. Mishra, D. Mishra, Two-stage iterations based on composite splittings for rectangular linear
systems, Comput. Math. Appl., 75 (2018), 2746–2756.

14. D. Mishra, K. C. Sivakumar, Comparison theorems for a subclass of proper splittings of matrices,
Appl. Math. Lett., 25 (2012), 2339–2343.

15. S.-X. Miao, B. Zheng, A note on double splittings of different matrices, Calcolo, 46 (2009),
261–266.

16. V. Shekhar, C. K. Giri, D. Mishra, A note on double weak splittings of type II, Linear Multilinear
Algebra, (2020), 1–21.

17. S.-Q. Shen, T.-Z. Huang, Convergence and comparison theorems for double splittings of matrices,
Comput. Math. Appl., 51 (2006), 1751–1760.

18. J. Song, Y. Song, Convergence for nonnegative double splittings of matrices, Calcolo, 48 (2011),
245–260.
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