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Abstract: This work aims to approximate the solution of the linear time-fractional Klein-Gordon
equations in Caputo’s sense. The Laplace transform is applied to linear time fractional Klein-Gordon
equation to eliminate the time variable and avoid the time stepping procedure. Application of the
Laplace transform avoids the time instability issues which commonly occurs in time stepping methods
and reduces the computational cost. The transform problem is then solved using local RBFs and
finally the solution is obtained by the inverse Laplace transform. The solution is represented as an
integral along a smooth curve in the complex plane which is then approximated by quadrature rule.
The proposed method is capable of solving linear time fractional partial differential equations. The
stability and convergence of the method are discussed. The efficiency of the method is demonstrated
with the help of numerical experiments.
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1. Introduction

Fractional calculus have recently become a fascinating field of study due to its vast applications in
various aspects of modern life. It has been observed that many physical phenomena can be modeled
successfully by means of fractional order differential equations, where the integer-order differential
equations fails in modeling certain issues [1]. Compared to integer order derivatives some properties
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of the non-integer order derivatives are very tedious to deal with. Thus, it becomes of great
importance to establish more results for fractional calculus. Recently lots of researchers have
proposed new and efficient analytical and numerical schemes to approximate the solutions of
numerous fractional order problems. In this connection one can find efficient work done by
researchers such as the analysis of fractional Drinfeld-Sokolov-Wilson model with exponential
memory [2], a homotopy perturbation sumudu transform method (HPSTM) for solving fractional
equal width (EW) equation [3]. The ternary-fractional differential transform method, that extends its
applicability to encompass initial value problems in the fractal 3D space [1]. The local fractional
homotopy perturbation Sumudu transform scheme and the local fractional reduced differential
transform method for a fractal vehicular traffic flow problem [4]. The authors in [5] have proposed a
numerical algorithm based on homotopic technique to examine the fractional vibration equation in
Atangana-Baleanu sense. The authors in [6] have presented the efficiency of the Atangana-Baleanu
(AB) derivative over Caputo-Fabrizio (CF) to some nonlinear partial differential equations. The
authors in [7] have done a comparative analysis of exothermic reactions model having constant heat
source in the porous media via Caputo, Caputo Fabrizio and Atangana-Baleanu theories. In [8] a
hybrid numerical scheme based on the homotopy analysis transform method (HATM) to examine the
fractional model of nonlinear wave-like equations having variable coefficients is presented. The
Klein-Gordon is one of the most important mathematical model which finds its applications in
numerous phenomenon in science and engineering. It has been applied to non linear optics, quantum
field theory, Plasma physics, fluid dynamics, chemical kinetics and solid state physics [9–11]. In
literature a lot of work has been done on solving the Klein-Gordon equation analytically some of
them are the tanh and the sine-cosine methods [12], the differential transform method [13], Modified
Kudryashov method [14, 15], ansatz method [16], Exp(−φ(ε))-expansion method [17], and the
variational iteration method [18]. The residual power series method for linear time fractional
Klein-Gordon equation [19], homotopy analysis method [20, 21], local fractional series expansion
method [10], homotopy perturbation method [22], and the fractional Riccati expansion method [23].
In [24] a hybrid method based on local fractional Sumudu transform method and homotopy
perturbation technique is employed to find the non differentiable solution of Klein-Gordon equation
on Cantor sets. Since Most of the problems cannot be solved analytically so one must use numerical
methods. Despite the fact that, numerical approximation of these equations are rare, in literature some
excellent work is available, such as Mohebi et al utilized the Compact finite difference method [25]
and the implicit RBF meshless method [26] for the approximation of linear time fractional
Klein-Gordon equations. M. M. Khader [27] applied an efficient method based on the generalized
laguerre polynomials for approximating the linear time fractional Klein-Gordon equations. In [28] the
authors used the wavelet method for approximating a class of fractional Klein-Gordon equations. The
authors in [29] proposed a numerical algorithm based on the applications of the operational matrices
of the Legendre scaling functions for the approximation of fractional Klein-Gordon equation. The
authors in [30] applied a high order compact finite difference scheme to two dimensional fractional
Klein-Gordon equations. Dehghan et al [31] used radial basis functions to approximate the solution of
non linear Klein-Gordon equations. However in these time stepping schemes the computations may
be very expansive because each new iteration is dependent on the previous time step. An alternative
way is to use the Laplace transform coupled with these numerical methods. In literature one can find
numerous research work on the coupling of other numerical methods and Laplace transform. The
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Laplace transform was first coupled with the boundary integral method by Rizzo and Shippey [32].
Moridis and Reddell coupled Laplace transform with finite difference, boundary element and finite
element methods [33–35]. In [36] the authors coupled the Galerkin method with Laplace transform.
Moridis and Kansa [37] coupled multiquadric method and Laplace transform for the approximation of
PDEs. In [38] the author studied RBF method coupled with Laplace transform on unit sphere.
Similarly the coupling of Laplace transform with other numerical methods such as spectral method,
finite difference method, boundary particle method, RBF method, and the finite element method can
be found in [39–44] and the references therein. In this work we apply the idea of [45, 46], the Laplace
transform is coupled with local RBF method to approximate linear time-fractional Klein-Gordon
equation. The Laplace transform is used to avoid the stability restrictions, which are commonly
encountered in time-stepping procedure. The local radial basis function method is used to resolve the
issue of ill-conditioning of the differentiation matrices and the sensitivity of shape parameter in global
radial basis functions method. The main idea of the local radial basis function method is the
collocation on overlapping sub-domains of the whole domain. The overlapping sub-domains
remarkably reduce the size of collocation matrix by solving many small size matrices. Each small
matrix has the same size as the number of nodes in the domain of influence of each node. In order to
validate our method we consider linear time-fractional Klein-Gordon equation of the form [25]

βα−1∂
αχ(x, t)
∂tα

+ η
∂χ(x, t)
∂t

+ κχ(x, t)

= Lχ(x, t) + βα−1 f (x, t), (1.1)
0 ≤ x ≤ L, 1 < α ≤ 2, 0 ≤ t ≤ 1, η ≥ 0, κ ≥ 0,

with initial and boundary conditions given in (1.2) and (1.3),

χ(x, 0) = f1(x),
∂χ(x, t)
∂t

|t=0 = f2(x), x ∈ Ω, (1.2)

Bχ(x, t) = h(t), x ∈ ∂Ω. (1.3)

Here L and B are the governing and boundary differential operators, and ∂α

∂tα is the Caputo fractional
derivative of order α defined by [47]:

∂α

∂tα
χ(t)

=
1

Γ(p − α)

∫ t

0
(t − s)m−α−1 dm

dsmχ(s)ds,

m − 1 ≤ α ≤ m, m ∈ N. (1.4)

Let the Laplace transform of χ(t) be denoted and defined by

χ̂(s) = L{χ(t)} =

∫ ∞

0
e−stχ(t)dt, (1.5)

and the Laplace transform of the Caputo derivative is defined by

L{
∂α

∂tα
χ(t)} = sαχ̂(s) −

m−1∑
i=0

sα−i−1χ(i)(0). (1.6)
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2. Proposed scheme

Here we construct a local RBF method coupled with Laplace transform for the approximation of
the solution of the linear time-fractional Klein-Gordon equations. In order to avoid the time stepping
procedure the Laplace transform is used to eliminate the time variable. Then the local RBF method is
utilized to approximate the time independent linear PDE.

Applying the Laplace transform to Eqs (1.1) and (1.3), we get

βα−1
(
sαχ̂(x, s) − sα−1χ(x, 0) − sα−2χt(x, 0)

)
+η (sχ̂(x, s) − χ(x, 0)) + κχ̂(x, s)
= Lχ̂(x, s) + βα−1 f̂ (x, s), (2.1)

thus we have the following linear system(
βα−1sαI + ηsI + κI − L

)
χ̂(x, s) = ĝ(x, s), x ∈ Ω, (2.2)

Bχ̂(x, s) = h(s), x ∈ ∂Ω, (2.3)

where

ĝ(x, s) = βα−1sα−1χ(x, 0)
+βα−1sα−2χt(x, 0) + ηχ(x, 0) + βα−1 f̂χ(x, s).

In the following section the local RBF method is used to approximate the differential operator L
and B in order to solve the problem (2.2)–(2.3) in Laplace space.

2.1. Local RBF method

In local RBF method the approximation of the function χ̂(x), for a given set of data points {χ̂(xi) :
i = 1, ...,N}, where {xi : i = 1, ...,N} ⊂ Ω ⊂ Rd, d ≥ 1 takes the form

χ̂(xi) =
∑
x j∈Ωi

λ jφ(‖xi − x j‖), (2.4)

where λi = {λi
j : j = 1, ..., n} is the vector of expansion coefficients, φ(r), r ≥ 0 is radial kernel and the

distance between the centers xi and x j is r = ‖xi − x j‖ , and Ωi is a sub domain of Ω containing xi, and
around xi it contains n neighboring centers. So we have N number of n × n linear systems given by

χ̂i = Φiλi, i = 1, 2, 3, ...,N, (2.5)

the elements of the interpolation matrix Φi are bi
k j = φ(‖xk − x j‖),where xk, x j ∈ Ωi, each n × n system

is then solved for the unknowns λi = {λi
j : j = 1, ..., n}. Next the operator Lχ̂(x), is approximated by

Lχ̂(xi) =
∑
x j∈Ωi

λi
jLφ(‖xi − x j‖), (2.6)

the above Eq (2.6) can be expressed as

Lχ̂(xi) = λi · νi, (2.7)
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where νi is of order 1 × n and λi of order n × 1, the entries of νi are shown in the following equation

νi = Lφ(‖xi − x j‖), x j ∈ Ωi, (2.8)

using Eq (2.5), the coefficients λi can be eliminated as,

λi = (Φi)−1χ̂i, (2.9)

using the values of λi from (2.9) in (2.7) we get,

Lχ̂(xi) = νi(Φi)−1χ̂i = wiχ̂i (2.10)

where,
wi = νi(Φi)−1, (2.11)

Hence the linear differential L is approximated using the local RBF method for each center xi as

Lχ̂ ≡ Dχ̂. (2.12)

The matrix D is sparse differentiation matrix which approximates the linear differential operator L.
The matrix D has order N ×N which contains n non-zero and N −n zero entries, where n is the number
of centers in the sub domain Ωi. The same procedure can be applied to the boundary operator B.

2.2. Selecting good value of shape parameter

In literature a large number of radial kernels are available. In this article we have selected the multi-
quadrics φ(r) =

√
1 + (rc)2 for our numerical approximation. The accuracy of the numerical solution

greatly depends on the parameter c. The researchers always search for that value of c which gives an
optimal solution. In this regard a large amount of work has been done such as [48–50] and references
therein . Here we utilize the uncertainty principle [51] for optimal shape parameter c.
Algorithm:

• The interval 1012 < Cond < 1016 is selected for the condition number (Cond) of the system
matrices of the given problem.
• Using SVD, the interpolation matrix is decomposed as R,P,Q = svd(Φi). The order of Φi is

n × n (n is the number of centers in each Ωi), and the n singular values of the matrix Φi lies on
the diagonal of the matrix P ( P is a diagonal matrix), and the condition number of Φi is
Cond = ‖Φi‖‖(Φi)−1‖ =

max(P)
min(P)

.

• The c is searched until the condition 1012 < Cond < 1016 is satisfied, the algorithm is given as
Step 1: set Cond = 1
Step 2: select 1012 < Cond < 1016

Step 3: while Cond > Condmax and Cond < Condmin

Step 4: R,P,Q = svd(Φi)
Step 5: Cond =

max(P)
min(P)

Step 6: if Cond < Condmin, c = c − δc
Step 7: if Cond > Condmax, c = c + δc
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c (optimal) = c.
Optimal value of the parameter c is obtained, when the above condition is satisfied, and then we
can compute the inverse using (Φi)−1 = (RPQT)−1

= QP−1RT [52]. Hence wi in (2.11) can be
computed.

Following the discretization by local RBF method of the linear differential and boundary operators
L and B respectively, the system (2.2)–(2.3) is solved for each point s. Finally the solution of the
problem (1.1)–(1.3) is obtained using the inverse of Laplace transform

χ(x, t) =
1

2πi

∫ σ+i∞

σ−i∞
estχ̂(x, s)ds. (2.13)

In applying the Laplace transform method the calculation of inverse Laplace transform is the main
difficulty. In many cases it is difficult to find the inverse Laplace transform analytically so numerical
methods must be used. A large number of methods for the numerical inversion of Laplace transform
have been developed. In this work we use the idea of [39, 42] in which the integration is performed
over a parabolic or hyperbolic path Γ, so the integral in equation (2.13) can be written as

χ(x, t) =
1

2πi

∫
Γ

estχ̂(x, s)ds, σ > σ0, (2.14)

where Γ is a path of integration joining σ − i∞ to σ + i∞ and

s = s(ω), (2.15)

using (2.15) in (2.14), we find the following expression

χ(x, t) =
1

2πi

∫ ∞

−∞

es(ω)tχ̂(x, s(ω))ś(ω)dω, (2.16)

Finally the trapezoidal rule with uniform step size k is used to approximate (2.16), as

χk(x, t) =
k

2πi

M∑
j=−M

es jtχ̂(x, s j)ś j, s j = s(ω j), ω j = jk. (2.17)

3. Error analysis

The approximate solution of the proposed scheme is defined by Eq (2.17). The accuracy of (2.17)
greatly depends on the path of the integration Γ. There are various contours available in the literature.
Recently the hyperbolic [41] and parabolic [42] contours are used to approximate the integer and
fractional order PDEs. In our computations the hyperbolic path due to [41] is used.

s(ω) = η + γ (1 − sin(δ − ιω)) , for ω ∈ R, (Γ) (3.1)

where η ≥ 0, γ > 0, 1
2π < β < π, and 0 < δ < β − 1

2π. In fact, when we choose Im ω = λ, the Eq (3.1)
is reduced to the left branch of the hyperbola(

x − γ − η
γ sin(δ + λ)

)2

−

(
y

γ cos(δ + λ)

)2

= 1, (3.2)
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transforming the strip Zr = {ω : Im ω ≤ r, r > 0} into the hyperbola Ωr = {s : ω ∈ Zr} ⊃ Γ. Suppose
Σφ = {s , 0 : |args| ≤ φ} ∪ 0, 0 < φ < (1−α)φ

2 , and let Σ
η
β = η + Σβ,Γ ⊂ Ωr ⊂ Σ

η
β. The following theorem

gives the error estimate of the scheme for the contour Γ.
Theorem 3.1 ( [41], Theorem 2.1) let the solution of (1.1) be χ(x, t) , with f̂ (x, t) analyitc in Σ

η
β. Let

Γ ⊂ Ωr ⊂ Σ
η
β, and b > 0 be defined by b = cosh−1( 1

θτ sin(δ) ), where τ = t0
T , 0 < θ < 1, 0 < t0 < T , and let

γ = θrM
bT . Then for the approximate solution defined by (2.17), with k = b

M ≤
r

log2 , |χ(x, t) − χk(x, t)| ≤(
‖χ0‖ + ‖ f̂ (x, t)‖Σηβ

)
CQeητg(ρr M)e−µM, for µ =

r(1−θ)
b , ρr =

θrτ sin(δ−r)
b , g(x) = max(1, log( 1

x )), r = 2πr,
r > 0,C = Cδ,r,β, and t0 ≤ t ≤ T. Thus the corresponding error estimate is of the order

Error Estimate = |χ(x, t) − χk(x, t)| = O(g(ρr M)e−µM).

4. Stability analysis

In order to investigate the systems (2.2)–(2.3) stability, we represent the system in discrete form as

Yχ̂ = b, (4.1)

where Y is the sparse differentiation matrix of order N × N obtained using local RBF method. For the
system (4.1) the constant of stability is given by

C = sup
χ̂,0

‖χ̂‖

‖Yχ̂‖
, (4.2)

where C is finite using any discrete norm ‖.‖ on RN . From (4.2) we may write

‖Y‖−1 ≤
‖χ̂‖

‖Yχ̂‖
≤ C, (4.3)

Similarly for the pseudoinverse Y† of Y , we can write

‖Y†‖ = sup
v,0

‖Y†v‖
‖v‖

. (4.4)

Thus we have

‖Y†‖ ≥ sup
v=Yχ̂,0

‖Y†Yχ̂‖
‖Yχ̂‖

= sup
χ̂,0

‖χ̂‖

‖Yχ̂‖
= C. (4.5)

We can see that Eqs (4.3) and (4.5) confirms the bounds for the stability constant C. Calculating the
pseudoinverse for approximating the system (4.1) numerically may be very expansive computationally,
but it ensures the stability. The MATLAB’s function condest can be used to estimate ‖Y−1‖∞ in case of
square systems, thus we have

C =
condest(Y ′)
‖Y‖∞

(4.6)

This work well with less number of computations for our sparse differentiation matrix Y . Figures 1
and 2 show the bounds for the constant C of our system (2.2)–(2.3) for Problem 3. Selecting N = 50,
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M = 80,n = 15, and α = 0.8 at t = 1, we have 1 ≤ C ≤ 1.1620. It is observed that the stability constant
is bounded by very small numbers, which guarantees the stability of the proposed local RBF scheme.
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Figure 1. The stability constant C is shown for our differentiation matrix Y corresponding to
problem 3, obtained using N = 70, n = 10,M = 50, and α = 0.85.
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Figure 2. The contour of integration is shown for the Problem 3 for M = 50.

5. Numerical results

This section is devoted to the numerical experiments. The proposed method is tested here for 1-D
time fractional order Klein-Gordon equations. The multi-quadrics radial kernels φ(r) = (1 + (rc)2)1/2

are used in all our numerical experiments. The Uncertainty principle [51] is used to optimize the shape
parameter c . The accuracy of the method is measured using L∞ error defined by

L∞ = ‖χ(x, t) − χk(x, t)‖∞ = max
1≤ j≤N

(|χ(x, t) − χk(x, t)|)
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is used. Here χk and χ are the numerical and exact solutions respectively.

5.1. Problem 1

If we use β = 1, κ = 1, and η = 0, Eq (1.1) takes the form

∂αχ(x, t)
∂tα

+ χ(x, t) −
∂2χ(x, t)
∂x2 = f (x, t), (5.1)

where 1 ≤ α ≤ 2, t ≥ 0, 0 ≤ x ≤ 1, with zero boundary and initial conditions. The domain [0, 1] is
selected for the problem with exact solution

χ(x, t) = t2(e − ex) sin(x),

and non homogeneous term

f (x, t) =
2t2−α

(2 − α)Γ(2 − α)
(e − ex) sin(x) + t2(2e − ex) sin(x)

+2t2ex cos(x).

The MATLAB’s command ω = −M : k : M is used to generate the quadrature points along the path
of integration Γ. The parameters used in our computations are α = 1.75, η = 2, τ = t0

T , r = 0.1387, θ =

0.1, δ = 0.1541, t0 = 0.5 and T = 5. Using Eq (3.1) the remaining optimal parameters can be found
for the hyperbolic path Γ. In our computations n = 6 in the sub domain Ωi and N = 40 in the global
domain Ω are selected. The error estimates and L∞ errors are shown in Tables 1 and 2. The efficiency
of the method can be seen in the results. The actual error and error estimates are shown in Figure 3
and the absolute errors for different values of α are shown in Figure 4. The numerical and the exact
solutions are shown in Figures 5 and 6 respectively.

Table 1. Approximate solution for Problem 1 at t = 1, and 1× 1012 ≤ κ ≤ 1× 1016, in the
domain [0, 1].

N = 60,
n = 5
α = 1.25 M L∞ Error (Γ) Error Estimate (Γ) CPU time(s)

10 7.65×10−4 4.4187 0.145896
15 2.30×10−3 2.6363 0.158580
20 1.30×10−3 1.5582 0.169243
30 1.38×10−4 0.5373 0.218606
40 6.57×10−6 0.1836 0.384568
50 1.25×10−5 0.0625 0.682311
60 9.58×10−6 0.0212 1.143210
70 9.70×10−6 0.0072 2.792846
80 9.66×10−6 0.0024 5.805704

[25] 1.34×10−6
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Table 2. Approximate solution for Problem 1 at t = 1, and 1× 1012 ≤ κ ≤ 1× 1016, in the
domain [0, 1].

N = 60,
n = 5
α = 1.75 M L∞ Error (Γ) Error Estimate (Γ) CPU time(s)

10 7.65×10−4 4.4187 0.151320
15 2.30×10−3 2.6363 0.190760
20 1.30×10−3 1.5582 0.173974
30 1.38×10−4 0.5373 0.275586
40 6.35×10−6 0.1836 0.483761
50 1.19×10−5 0.0625 0.732991
60 8.99×10−6 0.0212 1.269992
70 9.11×10−6 0.0072 3.328360
80 9.07×10−6 0.0024 5.789626

[25] 4.45×10−5
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Figure 3. Plot of Actual error and Error Estimate corresponding to problem 1 obtained
using N = 90 nodes in the global domain, n = 10 nodes in the local domain, fractional order
α = 1.85, at t = 1. The figure illustrate that the convergence rate of the numerical computation
of inverse Laplace transform is inline with the Error Estimate (theoretical bound).
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Figure 4. The absolute errors for different values of α are shown. It is observed that the error
decreases with increasing the value of fractional order α.
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Figure 5. The numerical solution obtained using N = 70 nodes in global domain, n = 10
nodes in local domain, M = 30, and fractional order α = 1.95.

0.2
0.4

0.6
0.8

1

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

 t

 Exact Solution

 x

Figure 6. The exact solution obtained using N = 70 nodes in global domain, n = 10 nodes
in local domain,M = 30, and fractional order α = 1.95.
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5.2. Problem 2

If we use β = 1, κ = 1, and η = 1, Eq (1.1) takes the form

∂αχ(x, t)
∂tα

+
∂χ(x, t)
∂t

+ χ(x, t) =
∂2χ(x, t)
∂x2 + f (x, t), (5.2)

where 1 ≤ α ≤ 2, t ≥ 0, 0 ≤ x ≤ 1, with zero initial and boundary conditions, the exact solution of
the problem is

χ(x, t) = t2x sin(x − 1),

and non homogeneous term is

f (x, t) =
2t2−α

(2 − α)Γ(2 − α)
x sin(x − 1) + 2tx sin(x − 1)

+t2x sin(x − 1) − t2(2 cos(x − 1) − x sin(x − 1)).

The MATLAB’s command ω = −M : k : M is used to generate the quadrature points along the path
of integration Γ. The parameters used in our computations are α = 1.75, r = 0.1387, δ = 0.1541, θ =

0.1, τ = t0
T , η = 2, t0 = 0.5 and T = 5. Using Eq (3.1) the remaining optimal parameters can be found

for the hyperbolic path Γ. In our computations n = 7 centers in the sub domain Ωi and N = 50 in the
global domain Ω are selected. The error estimates and L∞ errors are shown in Tables 3 and 4. Also the
maximum absolute errors for different values of α are shown in Table 5, which shows the efficiency of
the proposed method. The numerical and exact solutions of this problem are shown in Figures 7 and
8 respectively and plot of Actual error and Error Estimate corresponding to problem 2 are shown in
Figure 9.

Table 3. Approximate solution for Problem 2 at t = 1, and 1× 1012 ≤ κ ≤ 1× 1016, in the
domain [0, 1].

M = 80,
n = 5
α = 1.25 N L∞ Error (Γ) Error Estimate (Γ) CPU time(s)

10 5.77×10−5 0.0024 0.561563
20 1.27×10−5 0.0024 1.125699
30 3.55×10−6 0.0024 1.252799
40 2.43×10−6 0.0024 2.716533
50 2.87×10−6 0.0024 4.686349
60 3.78×10−6 0.0024 6.319554
80 8.38×10−6 0.0024 8.773851
90 8.20×10−7 0.0024 9.862299

[25] 5.91×10−7

AIMS Mathematics Volume 5, Issue 5, 5287–5308.



5299

Table 4. Approximate solution for Problem 2 at t = 1, and 1× 1012 ≤ κ ≤ 1× 1016, in the
domain [0, 1].

N = 50,
n = 7
α = 1.75 M L∞ Error (Γ) Error Estimate (Γ) CPU time(s)

10 3.32×10−4 4.4187 0.146540
15 9.63×10−4 2.6363 0.160951
20 5.71×10−4 1.5582 0.170815
30 6.70×10−5 0.5373 0.212776
40 7.76×10−6 0.1836 0.361477
50 4.25×10−6 0.0625 0.585600
60 5.48×10−6 0.0212 1.047157
70 5.42×10−6 0.0072 1.872323
80 5.44×10−6 0.0024 4.417500

[25] 7.59×10−6

Table 5. The maximum absolute errors (L∞ errors) for different values of α are shown for
Problem 2. The computations are done at t = 1, and 1× 1012 ≤ κ ≤ 1× 1016, in the domain
[0, 1], selecting N = 11, n = 5, and M = 60.

x α = 1.25 α = 1.5 α = 1.75 α = 1.95
0 1.463×10−6 1.463×10−6 1.463×10−6 1.463×10−6

0.1 1.353×10−6 1.340×10−6 1.326×10−6 1.315×10−6

0.2 1.155×10−6 1.131×10−6 1.104×10−6 1.079×10−6

0.3 9.710×10−7 9.400×10−7 9.010×10−7 8.630×10−7

0.4 8.170×10−7 7.820×10−7 7.360×10−7 6.850×10−7

0.5 6.760×10−7 6.410×10−7 5.910×10−7 5.320×10−7

0.6 5.180×10−7 4.860×10−7 4.370×10−7 3.740×10−7

0.7 3.510×10−7 3.240×10−7 2.830×10−7 2.220×10−7

0.8 1.620×10−7 1.430×10−7 1.130×10−7 6.200×10−8

0.9 1.300×10−8 2.300×10−8 3.900×10−8 6.800×10−8

1 3.590×10−7 3.590×10−7 3.590×10−7 3.590×10−7
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Figure 7. The numerical solution obtained using N = 30 nodes in global domain, n = 5
nodes in local domain, M = 60, and fractional order α = 1.85.
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Figure 8. The exact solution obtained using N = 30 nodes in global domain, n = 5 nodes in
local domain, M = 60, and fractional order α = 1.85.
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Figure 9. Plot of Actual error and Error Estimate corresponding to problem 2 obtained
using N = 80 nodes in the global domain, n = 10 nodes in the local domain, fractional order
α = 1.75, at t = 1. The figure illustrate that the convergence rate of the numerical computation
of inverse Laplace transform is inline with the Error Estimate (theoretical bound).

5.3. Problem 3

Here we consider the 1-D linear Klein-Gordon equation of the form [19]

∂αχ(x, t)
∂tα

=
∂2χ(x, t)
∂x2 + χ(x, t), 0 ≤ α ≤ 1, t ≥ 0, x ∈ R, (5.3)

with initial condition χ(x, 0) = 1 + sin(x) and exact solution χ(x, t) = sin(x) + Eα(tα), where Eα(t) =∑∞
m=0

tm
Γ(αm+1) . The domain [−4, 4] is selected for the given problem. The quadrature points are generated

using the MATLAB’s command ω = −M : k : M along the path of integration Γ. The parameters used
in our computations are α = 0.8, r = 0.1387, η = 2, τ = t0

T , θ = 0.1, δ = 0.1541, t0 = 0.5 and T = 5.
Using Eq (3.1) the remaining optimal parameters can be found for the hyperbolic path Γ. In our
computations we select n = 6 centers in the sub domain Ωi and N = 40 in the global domain Ω are
selected. The error estimates and L∞ errors are shown in Tables 6 and 7 . Similar behavior is observed
as in the previous examples. The numerical and exact solutions for problem 3 are shown in Figures 10
and 11 and plot of Actual error and Error Estimate corresponding to problem 3 are shown in Figure 12.
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Table 6. Approximate solution for Problem 3 at t = 1, and 1× 1012 ≤ κ ≤ 1× 1016, in the
domain [−4, 4].

N = 70,
n = 10,
α = 0.25 M L∞ Error (Γ) Error Estimate (Γ) CPU time(s)

10 7.37×100 4.4187 0.168655
20 4.14×10−1 1.5582 0.216721
30 3.13×10−1 0.5373 0.268500
40 9.80×10−3 0.1836 0.352215
50 1.49×10−2 0.0625 0.480307
60 2.60×10−3 0.0212 0.899249
70 8.67×10−4 0.0072 2.037757
80 8.90×10−4 0.0024 3.956089
90 8.12×10−4 8.18×10−4 6.517429

Table 7. Approximate solution for Problem 3 at t = 1, and 1×1012 ≤ κ ≤ 1× 1016, in the
domain [−4, 4].

N = 40,
n = 6,
α = 0.8 M L∞ Error (Γ) Error Estimate (Γ) CPU time(s)

10 2.68×100 4.4187 0.158384
15 4.53×10−1 2.6363 0.162534
20 3.36×10−1 1.5582 0.162535
30 1.59×10−1 0.5373 0.189903
40 2.0×10−3 0.1836 0.245566
50 8.70×10−3 0.0625 0.344221
60 1.10×10−3 0.0212 0.502084
70 6.32×10−4 0.0072 0.923548
80 5.70×10−4 0.0024 2.520403
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Figure 10. The numerical solution obtained using N = 40 nodes in global domain, n = 8
nodes in local domain, M = 50, and fractional order α = 0.9.

0.2
0.4

0.6
0.8

1

−4

−2

0

2

4

0.5

1

1.5

2

2.5

3

3.5

 t

 Exact Solution

 x

Figure 11. The exact solution obtained using N = 40 nodes in global domain, n = 8 nodes
in local domain, M = 50, and fractional order α = 0.9.
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Figure 12. Plot of Actual error and Error Estimate corresponding to problem 3 obtained
using N = 70 nodes in the global domain, n = 10 nodes in the local domain, fractional order
α = 0.85, at t = 1. The figure illustrate that the convergence rate of the numerical computation
of inverse Laplace transform is inline with the Error Estimate (theoretical bound).

6. Conclusion

In this article, we constructed a local RBF method based on Laplace transform proposed for the
approximation of the solution of the linear time fractional Klein-Gordon equations. In time stepping
procedure usually the time instability is encountered and for accuracy we need a very small time
step size. Global RBF methods are efficient and accurate only for small amount of nodes. They
become inefficient and the differentiation matrix becomes ill-conditioned for large amount of nodes.
The main advantage of this method is that it avoids the time stepping procedure with the help of
Laplace transform, and the local RBF method has been used to resolve the issue of ill-conditioning.
The numerical results confirmed the stability and convergence of the method. The comparison of
the results with other methods led us to conclude that the proposed local RBF method coupled with
Laplace transform is an efficient method for approximation of the solution of the linear time fractional
Klein-Gordon equations.
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