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1. Introduction and preliminaries

Let W be a set and H : W −→ W be a mapping. A point w ∈ W is called a fixed point of H if
w = Hw. Fixed point theory plays a fundamental role in functional analysis (see [15]). Shoaib [17]
introduced the concept of α-dominated mapping and obtained some fixed point results (see also [1,2]).
George et al. [11] introduced a new space and called it rectangular b-metric space (r.b.m. space). The
triangle inequality in the b-metric space was replaced by rectangle inequality. Useful results on r.b.m.
spaces can be seen in ( [5, 6, 8–10]). Ćirić introduced new types of contraction and proved some
metrical fixed point results (see [4]). In this article, we introduce Ćirić type rational contractions for
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α-dominated mappings in r.b.m. spaces and proved some metrical fixed point results. New interesting
results in metric spaces, rectangular metric spaces and b-metric spaces can be obtained as applications
of our results.

Definition 1.1. [11] Let U be a nonempty set. A function dlb : U × U → [0,∞) is said to be a
rectangular b-metric if there exists b ≥ 1 such that
(i) dlb(θ, ν) = dlb(ν, θ);
(ii) dlb(θ, ν) = 0 if and only if θ = ν;
(iii) dlb(θ, ν) ≤ b[dlb(θ, q) + dlb(q, l) + dlb(l, ν)] for all θ, ν ∈ U and all distinct points q, l ∈ U r {θ, ν}.
The pair (U, dlb) is said a rectangular b-metric space (in short, r.b.m. space) with coefficient b.

Definition 1.2. [11] Let (U, dlb) be an r.b.m. space with coefficient b.
(i) A sequence {θn} in (U, dlb) is said to be Cauchy sequence if for each ε > 0, there corresponds n0 ∈ N

such that for all n,m ≥ n0 we have dlb(θm, θn) < ε or limn,m→+∞ dlb(θn, θm) = 0.
(ii) A sequence {θn} is rectangular b-convergent (for short, (dlb)-converges) to θ if limn→+∞ dlb(θn, θ) = 0.
In this case θ is called a (dlb)-limit of {θn}.

(iii) (U, dlb) is complete if every Cauchy sequence in U dlb-converges to a point θ ∈ U.

Let $b, where b ≥ 1, denote the family of all nondecreasing functions δb : [0,+∞) → [0,+∞)
such that

∑+∞
k=1 bkδk

b(t) < +∞ and bδb(t) < t for all t > 0, where δk
b is the kth iterate of δb. Also

bn+1δn+1
b (t) = bnbδb(δn

b(t)) < bnδn
b(t).

Example 1.3. [11] Let U = N. Define dlb : U × U → R+ ∪ {0} such that dlb(u, v) = dlb(v, u) for all
u, v ∈ U and α > 0

dlb(u, v) =



0, if u = v;
10α, if u = 1, v = 2;

α, if u ∈ {1, 2} and v ∈ {3};
2α, if u ∈ {1, 2, 3} and v ∈ {4};

3α, if u or v < {1, 2, 3, 4} and u , v.

Then (U, dlb) is an r.b.m. space with b = 2 > 1. Note that

d(1, 4) + d(4, 3) + d(3, 2) = 5α < 10α = d(1, 2).

Thus dlb is not a rectangular metric.

Definition 1.4. [17] Let (U, dlb) be an r.b.m. space with coefficient b. Let S : U → U be a mapping
and α : U × U → [0,+∞). If A ⊆ U, we say that the S is α-dominated on A, whenever α(i, S i) ≥ 1 for
all i ∈ A. If A = U, we say that S is α-dominated.

For θ, ν ∈ U, a > 0, we define Dlb(θ, ν) as

Dlb(θ, ν) = max{dlb(θ, ν),
dlb (θ, S θ) .dlb (ν, S ν)

a + dlb (θ, ν)
, dlb(θ, S θ), dlb(ν, S ν)}.

2. Main result

Now, we present our main result.
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Theorem 2.1. Let (U, dlb) be a complete r.b.m. space with coefficient b, α : U × U → [0,∞), S :
U → U, {θn} be a Picard sequence and S be a α-dominated mapping on {θn}. Suppose that, for some
δb ∈ $b, we have

dlb(S θ, S ν) ≤ δb(Dlb(θ, ν)), (2.1)

for all θ, ν ∈ {θn} with α(θ, ν) ≥ 1. Then {θn} converges to θ∗ ∈ U. Also, if (2.1) holds for θ∗ and
α(θn, θ

∗) ≥ 1 for all n ∈ N ∪ {0}, then S has a fixed point θ∗ in U.

Proof. Let θ0 ∈ U be arbitrary. Define the sequence {θn} by θn+1 = S θn for all n ∈ N∪{0}.We shall show
that {θn} is a Cauchy sequence. If θn = θn+1, for some n ∈ N, then θn is a fixed point of S . So, suppose
that any two consecutive terms of the sequence are not equal. Since S : U → U be an α-dominated
mapping on {θn}, α(θn, S θn) ≥ 1 for all n ∈ N ∪ {0} and then α(θn, θn+1) ≥ 1 for all n ∈ N ∪ {0}. Now by
using inequality (2.1), we obtain

dlb(θn+1, θn+2) = dlb(S θn, S θn+1) ≤ δb(Dlb(θn, θn+1))

≤ δb(max{dlb(θn, θn+1),
dlb (θn, θn+1) .dlb (θn+1, θn+2)

a + dlb (θn, θn+1)
,

dlb(θn, θn+1), dlb(θn+1, θn+2)})
≤ δb(max{dlb(θn, θn+1), dlb(θn+1, θn+2)}).

If max{dlb(θn, θn+1), dlb(θn+1, θn+2)} = dlb(θn+1, θn+2), then

dlb(θn+1, θn+2) ≤ δb(dlb(θn+1, θn+2))
≤ bδb(dlb(θn+1, θn+2)).

This is the contradiction to the fact that bδb(t) < t for all t > 0. So

max{dlb(θn, θn+1), dlb(θn+1, θn+2)} = dlb(θn, θn+1).

Hence, we obtain
dlb(θn+1, θn+2) ≤ δb(dlb(θn, θn+1)) ≤ δ2

b(dlb(θn−1, θn))

Continuing in this way, we obtain

dlb(θn+1, θn+2) ≤ δn+1
b (dlb(θ0, θ1)). (2.2)

Suppose for some n,m ∈ N with m > n, we have θn = θm. Then by (2.2)

dlb(θn, θn+1) = dlb(θn, S θn) = dlb(θm, S θm) = dlb(θm, θm+1)
≤ δm−n

b (dlb(θn, θn+1)) < bδb (dlb(θn, θn+1))

As dlb(θn, θn+1) > 0, so this is not true, because bδb(t) < t for all t > 0. Therefore, θn , θm for any
n,m ∈ N. Since

∑+∞
k=1 bkδk

b(t) < +∞, for some ν ∈ N, the series
∑+∞

k=1 bkδk
b(δν−1

b (dlb(θ0, θ1))) converges.
As bδb(t) < t, so

bn+1δn+1
b (δν−1

b (dlb(θ0, θ1))) < bnδn
b(δν−1

b (dlb(θ0, θ1))), for all n ∈ N.
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Fix ε > 0. Then ε
2 = ε′ > 0. For ε′, there exists ν(ε′) ∈ N such that

bδb(δν(ε
′)−1

b (dlb(θ0, θ1))) + b2δ2
b(δν(ε

′)−1
b (dlb(θ0, θ1))) + · · · < ε′ (2.3)

Now, we suppose that any two terms of the sequence {θn} are not equal. Let n,m ∈ N with m > n >

ν(ε′). Now, if m > n + 2,

dlb(θn, θm) ≤ b[dlb(θn, θn+1) + dlb(θn+1, θn+2) + dlb(θn+2, θm)]
≤ b[dlb(θn, θn+1) + dlb(θn+1, θn+2)] + b2[dlb(θn+2, θn+3)

+dlb(θn+3, θn+4) + dlb(θn+4, θm)]
≤ b[δn

b (dlb(θ0, θ1)) + δn+1
b (dlb(θ0, θ1))] + b2[δn+2

b (dlb(θ0, θ1))

+δn+3
b (dlb(θ0, θ1))] + b3[δn+4

b (dlb(θ0, θ1)) + δn+5
b (dlb(θ0, θ1))] + · · ·

≤ bδn
b(dlb(θ0, θ1)) + b2δn+1

b (dlb(θ0, θ1)) + b3δn+2
b (dlb(θ0, θ1)) + · · ·

= bδb(δn−1
b (dlb(θ0, θ1))) + b2δ2

b(δn−1
b (dlb(θ0, θ1))) + · · · .

By using (2.3), we have

dlb(θn, θm)
< bδb(δν(ε

′)−1
b (dlb(θ0, θ1))) + b2δ2

b(δν(ε
′)−1

b (dlb(θ0, θ1))) + · · · < ε′ < ε.

Now, if m = n + 2, then we obtain

dlb(θn, θn+2)
≤ b[dlb(θn, θn+1) + dlb(θn+1, θn+3) + dlb(θn+3, θn+2)]
≤ b[dlb(θn, θn+1) + b[dlb(θn+1, θn+2) + dlb(θn+2, θn+4) + dlb(θn+4, θn+3)]

+dlb(θn+3, θn+2)]
≤ bdlb(θn, θn+1) + b2dlb(θn+1, θn+2) + bdlb(θn+2, θn+3) + b2dlb(θn+3, θn+4)

+b3[dlb(θn+2, θn+3) + dlb(θn+3, θn+5) + dlb(θn+5, θn+4)]
≤ bdlb(θn, θn+1) + b2dlb(θn+1, θn+2) +

(
b + b3

)
dlb(θn+2, θn+3) + b2dlb(θn+3, θn+4)

+b3dlb(θn+5, θn+4) + b4[dlb(θn+3, θn+4) + dlb(θn+4, θn+6) + dlb(θn+6, θn+5)]
≤ bdlb(θn, θn+1) + b2dlb(θn+1, θn+2) +

(
b + b3

)
dlb(θn+2, θn+3)

+
(
b2 + b4

)
dlb(θn+3, θn+4) + b3dlb(θn+5, θn+4) + b4dlb(θn+6, θn+5)

+b5[dlb(θn+4, θn+5) + dlb(θn+5, θn+7) + dlb(θn+7, θn+6)]
≤ bdlb(θn, θn+1) + b2dlb(θn+1, θn+2) +

(
b + b3

)
dlb(θn+2, θn+3)

+
(
b2 + b4

)
dlb(θn+3, θn+4) +

(
b3 + b5

)
dlb(θn+4, θn+5) + · · ·

< 2[bdlb(θn, θn+1) + b2dlb(θn+1, θn+2) + b3dlb(θn+2, θn+3)
+b4dlb(θn+3, θn+4) + b5dlb(θn+4, θn+5) + · · · ]

≤ 2[bδn
b(dlb(θ0, θ1)) + b2δn+1

b (dlb(θ0, θ1)) + b3δn+2
b (dlb(θ0, θ1)) + · · · ]

< 2[bδb(δν(ε
′)−1

b (dlb(θ0, θ1))) + b2δ2
b(δν(ε

′)−1
b (dlb(θ0, θ1))) + · · · ] < 2ε′ = ε.
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It follows that
lim

n,m→+∞
dlb(θn, θm) = 0. (2.4)

Thus {θn} is a Cauchy sequence in (U, dlb). As (U, dlb) is complete, so there exists θ∗ in U such that {θn}

converges to θ∗, that is,
lim

n→+∞
dlb(θn, θ

∗) = 0. (2.5)

Now, suppose that dlb(θ∗, S θ∗) > 0. Then

dlb(θ∗, S θ∗) ≤ b[dlb(θ∗, θn) + dlb(θn, θn+1) + dlb(θn+1, S θ∗)
≤ b[dlb(θ∗, θn+1) + dlb(θn, θn+1) + dlb(S θn, S θ∗).

Since α(θn, θ
∗) ≥ 1, we obtain

dlb(θ∗, S θ∗) ≤ bdlb(θ∗, θn+1) + bdlb(θn, θn+1) + bδb(max{dlb(θn, θ
∗),

dlb (θ∗, S θ∗) .dlb (θn, θn+1)
a + dlb (θn, θ∗)

, dlb(θn, θn+1) dlb(θ∗, S θ∗)}).

Letting n → +∞, and using the inequalities (2.4) and (2.5), we obtain dlb(θ∗, S θ∗) ≤ bδb(dlb(θ∗, S θ∗)).
This is not true, because bδb(t) < t for all t > 0 and hence dlb(θ∗, S θ∗) = 0 or θ∗ = S θ∗. Hence S has a
fixed point θ∗ in U. �

Remark 2.2. By taking fourteen different proper subsets of Dlb(θ, ν), we can obtainvnew results as
corollaries of our result in a complete r.b.m. space with coefficient b.

We have the following result without using α-dominated mapping.

Theorem 2.3. Let (U, dlb) be a complete r.b.m. space with coefficient b, S : U → U, {θn} be a Picard
sequence. Suppose that, for some δb ∈ $b, we have

dlb(S θ, S ν) ≤ δb(Dlb(θ, ν)) (2.6)

for all θ, ν ∈ {θn}. Then {θn} converges to θ∗ ∈ U. Also, if (2.6) holds for θ∗, then S has a fixed point θ∗

in U.

We have the following result by taking δb (t) = ct, t ∈ R+ with 0 < c < 1
b without using α-dominated

mapping.

Theorem 2.4. Let (U, dlb) be a complete r.b.m. space with coefficient b, S : U → U, {θn} be a Picard
sequence. Suppose that, for some 0 < c < 1

b , we have

dlb(S θ, S ν) ≤ c(Dlb(θ, ν)) (2.7)

for all θ, ν ∈ {θn}. Then {θn} converges to θ∗ ∈ U. Also, if (2.7) holds for θ∗, then S has a fixed point θ∗

in U.

Ran and Reurings [16] gave an extension to the results in fixed point theory and obtained results in
partially ordered metric spaces. Arshad et al. [3] introduced �-dominated mappings and established
some results in an ordered complete dislocated metric space. We apply our result to obtain results in
ordered complete r.b.m. space.
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Definition 2.5. (U,�, dlb) is said to be an ordered complete r.b.m. space with coefficient b if
(i) (U,�) is a partially ordered set.
(ii) (U, dlb) is an r.b.m. space.

Definition 2.6. [3] Let U be a nonempty set, � is a partial order on θ. A mapping S : U → U is
said to be �-dominated on A if a � S a for each a ∈ A ⊆ θ. If A = U, then S : U → U is said to be
�-dominated.

We have the following result for �-dominated mappings in an ordered complete r.b.m. space with
coefficient b.

Theorem 2.7. Let (U,�, dlb) be an ordered complete r.b.m. space with coefficient b, S : U → U, {θn}

be a Picard sequence and S be a �-dominated mapping on {θn}. Suppose that, for some δb ∈ $b, we
have

dlb(S θ, S ν) ≤ δb(Dlb(θ, ν)), (2.8)

for all θ, ν ∈ {θn} with θ � ν. Then {θn} converges to θ∗ ∈ U. Also, if (2.8) holds for θ∗ and θn � θ
∗ for

all n ∈ N ∪ {0}. Then S has a fixed point θ∗ in U.

Proof. Let α : U × U → [0,+∞) be a mapping defined by α(θ, ν) = 1 for all θ, ν ∈ U with θ � ν and
α(θ, ν) = 4

11 for all other elements θ, ν ∈ U. As S is the dominated mappings on {θn}, so θ � S θ for all
θ ∈ {θn}. This implies that α(θ, S θ) = 1 for all θ ∈ {θn}. So S : U → U is the α-dominated mapping on
{θn}. Moreover, inequality (2.8) can be written as

dlb(S θ, S ν) ≤ δb(Dlb(θ, ν))

for all elements θ, ν in {θn} with α(θ, ν) ≥ 1. Then, as in Theorem 2.1, {θn} converges to θ∗ ∈ U. Now,
θn � θ

∗ implies α(θn, θ
∗) ≥ 1. So all the conditions of Theorem 2.1 are satisfied. Hence, by Theorem

2.1, S has a fixed point θ∗ in U. �

Now, we present an example of our main result. Note that the results of George et al. [11] and all
other results in rectangular b-metric space are not applicable to ensure the existence of the fixed point
of the mapping given in the following example.

Example 2.8. Let U = A∪B,where A = { 1n : n ∈ {2, 3, 4, 5}} and B = [1,∞].Define dl : U×U → [0,∞)
such that dl(θ, ν) = dl(ν, θ) for θ, ν ∈ U and

dl( 1
2 ,

1
3 ) = dl( 1

4 ,
1
5 ) = 0.03

dl( 1
2 ,

1
5 ) = dl( 1

3 ,
1
4 ) = 0.02

dl( 1
2 ,

1
4 ) = dl( 1

5 ,
1
3 ) = 0.6

dl(θ, ν) = |θ − ν|2 otherwise

be a complete r.b.m. space with coefficient b = 4 > 1 but (U, dl) is neither a metric space nor a
rectangular metric space. Take δb(t) = t

10 , then bδb(t) < t. Let S : U → U be defined as

S θ =


1
5 if θ ∈ A
1
3 ifθ = 1

9θ100 + 85 otherwise.
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Let θ0 = 1. Then the Picard sequence {θn} is {1, 1
3 ,

1
5 ,

1
5 ,

1
5 , · · · }. Define

α(θ, ν) =

{ 8
5 ifθ, ν ∈ {θn}

4
7 otherwise.

Then S is an α-dominated mapping on {θn}. Now, S satisfies all the conditions of Theorem 2.1. Here 1
5

is the fixed point in U.

3. Fixed point results for graphic contractions

Jachymski [13] proved the contraction principle for mappings on a metric space with a graph. Let
(U, d) be a metric space and 4 represents the diagonal of the cartesian product U × U. Suppose that
G be a directed graph having the vertices set V(G) along with U, and the set E(G) denoted the edges
of U included all loops, i.e., E(G) ⊇ 4. If G has no parallel edges, then we can unify G with pair
(V(G), E(G)). If l and m are the vertices in a graph G, then a path in G from l to m of length N (N ∈ N)
is a sequence {θi}

N
i=o of N + 1 vertices such that lo = l, lN = m and (ln−1, ln) ∈ E(G) where i = 1, 2, · · ·N

(see for detail [7, 8, 12, 14, 18, 19]). Recently, Younis et al. [20] introduced the notion of graphical
rectangular b-metric spaces (see also [5, 6, 21]). Now, we present our result in this direction.

Definition 3.1. Let θ be a nonempty set and G = (V(G), E(G)) be a graph such that V(G) = U and
A ⊆ U. A mapping S : U → U is said to be graph dominated on A if (θ, S θ) ∈ E(G) for all θ ∈ A.

Theorem 3.2. Let (U, dlb) be a complete rectangular b-metric space endowed with a graph G, {θn} be
a Picard sequence and S : U → U be a graph dominated mapping on {θn}. Suppose that the following
hold:
(i) there exists δb ∈ $b such that

dlb(S θ, S ν) ≤ δb(Dlb(θ, ν)), (3.1)

for all θ, ν ∈ {θn} and (θn, ν) ∈ E(G). Then (θn, θn+1) ∈ E(G) and {θn} converges to θ∗. Also, if (3.1)
holds for θ∗ and (θn, θ

∗) ∈ E(G) for all n ∈ N ∪ {0}, then S has a fixed point θ∗ in U.

Proof. Define α : U × U → [0,+∞) by

α(θ, ν) =

{
1, if θ, ν ∈ U, (θ, ν) ∈ E(G)

1
4 , otherwise.

Since S is a graph dominated on {θn}, for θ ∈ {θn}, (θ, S θ) ∈ E(G). This implies that α(θ, S θ) = 1 for all
θ ∈ {θn}. So S : U → U is an α-dominated mapping on {θn}. Moreover, inequality (3.1) can be written
as

dlb(S θ, S ν) ≤ δb(Dlb(θ, ν)),

for all elements θ, ν in {θn} with α(θ, ν) ≥ 1. Then, by Theorem 2.1, {θn} converges to θ∗ ∈ U. Now,
(θn, θ

∗) ∈ E(G) implies that α(θn, θ
∗) ≥ 1. So all the conditions of Theorem 2.1 are satisfied. Hence, by

Theorem 2.1, S has a fixed point θ∗ in U. �
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