
http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(5): 5076–5093.
DOI:10.3934/math.2020326
Received: 19 February 2020
Accepted: 08 June 2020
Published: 11 June 2020

Research article

Oscillatory and asymptotic behavior of third-order neutral delay differential
equations with distributed deviating arguments

Yibing Sun∗ and Yige Zhao

School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong, P.R. China

* Correspondence: Email: sun yibing@126.com.

Abstract: This paper examines the oscillatory and asymptotic properties of a class of third-order
neutral delay differential equations with distributed deviating arguments. A series of new oscillation
criteria are presented under some more relaxed conditions by using the Riccati transformation
technique. The results obtained here improve and complement that in the literature. At last, two
examples are provided to illustrate the main results.

Keywords: oscillatory property; asymptotic behavior; neutral delay differential equations;
distributed deviating arguments; Riccati transformation
Mathematics Subject Classification: 34K11

1. Introduction

The purpose of this work is to investigate the oscillatory and asymptotic behavior of the third-order
neutral delay differential equations with distributed deviating arguments[

r1(t)((r2(t)(z′(t))α2)′)α1
]′

+

∫ b

a
q(t, ξ) f (x(σ(t, ξ)))dξ = 0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)), t ≥ t0 > 0, 0 ≤ a < b. We also assume that the following conditions are
satisfied:

• (H1) r1(t), r2(t), p(t) ∈ C([t0,∞),R), q(t, ξ) ∈ C([t0,∞) × [a, b], [0,∞)), r1(t) > 0, r2(t) > 0 and
p(t) ≥ 1 with p(t) . 1;

• (H2) τ(t) ∈ C([t0,∞),R) is invertible, τ(t) ≤ t and limt→∞ τ(t) = ∞;
• (H3)σ(t, ξ) ∈ C([t0,∞)×[a, b],R) is non-increasing for ξ and lim inft→∞ σ(t, ξ) = ∞ for ξ ∈ [a, b];
• (H4) f (x) ∈ C(R,R) is assumed to satisfy x f (x) > 0 and there exists a positive constant K such

that
f (x)
xα3
≥ K for any variable x , 0;
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• (H5) αi, i = 1, 2, 3 are ratios of positive odd integers.

By a solution of Eq. (1.1) we mean a function x(t) ∈ C([Ty,∞),R), Ty ≥ t0, which has z(t),
r2(t)(z′(t))α2 , r1(t)((r2(t)(z′(t))α2)′)α1 ∈ C1([Ty,∞),R) and satisfies (1.1) on [Ty,∞). A solution x(t) of
(1.1) is said to be proper if it exists on the interval [Ty,∞) and satisfies the condition

sup{|x(t)| : T ≤ t < ∞} > 0 for any T ≥ Ty.

Our attention is restricted to these solutions and we make the standing hypothesis that (1.1) admits
such a solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [Ty,∞) and
otherwise it is called non-oscillatory, i.e., the solution is positive or negative eventually. Eq. (1.1) is
said to be oscillatory if all its solutions are oscillatory.

Main results of this paper are organized into three parts in accordance with different assumptions
on the coefficients r1(t) and r2(t). In Section 2, oscillation results of (1.1) are established in the case∫ ∞

t0
r
− 1
α1

1 (t)dt = ∞,

∫ ∞

t0
r
− 1
α2

2 (t)dt = ∞. (1.2)

In Section 3, some new oscillation criteria for (1.1) are obtained in the case∫ ∞

t0
r
− 1
α1

1 (t)dt < ∞,
∫ ∞

t0
r
− 1
α2

2 (t)dt = ∞. (1.3)

By assuming that ∫ ∞

t0
r
− 1
α1

1 (t)dt < ∞,
∫ ∞

t0
r
− 1
α2

2 (t)dt < ∞. (1.4)

Some oscillation theorems of (1.1) are given in Section 4. In order to illustrate the results reported in
Sections 2, 3 and 4, we present some examples in Section 5.

During the last few decades, analysis of the oscillation and asymptotic behavior of solutions of
third-order differential equations, difference equations and dynamic equations on time scales have
experienced long-term interest and we refer the reader to the papers [1–12]. Due to the huge advantage
of neutral differential equations in describing several neutral phenomena, there is of great scientific
and academic values theoretically and practically for studying neutral differential equations. Hence, a
large amount of research attention has been focused on the oscillation problem of third-order linear and
nonlinear neutral differential equations in resent years; see, for example [13–17], and the references
are cited therein.

The third-order neutral differential equation[
r(t)((x(t) + p(t)x(τ(t)))′′)γ

]′
+ q(t) f (x(σ(t))) = 0,

and its special cases have been studied by Şenel and Utku [8], Baculı́ková and Džurina [13], Jiang et
al. [14, 15], where

∫ ∞
t0

r−
1
γ (t)dt = ∞, 0 ≤ p(t) ≤ P < 1. Candan [11], Došlá and Liška [16], and Li

et al. [17] established some sufficient conditions for oscillation of the following class of third-order
neutral differential equations[

a(t)(b(t)(x(t) + p(t)x(τ(t)))′)′
]′

+ q(t) f (x(σ(t))) = 0,
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where [11] and [16] only considered the conditions 0 ≤ p(t) ≤ P < 1 and∫ ∞

t0

1
a(t)

dt =

∫ ∞

t0

1
b(t)

dt = ∞,

and [17] also studied the cases∫ ∞

t0

1
a(t)

dt < ∞,
∫ ∞

t0

1
b(t)

dt = ∞ and
∫ ∞

t0

1
a(t)

dt =

∫ ∞

t0

1
b(t)

dt < ∞.

Recently, there has been an increasing interest in studying the oscillatory and asymptotic behavior
of third-order neutral differential equations with distributed deviating arguments [18–24]. Elabbasy
and Moaaz [19] considered the special cases of (1.1) and obtained several oscillation results under the
assumption (1.2) and 0 ≤ p(t) ≤ P < 1. By using a new method different from the existing results,
Tunç [22] established some new oscillation criteria for(

r(t)
((

x(t) + p(t)x(τ(t))
)′′)α)′

+

∫ b

a
q(t, ξ)xα(φ(t, ξ))dξ = 0,

where p(t) ≥ 1, and the obtained results greatly enriched the oscillation theory.
It is clear that the above introduced equations are the special cases of (1.1), i.e., (1.1) can be

transformed into these equations by letting the corresponding parameters being 1. To the best of our
knowledge, there are few results in the literature which ensure that all solutions are either oscillatory
or tends to zero monotonically for the third-order neutral differential equations with distributed
deviating arguments under the conditions p(t) ≥ 1, (1.3) or (1.4) holds, and the above mentioned
results are inapplicable to these conditions. Motivated by Li et al. [17], Elabbasy and Moaaz [19] and
Tunç [22], we consider Eq. (1.1) which is not studied in the past and utilize the Riccati transformation
technique to establish several oscillation criteria for (1.1) by assume that p(t) ≥ 1, (1.2), (1.3) or (1.4)
holds. The results obtained in this paper improve and complement the related criteria reported
in [13, 16, 17, 19, 22]. All functional inequalities considered here are assumed to hold eventually, that
is, they are satisfied for all t large enough.

In the sequel, we use the following notations for a compact presentation of our results:

σ1(t) = σ(t, a), σ2(t) = σ(t, b),
z′(τ(t)) = (z(τ(t)))′, ρ′+(t) = max{0, ρ′(t)},

δ1(t, t1) =

∫ t

t1
r
− 1
α1

1 (s)ds, δ2(t, t1) =
(δ1(t, t1)

r2(t)

) 1
α2 ,

δ3(t, t1) =

∫ t

t1
δ2(s, t1)ds, t ≥ t1,

where ρ(t) will be explained later and t1 is sufficiently large with t1 ≥ t0. Furthermore, assume that

p1(t) =
1

p(τ−1(t))

(
1 −

1
p(τ−1(τ−1(t)))

)
> 0, (1.5)

p2(t) =
1

p(τ−1(t))

(
1 −

δ3(τ−1(τ−1(t)), t1)
p(τ−1(τ−1(t)))δ3(τ−1(t), t1)

)
> 0, (1.6)
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where τ−1(t) is the inverse function of τ(t). Then let

q1(t) = K
∫ b

a
q(t, ξ)pα3

1 (σ(t, ξ))dξ, q2(t) = K
∫ b

a
q(t, ξ)pα3

2 (σ(t, ξ))dξ.

We will present the main contribution of this paper as follows.

2. Oscillation criteria for the case (1.2)

In this section, we respectively consider the following two cases

σ(t, ξ) ≤ τ(t), ξ ∈ [a, b], (2.1)

and
σ(t, ξ) ≥ τ(t), ξ ∈ [a, b]. (2.2)

We now begin with the case when (2.1) holds.

Theorem 2.1. Assume that conditions (H1)–(H5), (1.2), (1.5), (1.6) and (2.1) hold. Furthermore,
assume that there exists a function ρ(t) ∈ C1([t0,∞), (0,∞)) such that for sufficiently large t∗ > t2 >

t1 ≥ t0,

lim sup
t→∞

∫ t

t∗

[(δ3(τ−1(σ2(s)), t1)
δ2(τ−1(σ2(s)), t1)

)α1α2 ρ(s)q2(s)γ(τ−1(σ2(s)))
rα1

2 (τ−1(σ2(s)))
−

(ρ′+(s))α1+1r1(τ−1(σ2(s)))
(α1 + 1)α1+1ρα1(s)

]
ds = ∞, (2.3)

and ∫ ∞

t0

[ 1
r2(u)

∫ ∞

u

( 1
r1(v)

∫ ∞

v
q1(s)ds

) 1
α1 dv

] 1
α2 du = ∞, (2.4)

where

γ(t) =

{
m1(δ3(t, t1))α3−α1α2 , m1 is any positive constant, i f α1α2 > α3,

m2, m2 is any positive constant, i f α1α2 ≤ α3.

Then every solution of (1.1) is either oscillatory or tends to zero as t → ∞.

Proof. Suppose that (1.1) has a non-oscillatory solution x(t). Without loss of generality, we assume
that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t, ξ)) > 0 for ξ ∈ [a, b] and t ≥ t1. Then
from the definition of z(t), we have z(t) > 0. Based on the condition (1.2), z(t) satisfies the following
two cases (see, for example [18, 19]):
(I) z(t) > 0, z′(t) > 0, (r2(t)(z′(t))α2)′ > 0 and

[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
≤ 0;

(II) z(t) > 0, z′(t) < 0, (r2(t)(z′(t))α2)′ > 0 and
[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
≤ 0, for t ≥ t1.

Assume first that Case (I) holds. Then we get

x(t) =
z(τ−1(t))
p(τ−1(t))

−
z(τ−1(τ−1(t))) − x(τ−1(τ−1(t)))

p(τ−1(t))p(τ−1(τ−1(t)))
≥

z(τ−1(t))
p(τ−1(t))

−
z(τ−1(τ−1(t)))

p(τ−1(t))p(τ−1(τ−1(t)))
. (2.5)

(2.5) can also be seen in [22]. Since r1(t)((r2(t)(z′(t))α2)′)α1 is non-increasing for t ≥ t1, it indicates that

r2(t)(z′(t))α2 ≥

∫ t

t1

r
1
α1
1 (s)(r2(s)(z′(s))α2)′

r
1
α1
1 (s)

ds ≥ δ1(t, t1)r
1
α1
1 (t)(r2(t)(z′(t))α2)′. (2.6)
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We deduce from (2.6) that (r2(t)(z′(t))α2

δ1(t, t1)

)′
≤ 0,

and z′(t)/δ2(t, t1) is non-increasing for t ≥ t1. Therefore, we obtain

z(t) ≥
∫ t

t1

z′(s)
δ2(s, t1)

δ2(s, t1)ds ≥
δ3(t, t1)
δ2(t, t1)

z′(t), (2.7)

and ( z(t)
δ3(t, t1)

)′
≤ 0, (2.8)

which yields that

z(τ−1(τ−1(t))) ≤
δ3(τ−1(τ−1(t)), t1)
δ3(τ−1(t), t1)

z(τ−1(t)), t ≥ t1, (2.9)

for τ(t) ≤ t. Substituting (2.9) into (2.5), we have

x(t) ≥ p2(t)z(τ−1(t)).

Then there exists t2 > t1 such that σ(t, ξ) ≥ t1 and

x(σ(t, ξ)) ≥ p2(σ(t, ξ))z(τ−1(σ(t, ξ))), t ≥ t2. (2.10)

Combining (1.1), (H3), (H4) and (2.10), we conclude that[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
+ q2(t)zα3(τ−1(σ2(t))) ≤ 0. (2.11)

Define a Riccati transformation ω(t) by

ω(t) = ρ(t)
r1(t)((r2(t)(z′(t))α2)′)α1(

r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2
)α1
, t ≥ t2. (2.12)

Clearly, ω(t) > 0, and

ω′(t) =
ρ′(t)
ρ(t)

ω(t) + ρ(t)
[
r1(t)((r2(t)(z′(t))α2)′)α1

]′(
r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)α1

− α1ρ(t)
r1(t)((r2(t)(z′(t))α2)′)α1

(
r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)′(
r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)α1+1 . (2.13)

Since σ(t, ξ) ≤ τ(t) and
[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
≤ 0, we get τ−1(σ2(t)) ≤ t and

r
1
α1
1 (t)(r2(t)(z′(t))α2)′ ≤ r

1
α1
1 (τ−1(σ2(t)))

(
r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)′
. (2.14)

Combining (2.11), (2.13) and (2.14), we have

ω′(t) ≤
ρ′+(t)
ρ(t)

ω(t) −
ρ(t)q2(t)zα3(τ−1(σ2(t)))(

r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2
)α1
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−
α1ρ(t)r

1
α1

+1

1 (t)

r
1
α1
1 (τ−1(σ2(t)))

( (r2(t)(z′(t))α2)′

r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)α1+1
. (2.15)

From (2.7), we get
zα1α2(t)

(r2(t)(z′(t))α2)α1
≥

(δ3(t, t1)
δ2(t, t1)

)α1α2
r−α1

2 (t). (2.16)

Combining (2.12), (2.15) and (2.16), we obtain

ω′(t) ≤
ρ′+(t)
ρ(t)

ω(t) −
(δ3(τ−1(σ2(t)), t1)
δ2(τ−1(σ2(t)), t1)

)α1α2 ρ(t)q2(t)zα3−α1α2(τ−1(σ2(t)))
rα1

2 (τ−1(σ2(t)))

−
α1(

ρ(t)r1(τ−1(σ2(t)))
) 1
α1

ω
1
α1

+1(t). (2.17)

In order to compute zα3−α1α2(τ−1(σ2(t))), we consider the following two cases:
(1) α1α2 > α3. From (2.8), there exist t3 > t2 and h1 > 0 such that τ−1(σ2(t)) ≥ t2 and

z(τ−1(σ2(t)))
δ3(τ−1(σ2(t)), t1)

≤
z(t2)

δ3(t2, t1)
= h1, t ≥ t3,

which implies that
zα3−α1α2(τ−1(σ2(t))) ≥ m1

(
δ3(τ−1(σ2(t)), t1)

)α3−α1α2 , (2.18)

where m1 = hα3−α1α2
1 .

(2) α1α2 ≤ α3. Based on the fact that z′(t) > 0, there exists h2 > 0 such that

z(τ−1(σ2(t))) ≥ z(t2) = h2, t ≥ t3,

which yields that
zα3−α1α2(τ−1(σ2(t))) ≥ m2, (2.19)

where m2 = hα3−α1α2
2 .

Substituting (2.18) and (2.19) into (2.17), we have

ω′(t) ≤
ρ′+(t)
ρ(t)

ω(t) −
(δ3(τ−1(σ2(t)), t1)
δ2(τ−1(σ2(t)), t1)

)α1α2 ρ(t)q2(t)γ(τ−1(σ2(t)))
rα1

2 (τ−1(σ2(t)))
−

α1(
ρ(t)r1(τ−1(σ2(t)))

) 1
α1

ω
1
α1

+1(t).

(2.20)

Let
C =

ρ′+(t)
ρ(t)

, D =
α1(

ρ(t)r1(τ−1(σ2(t)))
) 1
α1

, α = α1, u = ω(t).

Applying the inequality (see [13])

Cu − Du
1
α+1 ≤

αα

(α + 1)α+1

Cα+1

Dα
, D > 0, u > 0, (2.21)

together with (2.20), we get

ω′(t) ≤ −
(δ3(τ−1(σ2(t)), t1)
δ2(τ−1(σ2(t)), t1)

)α1α2 ρ(t)q2(t)γ(τ−1(σ2(t)))
rα1

2 (τ−1(σ2(t)))
+

(ρ′+(t))α1+1r1(τ−1(σ2(t)))
(α1 + 1)α1+1ρα1(t)

. (2.22)
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Integrating (2.22) from t3 to t, we obtain∫ t

t3

[(δ3(τ−1(σ2(s)), t1)
δ2(τ−1(σ2(s)), t1)

)α1α2 ρ(s)q2(s)γ(τ−1(σ2(s)))
rα1

2 (τ−1(σ2(s)))
−

(ρ′+(s))α1+1r1(τ−1(σ2(s)))
(α1 + 1)α1+1ρα1(s)

]
ds < ω(t3),

for all sufficiently large t, which contradicts (2.3).
Secondly, assume that Case (II) holds. Since z′(t) < 0 and τ(t) ≤ t, (2.5) yields that

x(t) ≥ p1(t)z(τ−1(t)),

which indicates that
x(σ(t, ξ)) ≥ p1(σ(t, ξ))z(τ−1(σ(t, ξ))), (2.23)

for t ≥ t2. Using (1.1), (H4) and (2.23), we conclude that[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
≤ −q1(t)zα3(τ−1(σ1(t))). (2.24)

By using a similar proof of [19, Lemma 2.2], we can obtain limt→∞ x(t) = 0 due to the condition (2.4).
This completes the proof of Theorem 2.1. �

Next, we turn our attention to the case when (2.2) holds.

Theorem 2.2. Assume that conditions (H1)–(H5), (1.2), (1.5), (1.6), (2.2) and (2.4) hold. Moreover,
assume that there exists a function ρ(t) ∈ C1([t0,∞), (0,∞)) such that for sufficiently large t∗ > t2 >

t1 ≥ t0,

lim sup
t→∞

∫ t

t∗

[(δ3(τ(s), t1)
δ2(τ(s), t1)

)α1α2 ρ(s)q2(s)γ(τ(s))
rα1

2 (τ(s))
−

(ρ′+(s))α1+1r1(τ(s))
(α1 + 1)α1+1ρα1(s)

]
ds = ∞, (2.25)

where γ(t) is defined as in Theorem 2.1. Then every solution of (1.1) is either oscillatory or tends to
zero as t → ∞.

Proof. Suppose that (1.1) has a non-oscillatory solution x(t). Without loss of generality, we assume
that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t, ξ)) > 0 for ξ ∈ [a, b] and t ≥ t1. As in
the proof of Theorem 2.1, we have (2.11) and (2.16), and there exist two possible cases (I) and (II) for
z(t) (as those in the proof of Theorem 2.1).

Assume that Case (I) holds. Define a Riccati transformation ω̃(t) by

ω̃(t) = ρ(t)
r1(t)((r2(t)(z′(t))α2)′)α1(
r2(τ(t))((z(τ(t)))′)α2

)α1
, t ≥ t2 > t1. (2.26)

Clearly, ω̃(t) > 0, and since τ(t) ≤ t,

ω̃′(t) =
ρ′(t)
ρ(t)

ω̃(t) + ρ(t)
[
r1(t)((r2(t)(z′(t))α2)′)α1

]′(
r2(τ(t))((z(τ(t)))′)α2

)α1
− α1ρ(t)

r1(t)((r2(t)(z′(t))α2)′)α1
(
r2(τ(t))((z(τ(t)))′)α2

)′(
r2(τ(t))((z(τ(t)))′)α2

)α1+1

≤
ρ′+(t)
ρ(t)

ω̃(t) −
ρ(t)q2(t)zα3(τ−1(σ2(t)))(
r2(τ(t))((z(τ(t)))′)α2

)α1
−
α1ρ(t)r

1
α1

+1

1 (t)

r
1
α1
1 (τ(t))

( (r2(t)(z′(t))α2)′

r2(τ(t))((z(τ(t)))′)α2

)α1+1
. (2.27)
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From (2.2), we get τ−1(σ2(t)) ≥ t ≥ τ(t), and then z(τ−1(σ2(t))) ≥ z(τ(t)). Therefore, based on (2.16),
we obtain

zα1α2(τ−1(σ2(t)))(
r2(τ(t))((z(τ(t)))′)α2

)α1
≥

(δ3(τ(t), t1)
δ2(τ(t), t1)

)α1α2
r−α1

2 (τ(t)).

Substituting the later inequality, (2.18) and (2.19) into (2.27), we deduce that

ω̃′(t) ≤
ρ′+(t)
ρ(t)

ω̃(t) −
(δ3(τ(t), t1)
δ2(τ(t), t1)

)α1α2 ρ(t)q2(t)γ(τ(t))
rα1

2 (τ(t))
−

α1(
ρ(t)r1(τ(t))

) 1
α1

ω̃
1
α1

+1(t). (2.28)

By using the inequality (2.21) and (2.28), we conclude that

ω̃′(t) ≤ −
(δ3(τ(t), t1)
δ2(τ(t), t1)

)α1α2 ρ(t)q2(t)γ(τ(t))
rα1

2 (τ(t))
+

(ρ′+(t))α1+1r1(τ(t))
(α1 + 1)α1+1ρα1(t)

. (2.29)

An integration of (2.29) from t3 (t3 > t2) to t leads to a contradiction to (2.25).
Secondly, assume that Case (II) holds. Proceeding as in the proof of Case (II) in Theorem 2.1, we

arrive at the conclusion limt→∞ x(t) = 0. This completes the proof of Theorem 2.2. �

Remark 2.1. With different choices of the function ρ(t), one can derive a number of oscillation
criteria for (1.1) from Theorems 2.1 and 2.2.

Remark 2.2. Our results in this section extend and improve those obtained by Tunç [22], and we
can get some relevant results by using the technique presented in [22]. The established results here
also complement and improve those in [13, 16, 17, 19], since the considered equations in these papers
are special cases of (1.1) and our results can be applied to (1.1) in the case where p(t) ≥ 1.

3. Oscillation criteria for the case (1.3)

In this section, we will establish some oscillation criteria for (1.1) under the assumption that (1.3)
holds. Similarly as in Section 2, we start with the case when (2.1) is satisfied. Firstly, we define the
following notations:

δ̃1(t) =

∫ ∞

t
r
− 1
α1

1 (s)ds, δ̃2(t, t1) =

∫ t

t1
r
− 1
α2

2 (s)ds.

Furthermore, assume that

p̃2(t) =
1

p(τ−1(t))

(
1 −

δ̃2(τ−1(τ−1(t)), t1)
p(τ−1(τ−1(t)))δ̃2(τ−1(t), t1)

)
> 0. (3.1)

Then let

q̃2(t) = K
∫ b

a
q(t, ξ) p̃α3

2 (σ(t, ξ))dξ.

Theorem 3.1. Assume that conditions (H1)–(H5), (1.3), (1.5), (1.6), (2.1), (2.4) and (3.1) hold.
Furthermore, assume that there exists ρ(t) ∈ C1([t0,∞), (0,∞)) such that (2.3) is satisfied for
sufficiently large t∗ > t2 > t1 ≥ t0. If

lim sup
t→∞

∫ t

t∗

[
δ̃α1

1 (s)q̃2(s)γ̃(s)δ̃α1α2
2 (τ−1(σ2(s)), t1) −

( α1

α1 + 1

)α1+1 1

δ̃1(s)r
1
α1
1 (s)

]
ds = ∞, (3.2)
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where

γ̃(t) =

{
m3(δ̃2(t, t1))α3−α1α2 , m3 is any positive constant, i f α1α2 > α3,

m2, m2 is any positive constant, i f α1α2 ≤ α3,

then every solution of (1.1) is either oscillatory or tends to zero as t → ∞.

Proof. Suppose that (1.1) has a non-oscillatory solution x(t). Without loss of generality, we assume
that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t, ξ)) > 0 for ξ ∈ [a, b] and t ≥ t1. Based
on the condition (1.3), there exist three possible cases (I), (II) (as those in the proof of Theorem 2.1)
and
(III) z(t) > 0, z′(t) > 0, (r2(t)(z′(t))α2)′ < 0 and

[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
≤ 0, for t ≥ t1.

We firstly prove that Case (III) holds. It is easy to verify that

(r2(t)(z′(t))α2)′ > 0 or (r2(t)(z′(t))α2)′ < 0

holds under the condition ∫ ∞

t0
r
− 1
α1

1 (t)dt < ∞,

and in the proof of Theorem 2.1, we can see that z(t) has properties (I) and (II). If (r2(t)(z′(t))α2)′ < 0,
then we claim that z′(t) > 0. Otherwise, there exists a constant M1 such that

r2(t)(z′(t))α2 ≤ M1 < 0, t ≥ t1.

Integrating the last inequality from t1 to t, we have

z(t) ≤ z(t1) + M1

∫ t

t1
r
− 1
α2

2 (s)ds.

Letting t → ∞, we get z(t) → −∞, which contradicts the fact that z(t) > 0. Hence we conclude that
z′(t) > 0 here.

Assume now that Cases (I) and (II) hold. Then we can obtain the conclusion of Theorem 3.1 by
using the proof of Theorem 2.1.

Assume that Case (III) holds. Since r1(t)((r2(t)(z′(t))α2)′)α1 is nonincreasing for t ≥ t1 and
(r2(t)(z′(t))α2)′ < 0, we have

r2(l)(z′(l))α2 − r2(t)(z′(t))α2 =

∫ l

t

r
1
α1
1 (s)(r2(s)(z′(s))α2)′

r
1
α1
1 (s)

ds ≤ r
1
α1
1 (t)(r2(t)(z′(t))α2)′

∫ l

t
r
− 1
α1

1 (s)ds < 0.

Letting l→ ∞, we get

r2(t)(z′(t))α2 ≥ −δ̃1(t)r
1
α1
1 (t)(r2(t)(z′(t))α2)′,

that is

0 < −δ̃1(t)
r

1
α1
1 (t)(r2(t)(z′(t))α2)′

r2(t)(z′(t))α2
≤ 1. (3.3)

In view of r
1
α2
2 (t)z′(t) is non-increasing for t ≥ t1, we see that

z(t) ≥ δ̃2(t, t1)r
1
α2
2 (t)z′(t), (3.4)
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and ( z(t)
δ̃2(t, t1)

)′
≤ 0, (3.5)

which yields that

z(τ−1(τ−1(t))) ≤
δ̃2(τ−1(τ−1(t)), t1)
δ̃2(τ−1(t), t1)

z(τ−1(t)), t ≥ t1. (3.6)

Substituting (3.6) into (2.5), we get
x(t) ≥ p̃2(t)z(τ−1(t)).

Then there exists t2 > t1 such that σ(t, ξ) ≥ t1 and[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
≤ −q̃2(t)zα3(τ−1(σ2(t))), t ≥ t2. (3.7)

Define the function ν(t) by

ν(t) =
r1(t)((r2(t)(z′(t))α2)′)α1

(r2(t)(z′(t))α2)α1
, t ≥ t2. (3.8)

Then ν(t) < 0 for t ≥ t2. From (3.3) and (3.8), we obtain

− δ̃α1
1 (t)ν(t) ≤ 1. (3.9)

Differentiating (3.8) and using (3.7) and (3.8), we get

ν′(t) =

[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
(r2(t)(z′(t))α2)α1

−
α1r1(t)((r2(t)(z′(t))α2)′)α1(r2(t)(z′(t))α2)′

(r2(t)(z′(t))α2)α1+1

≤ −
q̃2(t)zα3(τ−1(σ2(t)))

(r2(t)(z′(t))α2)α1
−

α1

r
1
α1
1 (t)

ν
1
α1

+1(t). (3.10)

From (1.5) and (3.5), we obtain

z(τ−1(σ2(t))) ≥
δ̃2(τ−1(σ2(t)), t1)

δ̃2(t, t1)
z(t). (3.11)

(3.4) implies that
zα1α2(t)

(r2(t)(z′(t))α2)α1
≥ δ̃α1α2

2 (t, t1). (3.12)

Combining (3.10), (3.11) and (3.12), we get

ν′(t) ≤ −q̃2(t)δ̃α1α2
2 (τ−1(σ2(t)), t1)zα3−α1α2(t) −

α1

r
1
α1
1 (t)

ν
1
α1

+1(t), (3.13)

due to δ̃2(τ−1(σ2(t)), t1) ≤ δ̃2(t, t1). In order to compute zα3−α1α2(t), the case α1α2 ≤ α3 is the same as
that in the proof of Theorem 2.1. We now compute the case α1α2 > α3. Applying the monotonicity of
z(t)/δ̃2(t, t1) for t ≥ t2 derived from (3.5), there exists h3 > 0 such that

z(t)
δ̃2(t, t1)

≤
z(t2)

δ̃2(t2, t1)
= h3,
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which implies that
zα3−α1α2(t) ≥ m3

(
δ̃2(t, t1)

)α3−α1α2 , (3.14)

where m3 = hα3−α1α2
3 . Combining (2.19), (3.13) and (3.14), we conclude that

ν′(t) ≤ −q̃2(t)γ̃(t)δ̃α1α2
2 (τ−1(σ2(t)), t1) −

α1

r
1
α1
1 (t)

ν
1
α1

+1(t). (3.15)

Multiplying (3.15) by δ̃α1
1 (t) and integrating it from t2 to t, we obtain

δ̃α1
1 (t)ν(t) − δ̃α1

1 (t2)ν(t2) +

∫ t

t2
δ̃α1

1 (s)q̃2(s)γ̃(s)δ̃α1α2
2 (τ−1(σ2(s)), t1)ds

+ α1

∫ t

t2

[ δ̃α1
1 (s)

r
1
α1
1 (s)

|ν(s)|
1
α1

+1
−
δ̃α1−1

1 (s)

r
1
α1
1 (s)

|ν(s)|
]
ds ≤ 0. (3.16)

By using the inequality (2.21) and (3.16) with

C =
δ̃α1−1

1 (s)

r
1
α1
1 (s)

, D =
δ̃α1

1 (s)

r
1
α1
1 (s)

, u = |ν(s)|,

we conclude that∫ t

t2

[
δ̃α1

1 (s)q̃2(s)γ̃(s)δ̃α1α2
2 (τ−1(σ2(s)), t1) −

( α1

α1 + 1

)α1+1 1

δ̃1(s)r
1
α1
1 (s)

]
ds ≤ δ̃α1

1 (t2)ν(t2) + 1,

due to (3.9), which contradicts (3.2). This completes the proof of Theorem 3.1. �

With a similar proof to that of Theorems 2.2 and 3.1, we can obtain the following criteria for (1.1)
by assuming that (2.2) is satisfied.

Theorem 3.2. Assume that conditions (H1)–(H5), (1.3), (1.5), (1.6), (2.2), (2.4) and (3.1) hold.
Furthermore, assume that there exists ρ(t) ∈ C1([t0,∞), (0,∞)) such that (2.25) is satisfied for
sufficiently large t∗ > t2 > t1 ≥ t0. If

lim sup
t→∞

∫ t

t∗

[
δ̃α1

1 (s)q̃2(s)γ̃(τ−1(σ2(s)))δ̃α1α2
2 (τ−1(σ2(s)), t1) −

( α1

α1 + 1

)α1+1 1

δ̃1(s)r
1
α1
1 (τ−1(σ2(s)))

]
ds = ∞,

(3.17)
where γ̃(t) is defined as in Theorem 3.1, then every solution of (1.1) is either oscillatory or tends to
zero as t → ∞.

Proof. Suppose that (1.1) has a non-oscillatory solution x(t). Without loss of generality, we assume
that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t, ξ)) > 0 for ξ ∈ [a, b] and t ≥ t1. As in
the proof of Theorem 3.1, we have (3.3) and (3.7), and there exist three possible cases (I), (II) and (III)
for z(t).

Assume first that Cases (I) and (II) hold. We can obtain the conclusion of Theorem 3.2 by using the
proof of Theorem 2.2.
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Assume that Case (III) holds. Define the function ν̃(t) by

ν̃(t) =
r1(t)((r2(t)(z′(t))α2)′)α1(

r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2
)α1
, t ≥ t1. (3.18)

Then ν̃(t) < 0 for t ≥ t1. Since σ2(t) ≥ τ(t) and (r2(t)(z′(t))α2)′ < 0, we have

− δ̃1(t)
r

1
α1
1 (t)(r2(t)(z′(t))α2)′

r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2
≤ −δ̃1(t)

r
1
α1
1 (t)(r2(t)(z′(t))α2)′

r2(t)(z′(t))α2
. (3.19)

From (3.3), (3.18) and (3.19), we get
−δ̃α1

1 (t)ν̃(t) ≤ 1.

Since r
1
α1
1 (t)(r2(t)(z′(t))α2)′ is non-increasing for t ≥ t1, we obtain

(
r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)′
≤

r
1
α1
1 (t)(r2(t)(z′(t))α2)′

r
1
α1
1 (τ−1(σ2(t)))

. (3.20)

Differentiating (3.18) and using (3.7), (3.18) and (3.20), we deduce that

ν̃′(t) =

[
r1(t)((r2(t)(z′(t))α2)′)α1

]′(
r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)α1

−
α1r1(t)((r2(t)(z′(t))α2)′)α1

(
r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)′(
r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2

)α1+1

≤ −
q̃2(t)zα3(τ−1(σ2(t)))(

r2(τ−1(σ2(t)))((z(τ−1(σ2(t))))′)α2
)α1
−

α1

r
1
α1
1 (τ−1(σ2(t)))

ν̃
1
α1

+1(t). (3.21)

Furthermore, substituting (3.12) and the definition of γ̃(t) into (3.21), we conclude that

ν̃′(t) ≤ −q̃2(t)γ̃(τ−1(σ2(t)))δ̃α1α2
2 (τ−1(σ2(t)), t1) −

α1

r
1
α1
1 (τ−1(σ2(t)))

ν̃
1
α1

+1(t).

The rest of the proof is similar to that of Theorem 3.1 and we can get a contradiction to (3.17). So we
omit it here. This completes the proof of Theorem 3.2. �

4. Oscillation criteria for the case (1.4)

In this section, we will establish some oscillation criteria for (1.1) under the assumption that (1.4)
holds. Similarly as in the previous sections, we start with the case when (2.1) is satisfied.

Theorem 4.1. Assume that conditions (H1)–(H5), (1.4), (1.5), (1.6), (2.1), (2.4), (3.1) and (3.2)
hold. Furthermore, assume that there exists ρ(t) ∈ C1([t0,∞), (0,∞)) such that for sufficiently large
t∗ > t2 > t1 ≥ t0, one has (2.3). If∫ ∞

t∗

[ 1
r2(u)

∫ u

t∗

( 1
r1(v)

∫ v

t∗
q1(s)ds

) 1
α1 dv

] 1
α2 du = ∞, (4.1)

then every solution of (1.1) is either oscillatory or tends to zero as t → ∞.
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Proof. Suppose that (1.1) has a non-oscillatory solution x(t). Without loss of generality, we assume
that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(σ(t, ξ)) > 0 for ξ ∈ [a, b] and t ≥ t1. Based
on the condition (1.4), there exist three possible cases (I), (II), (III) (as those in the proof of Theorem
3.1) and (IV) z(t) > 0, z′(t) < 0, (r2(t)(z′(t))α2)′ < 0 and

[
r1(t)((r2(t)(z′(t))α2)′)α1

]′
≤ 0, for t ≥ t1.

Assume first that Cases (I), (II) and (III) hold. We can obtain the conclusion of Theorem 4.1 by
using the proof of Theorem 3.1.

Assume that Case (IV) holds. Then there exists a constant l ≥ 0 such that

lim
t→∞

z(t) = l.

We claim that l = 0. Otherwise, assume that l > 0. We see that there exists t2 > t1 such that
τ−1(σ1(t)) ≥ t1 and z(τ−1(σ1(t))) ≥ l, t ≥ t2. From (2.24), we obtain[

r1(t)((r2(t)(z′(t))α2)′)α1
]′

+ lα3q1(t) ≤ 0. (4.2)

Integrating (4.2) from t2 to t, we have

r1(t)((r2(t)(z′(t))α2)′)α1 + lα3

∫ t

t2
q1(s)ds ≤ 0,

which can be rewritten as

(r2(t)(z′(t))α2)′ +
( lα3

r1(t)

∫ t

t2
q1(s)ds

) 1
α1 ≤ 0.

Integrating again from t2 to t, we get

r2(t)(z′(t))α2 + l
α3
α1

∫ t

t2

( 1
r1(v)

∫ v

t2
q1(s)ds

) 1
α1 dv ≤ 0,

which yields that

z′(t) +
[ l

α3
α1

r2(t)

∫ t

t2

( 1
r1(v)

∫ v

t2
q1(s)ds

) 1
α1 dv

] 1
α2 ≤ 0.

Integrating the last inequality from t2 to t, we obtain

l
α3
α1α2

∫ t

t∗

[ 1
r2(u)

∫ u

t2

( 1
r1(v)

∫ v

t2
q1(s)ds

) 1
α1 dv

] 1
α2 du ≤ z(t2),

which contradicts (4.1). This completes the proof of Theorem 4.1. �

With a similar proof to that of Theorems 3.2 and 4.1, we can obtain the following criteria for (1.1)
assuming that (2.2) is satisfied.

Theorem 4.2. Assume that conditions (H1)–(H5), (1.4), (1.5), (1.6), (2.2), (2.4), (3.1), (3.17) and
(4.1) hold. Furthermore, assume that there exists a function ρ(t) ∈ C1([t0,∞), (0,∞)) such that for
sufficiently large t∗ > t2 > t1 ≥ t0, one has (2.25). Then every solution of (1.1) is either oscillatory or
tends to zero as t → ∞.

Remark 4.1. The results in [13, 16, 19, 22] are obtained only in the case (1.2) and they are
inapplicable to (1.3) and (1.4). Hence, the main results of this paper complement and improve those
in the literature.
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5. Examples

In this section, we will present some examples to illustrate the main results.
Example 4.1 For t > k1 ≥ 1, consider the third-order neutral delay differential equation with distributed
deviating arguments[

t
((

t
1
2
(
x(t) +

6t + 5k1

t + k1
x
( t
3

))′)′) 1
3
]′

+

∫ k1+1

k1

155(t + ξ)x5
( t
3
− ξ

)
dξ = 0, (5.1)

where α1 = 1/3, α2 = 1, α3 = 5, a = k1, b = k1 + 1, f (x) = x5, r1(t) = t, r2(t) = t
1
2 ,

τ(t) =
t
3
, σ(t, ξ) =

t
3
− ξ, p(t) =

6t + 5k1

t + k1
, q(t, ξ) = 155(t + ξ).

Choose t0 = t1 = k1. Then we get α1α2 < α3, 5 ≤ p(t) < 6,

σ2(t) = σ(t, k1 + 1) =
t
3
− (k1 + 1), δ1(t, t1) =

∫ t

k1

s−3ds =
1

2k2
1

−
1

2t2 ,

δ2(t, t1) =
δ1(t, k1)

t
1
2

=
1

2k2
1t

1
2

−
1

2t
5
2

,

δ3(t, t1) =

∫ t

k1

( 1

2k2
1 s

1
2

−
1

2s
5
2

)
ds =

1
k2

1

(t
1
2 − k

1
2
1 ) +

1
3

(t−
3
2 − k−

3
2

1 ),

δ̃1(t) =

∫ ∞

t
s−3ds =

1
2t2 , δ̃2(t, t1) =

∫ t

k1

s−
1
2 ds = 2(t

1
2 − k

1
2
1 ).

Furthermore, we deduce that

p1(t) >
1
6

(
1 −

1
5

)
=

2
15

> 0,

p2(t) =
1
6

(
1 −

1
5
·

1
k2

1
((9t)

1
2 − k

1
2
1 ) + 1

3 ((9t)−
3
2 − k−

3
2

1 )

1
k2

1
((3t)

1
2 − k

1
2
1 ) + 1

3 ((3t)−
3
2 − k−

3
2

1 )

)
>

1
10

> 0,

p̃2(t) =
1
6

(
1 −

1
5
·

((9t)
1
2 − k

1
2
1 )

((3t)
1
2 − k

1
2
1 )

)
>

1
15

> 0,

q1(t) >
∫ k1+1

k1

( 2
15

)5
· 155(t + ξ)dξ = 32

(
t + k1 +

1
2

)
,

q2(t) >
∫ k1+1

k1

( 1
10

)5
· 155(t + ξ)dξ =

(3
2

)5(
t + k1 +

1
2

)
,

q̃2(t) >
∫ k1+1

k1

( 1
15

)5
· 155(t + ξ)dξ = t + k1 +

1
2
.

It is easy to verify that ∫ ∞

t0

[ 1
r2(u)

∫ ∞

u

( 1
r1(v)

∫ ∞

v
q1(s)ds

) 1
α1 dv

] 1
α2 du
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>

∫ ∞

k1

u−
1
2

∫ ∞

u

( ∫ ∞

v
32

(
s + k1 +

1
2

)
ds

)3
dvdu = ∞,

and ∫ t

t∗

[
δ̃α1

1 (s)q̃2(s)γ̃(s)δ̃α1α2
2 (τ−1(σ2(s)), t1) −

( α1

α1 + 1

)α1+1 1

δ̃1(s)r
1
α1
1 (s)

]
ds

>

∫ t

4k1+3

[( 1
2s2

) 1
3
(
s + k1 +

1
2

)(
(s − 3(k1 + 1))

1
2 − k

1
2
1

) 1
3
−

4−
4
3

s

]
ds→ ∞,

as t → ∞, where we set t∗ = 4k1 + 3. Therefore, conditions (H1)–(H5), (1.3), (1.5), (1.6), (2.1), (2.4),
(3.1) and (3.2) hold. We choose ρ(t) = 1. Applying Theorem 3.1, it remains to check (2.3), and we see
that ∫ t

t∗

[(δ3(τ−1(σ2(s)), t1)
δ2(τ−1(σ2(s)), t1)

)α1α2 ρ(s)q2(s)γ(τ−1(σ2(s)))
rα1

2 (τ−1(σ2(s)))
−

(ρ′+(s))α1+1r1(τ−1(σ2(s)))
(α1 + 1)α1+1ρα1(s)

]
ds

>

∫ t

4k1+3

[( 89
48k2

1

) 1
3

(
3
2

)5(
s + k1 + 1

2

)
(s − 3(k1 + 1))

1
6

]
ds→ ∞,

as t → ∞. Hence, every solution of (5.1) is either oscillatory or converges to zero by Theorem 3.1.
Example 4.2 Consider the third-order neutral delay differential equation with distributed deviating
arguments [

t2(t2(x(t) + 2x(t − 1))′)′
]′

+

∫ 2

1
123λtξx3

(
t − 1 +

1
ξ

)
dξ = 0, t ≥ 1, (5.2)

where λ is a positive constant. Choose t0 = t1 = 1. Then we get

σ2(t) = σ(t, 2) = t −
1
2
,

δ1(t, t1) =

∫ t

1
s−2ds = 1 −

1
t
, δ2(t, t1) =

δ1(t, k1)
t2 =

1
t2 −

1
t3 ,

δ3(t, t1) =

∫ t

1

( 1
s2 −

1
s3

)
ds =

1
2t2 −

1
t

+
1
2
,

δ̃1(t) =

∫ ∞

t
s−2ds =

1
t
, δ̃2(t, t1) =

∫ t

1
s−2ds = 1 −

1
t
.

Furthermore, we deduce that

p1(t) =
1
2

(
1 −

1
2

)
=

1
4
> 0, p2(t) =

1
2

(
1 −

1
2
·

1
2(t+2)2 −

1
t+2 + 1

2
1

2(t+1)2 −
1

t+1 + 1
2

)
>

1
12

> 0,

q1(t) =

∫ 2

1

(1
4

)3
123λtξdξ =

34

2
λt, q2(t) >

∫ 2

1

( 1
12

)3
123λtξdξ =

3
2
λt,

p̃2(t) =
1
2

(
1 −

1
2
·

1 − 1
t+2

1 − 1
t+1

)
>

1
4
> 0, q̃2(t) >

∫ 2

1

(1
4

)3
123λtξdξ =

34

2
λt.
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It is easy to verify that∫ ∞

t0

[ 1
r2(u)

∫ ∞

u

( 1
r1(v)

∫ ∞

v
q1(s)ds

) 1
α1 dv

] 1
α2 du =

∫ ∞

2
u−2

∫ ∞

u
v−2

∫ ∞

v

34

2
λsdsdvdu = ∞,

∫ ∞

t∗

[ 1
r2(u)

∫ u

t∗

( 1
r1(v)

∫ v

t∗
q1(s)ds

) 1
α1 dv

] 1
α2 du =

∫ ∞

2
u−2

∫ u

2
v−2

∫ v

2

34

2
λsdsdvdu = ∞,

and ∫ t

t∗

[
δ̃α1

1 (s)q̃2(s)γ̃(τ−1(σ2(s)))δ̃α1α2
2 (τ−1(σ2(s)), t1) −

( α1

α1 + 1

)α1+1 1

δ̃1(s)r
1
α1
1 (τ−1(σ2(s)))

]
ds

>

∫ t

2

[1
s

34

2
λs

(
1 −

1
s + 1

2

)
−

1
4

s(
s + 1

2

)2

]
ds→ ∞,

as t → ∞, if λ ≥ 1, where we set t∗ = 2. Therefore, conditions (H1)–(H5), (1.4), (1.5), (1.6), (2.2),
(2.4), (3.1), (3.17) and (4.1) hold. We choose ρ(t) = t2. Applying Theorem 4.2, it remans to check
(2.25), and we get ∫ t

t∗

[(δ3(τ(s), t1)
δ2(τ(s), t1)

)α1α2 ρ(s)q2(s)γ(τ(s))
rα1

2 (τ(s))
−

(ρ′+(s))α1+1r1(τ(s))
(α1 + 1)α1+1ρα1(s)

]
ds

>

∫ t

2

[ 1
2(s−1)2 −

1
s−1 + 1

2
1

(s−1)2 −
1

(s−1)3

·

3
2λs3

(s − 1)2 − (s − 1)2
]
ds→ ∞,

as t → ∞. Hence, every solution of (5.2) is either oscillatory or converges to zero by Theorem 4.2.
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