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Abstract: For a graph G = (V, E) and the exponential dominating set S ⊆ V(G) of G such that∑
u∈S (1/2)d(u,v)−1 ≥ 1, ∀v ∈ V(G), where d(u, v) is the length of a shortest path in 〈V(G) − (S − {u})〉

if such a path exists, and ∞ otherwise, the minimum exponential domination number, γe(G) is the
smallest cardinality of S . The minimum exponential domination number can be decreased or increased
by removal of some vertices from G. In this paper, we continue to study on exponential domination
number and stability of some graphs. We consider γ+

e and γ−e stability of the lollipop graph Lm,n, the
comet graph Cm,n, the sunflower graph S Fn, the helm graph Hn, the diamond-necklace graph Nn, the
diamond-bracelet graph Bn and the diamond-chain graph Ln to give us an idea about the resistance of
these graphs.
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1. Introduction

A graph G, a mathematical modelling in which we show some structures is represented by a set of
vertices V(G) and a set of edges E(G). Firstly, we mention some of the definitions related to graph
theory in this article. For any vertex v ∈ V(G), the open neighbourhood of v is N(v) = {u ∈ V(G)|uv ∈
E(G)} and closed neighborhood of v is N[v] = N(v) ∪ {v}. The distance d(u, v) between two vertices
u and v in G is the length of a shortest path between them. The diameter of G, denoted by diam(G) is
the largest distance between two vertices in V(G). The number of the neighbour vertices of the vertex
v is called degree of v and denoted by degG(v). A vertex v is said to be pendant vertex if degG(v) = 1.
A vertex u is called support if u is adjacent to a pendant vertex [1]. Throughout this article, the largest
integer not greater than x is denoted by bxc and the least integer not less than x is denoted by dxe.
The graph with n vertices labeled x1, x2, ..., xn and edges x1x2, x2x3, ..., xn−1xn is called a path of length
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n − 1, denoted by Pn. The cycle of length n, Cn is the graph with n vertices x1, x2, ..., xn and the edges
x1x2, x2x3, ..., xnx1 [2]. Paths are trees. A tree is a path if and only if its maximum degree is 2. The
wheel with n + 1 vertices, Wn, is the graph that consists of an n-cycle and one additional vertex that
is adjacent to all the vertices of the cycle. Complete graph Kn is the graph with n vertices, and every
vertex is adjacent to every other vertex [2]. A star is a tree consisting of one vertex adjacent to all the
others. The n−vertex star is the biclique K1,n−1 [3]. The complement G of a simple graph G is the
simple graph with vertex set V(G) defined by uv ∈ E(G) if and only if uv < E(G) [3].

The domination in graph theory, which has an important role in many fields of study such as
optimization, design and analysis of communication networks, social sciences and military
surveillance. A dominating set in a graph G is a set of vertices of G such that every vertex in V(G)− S
is adjacent to at least one vertex in S . The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set of G [4, 5].

There are many domination parameters that measure the robustness and stability of graphs under
any attack or influence. In such cases some vertices in the graph are critical. When we remove a vertex
from the graph, resume of the remaining structure gives us information about the importance of the
vertex.

Dankelmann et al. [6] recently defined exponential domination. Let G be a graph and S ⊆ V(G).
We denote by 〈S 〉 the subgraph of G induced by S . For each vertex u ∈ S and for each v ∈ V(G) − S ,
we define d(u, v) to be the length of a shortest u − v path in 〈G − (S − {u})〉 if such a path exists, and∞
otherwise. If, for each v ∈ V(G) − S we have

∑
u∈S 1/2d(u,v) ≥ 1 , then S is an exponential dominating

set. The smallest cardinality of an exponential dominating set is the exponential domination number,
γe(G). One can think of this in the following way: each vertex dominates its neighbors, 1/2-dominates
those at distance 2, and so on. Hence a vertex v can be dominated by a neighbor of v or by a number
of vertices that are not too far from v. Such a model could be used, for example, for the analysis of
dissemination of information in social networks, where the impact of the information decreases every
time it is passed on. The assumption is that gossip heard directly from a source is totally reliable, while
gossip passed from person to person loses half its credibility with each individual in the chain. Finding
the exponential domination number in this application amounts to determining the minimum number
of sources needed so that each person gets fully reliable information.

In this paper, firstly known results are given. Then, some results about the exponential domination
number, γ+

e -stability and γ−e -stability for some graphs are established. Finally, conclusion section is
presented.

2. Known results

Theorem 2.1. [6] ∀n ∈ Z+, γe(Pn) = d(n + 1)/4e.

Theorem 2.2. [7] ∀n ≥ 6 ∈ Z+,

γ+
e (Pn) =

{
2, i f n ≡ 0(mod 4)
1, otherwise

AIMS Mathematics Volume 5, Issue 5, 5063–5075.



5065

Theorem 2.3. [7] ∀n ≥ 7 ∈ Z+,

γ−e (Pn) =


4, i f n ≡ 3(mod 4)
3, i f n ≡ 2(mod 4)
2, i f n ≡ 1(mod 4)
1, i f n ≡ 0(mod 4)

Theorem 2.4. [6] ∀n ∈ Z+,

γe(Cn) =

{
2, i f n = 4
dn/4e, i f n , 4

Theorem 2.5. [7] ∀n ≥ 12 ∈ Z+,

γ+
e (Cn) =

{
3, i f n ≡ 1(mod 4)
2, otherwise

Theorem 2.6. [7] ∀n ≥ 6 ∈ Z+,

γ−e (Cn) =


5, i f n ≡ 0(mod 4)
2, i f n ≡ 1(mod 4)
3, i f n ≡ 2(mod 4)
4, i f n ≡ 3(mod 4)

Theorem 2.7. [6] If G is a connected graph with diametre d, then γe(G) ≥ dd+2e
4 .

Theorem 2.8. [6] If G is a connected graph with order n, then γe(G) ≤ 2
5 (n + 2).

Theorem 2.9. [6] Let G be a connected graph with order n and T be a spanning tree of G. Then,
γe(G) ≤ γe(T ).

Theorem 2.10. [6] For every graph G, γe(G) ≤ γ(G). Also, γe(G) = 1 if and only if γ(G) = 1.

Theorem 2.11. [6] There is a tree T with order 375 and γe(T ) = 144.

Theorem 2.12. [8] If G is a connected graph with n vertices and there is a vertex such that ∃v ∈ V(G)
deg(v) = n − 1, then γe(G) = 1.

Theorem 2.13. [8] Let G be a connected graph with n vertices. If diam(G) = 2 and there isn’t any
vertex such that deg(v) = n − 1, then γe(G) = 2.

Theorem 2.14. [8] For binary graph operations join and corona:
a) For any two graphs G1 and G2, γe(G1 ◦G2) ≥ ddiam(G1◦G2)

2 e.
b) Let G1 and G2 be any two graphs with diameters d1 and d2 respectively. If diam(G1) = d1 <

diam(G2) = d2, then γe(G1 + G2) = γe(G1).

Theorem 2.15. [1, 3] If G is a simple graph and diam(G) ≥ 3⇒ diam(G) ≤ 3.

Corollary 2.1. [1, 3] If graph G has diameter at least 3, then γ(G) ≤ 2.

Theorem 2.16. [9] Let G is a connected graph with n vertices. Then the exponential domination
number of the complement prism GG with 2n vertices is γe(GG) = 2.

Theorem 2.17. Let G be a graph with diam(G) = d and |V(G)| = n, then Gd � Kn.

Theorem 2.18. [7] Let Km,n be a bipartite complete graph with m + n vertices (m < n). Then,
γ−e (Km,n) = m − 1 and γ+

e (Km,n) = m.
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3. Exponential domination and stability of a graph

We partition the vertices of G into three disjoint sets according to how their removal affects
γe(G) [10]. Let V = V0

e ∪ V+
e ∪ V−e for

V0
e (G) = {v ∈ V(G) : γe(G − v) = γe(G)}

V+
e (G) = {v ∈ V(G) : γe(G − v) > γe(G)}

V−e (G) = {v ∈ V(G) : γe(G − v) < γe(G)}

Definition 3.1. [11]
i.) γe− stability of graph G is the minimum number of vertices whose removal changes γe(G).
ii.) γ+

e− stability (γ−e−) stability of a graph G written γ+
e (γ−e ) is the minimum number of vertices whose

removal increase (decrease) γe(G).

When the graph under consideration is clear from the context we simply write V0
e , V+

e , V−e . For the
graph in Figure 1, S = {v2, v4, v7} is an any minimum exponential domination set. So, γe(G) = 3. If we
remove V+

e (G) = {v9, v6} we have a remaining graph G∗ has an any minimum exponential domination
set S ∗ = {v2, v5, v7, v11}. So, γe(G∗) = 4 and γ+

e (G) = 2. If we remove V−e (G) = {v1} from G then,
we have a remaining graph G∗∗ has an any minimum exponential domination set S ∗∗ = {v3, v7}. So,
γe(G∗∗) = 2 and γ−e (G) = 1.

Figure 1. Graph G.

Definition 3.2. [12] The graph G is said to be a lollipop graph if there exists one edge e ∈ E such that
the removal of the bridge e disconnects G into two graphs Km and Pn such that Km is a clique and Pn

is a path graph. The lollipop graph L4,5 can be depicted as in the following figure:

Figure 2. Lollipop Graph L4,5.
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Theorem 3.1. Let Lm,n be a lollipop graph with m + n vertices. Then,
a.) γe(Lm,n) = dn+3

4 e.
b.)

γ+
e (Lm,n) =

{
1, i f n ≡ 0, 1(mod 4)
2, i f n ≡ 2, 3(mod 4)

c.)

γ−e (Lm,n) =


3, i f n ≡ 0(mod 4)
4, i f n ≡ 1(mod 4)
1, i f n ≡ 2(mod 4)
2, i f n ≡ 3(mod 4)

Proof. a.) The graph Lm,n consists of a path graph with n + 2 vertices and a complete graph Km−2 with
m − 2 vertices. Let S be an exponential domination set of Lm,n. We know from the Theorem 2.1 that
γe(Pn) = d n+1

4 e. The first vertex of the path graph and any vertex of the complete graph are common.
So, adding the first vertex of Pn+2 to the set S , all vertices of Km−2 are dominated. So, we have
γe(Lm,n) = d n+3

4 e.
b.) Case 1. n ≡ 0, 1(mod 4)
In this case, if we remove the vertex v ∈ Km with deg(v) = m, then we have two graphs with a
complete graph Km−1 and a path graph Pn. We know γe(Km−1) = 1 and γe(Pn) = d n+1

4 e. If
n ≡ 0, 1(mod 4), then γe(Pn) = d n+1

4 e = d n+3
4 e = γe(Lm,n). Also, we add any vertex from Km−1 to S to be

dominated the complete graph. Hence, the exponential domination number of Lm,n increases.
Case 2. n ≡ 2, 3(mod 4)
In this case, removing the vertex v ∈ Km with deg(v) = m isn’t enough to increase the exponential
domination number. Because, for the remaining graphs Km−1 and Pn,
γe(Pn) = d n+1

4 e < d
n+3

4 e = γe(Lm,n) and Km−1 = 1. So, γe(Pn) + γe(Km−1) = γe(Lm,n). Therefore, we also
remove the second vertex of the path graph and we have three remaining graphs that are Km−1, P1,
Pn−2 which has γe(Km−1) = 1, γe(P1) = 1 and γe(Pn−2) = d n−1

4 e = d n+3
4 e − 1 = Lm,n − 1. So,

γe(Km−1) + γe(P1) + γe(Pn−2) = γe(Lm,n) + 1.
c.) Case 1. n ≡ 0(mod 4)
In this case, when we remove the last three vertices vn−2, vn−1, vn of Pn, we have two remaining graphs
Km and Pn−3. Hence, we have a lollipop graph Lm,n−3. γe(Lm,n−3) = d n

4e < d
n+3

4 e = γe(Lm,n).
Case 2. n ≡ 1(mod 4)
In this case, when we remove the last four vertices vn−3, vn−2, vn−1, vn of Pn, we have a lollipop graph
Lm,n−4. Hence, γe(Lm,n−4) = d n−1

4 e < d
n+3

4 e = γe(Lm,n).
Case 3. n ≡ 2(mod 4)
In this case, when we remove the last vertex vn of Pn, we have a lollipop graph Lm,n−1. Hence,
γe(Lm,n−1) = d n+2

4 e < d
n+3

4 e = γe(Lm,n).
Case 4. n ≡ 3(mod 4)
In this case, when we remove the last two vertices vn−1, vn of Pn, we have a lollipop graph Lm,n−2.
Hence, γe(Lm,n−2) = d n+1

4 e < d
n+3

4 e = γe(Lm,n).
The proof is completed. �

Definition 3.3. [13] For integer m ≥ 2 and n ≥ 1, the comet graph Cm,n is defined to be the graph
of order m + n obtained from disjoint union of a star K1,m and a path Pn with n vertices by adding an
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edge joining the central vertex of the star with an end-vertex of the path. The Comet graph C7,6 can be
depicted as in the following figure:

Figure 3. Comet Graph C7,6.

Theorem 3.2. Let Cm,n be a comet graph with m + n vertices. Then,
a.) [9] γe(Cm,n) = γe(Pn+2) = d n+3

4 e

b.) γ+
e (Cm,n) = 1

c.)

γ−e (Cm,n) =


3, i f n ≡ 0(mod 4)
4, i f n ≡ 1(mod 4)
1, i f n ≡ 2(mod 4)
2, i f n ≡ 3(mod 4)

Proof. b.) Let S be an exponential domination set of Cm,n. If we remove the center vertex c of the star
graph with deg(c) = m + 1, then we have a null graph Km and a path graph Pn. We know γe(Pn) = d n+1

4 e

and γe(Km) = m. If, n ≡ 0(mod 4), then d n+1
4 e = d n

4e + 1, otherwise d n+1
4 e = d n

4e = γe(Cm,n) − 1. Also,
due to m ≥ 2, if n ≡ 0(mod 4), then γe(Km) + γe(Pn) = m + d n+1

4 e = m + d n
4e + 1 > γe(Cm,n); otherwise

γe(Km) + γe(Pn) = m + d n+1
4 e = m + γe(Cm,n) − 1 > γe(Cm,n). Hence, γ+

e (Cm,n) = 1.
c.) The proof is similar to the proof of Theorem 3.1.c.)
The proof is completed. �

Definition 3.4. [14] Sunflower graph is a graph obtained by taking a wheel with the central vertex
c and the n-cycle u1, ..., u(n) combined with additional vertices v1, ..., v(n), where vi is joined by edges
ui, u(i+1), where i + 1 is taken from modulo n. The sunflower graph S F3 can be depicted as in the
following figure:

Figure 4. Sunflower Graph S F3.
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Theorem 3.3. Let S Fn be a sunflower graph and n > 12, then
a.) γe(S Fn) = dn

5e + 1
b.) γ+

e (S Fn) = 1,
c.)

γ−e (S Fn) =

{
6, i f n ≡ 0(mod 5)
n(mod 5) + 1, i f n ≡ otherwise

Proof. a.) We can split the V(S Fn) into three vertex sets that are V(S Fn) = V1(S Fn) ∪ V2(S Fn) ∪
V3(S Fn) as the following:
V1(S Fn) = {c : the central vertex with deg(c) = n}
V2(S Fn) = {ui: the vertices with deg(ui) = 5 on the cycle graph of S Fn, i = (1, n)}
V3(S Fn) = {vi: the vertices that are corresponding the edges (ui, u(i+1)), i = (1, n)}
Let S be an exponential dominating set. When we add the vertex c to S , then all vertices of V2(S Fn)
are dominated because of d(c, ui) = 1. If we add the vertices u(i−2) and u(i+4) to S , then the vertex
vi is dominated because of d(vi, u(i−2)) = d(vi, u(i+4)) = 3 and d(vi, c) = 2. So, we have w(vi) =
1
22 + 1

22 + 1
2 = 1. Hence, the distance between the vertices in V2(S Fn) must be at most 5 for S namely

S = {ui, ui+5, ui+10, ...}. Therefore, we have d n
5e vertices from V2(S Fn) for S and considering the central

vertex c, we have γe(S Fn) = d n
5e + 1.

b.) If we remove the central vertex c from S , then we need to add the vertices ui−1 and ui+2 to dominate
the vertex vi since d(ui−1, vi) = d(ui+2, vi) = 2 for n > 12. Hence the distance between the vertices in
V2(S Fn) is at most 3 in S and the exponential domination number increases.
c.) Case 1. n ≡ 0(mod 5)
In this case, if we remove the last vertex un−4 from S , then the vertices vn−7, vn−6, vn−5, vn−4, vn−3 and
vn−2 can’t be dominated exponentially. Therefore, if we omit these vertices from the graph, then we
don’t need to add the vertex un−4 to S . So, the exponential domination number decreases.
Case 2. n ≡ 1, 2, 3, 4(mod 5)
The distance between the last vertex ux and the first vertex u1 that are picked for S in V2(S Fn) is at
1,2,3,4 in cases n ≡ 1(mod 5), n ≡ 2(mod 5), n ≡ 3(mod 5), n ≡ 4(mod 5) respectively. If we remove
ux from S , then vx, vx−1, vx−2, ..., vx−(nmod5) can’t be dominated exponentially. Since, the number of these
vertices are n(mod 5) + 1, we have γ−e (S Fn) = n(mod 5) + 1.
The proof is completed. �

Definition 3.5. [15] A helm Hn is constructed from a wheel Wn by adding n vertices of degree 1, one
adjacent to each terminal vertex. It follows that the Helm graph denoted Hn has 2n + 1 vertices ( n
vertices of degree 4, n vertices of degree one an one vertex of degree n ) and 3n edges. The Helm graph
Hn can be depicted as in the following figure:
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Figure 5. Helm Graph H5.

Theorem 3.4. Let Hn be a Helm graph with 2n + 1 vertices and n > 12, then
a.) γe(Hn) = d n

4e + 1
b.) γ+

e (Hn) = 1,
c.)

γ−e (Hn) =

{
5, i f n ≡ 0(mod 4)
n(mod 4) + 1, i f n ≡ otherwise

Proof. The proof is similar to the proof of Theorem 3.3. �

Definition 3.6. [16] For k ≥ 2 an integer, let Nk be the connected cubic graph constructed as follows.
Take k disjoint copies D1,D2, ...,Dk of a diamond, where V(Di) = {ai, bi, ci, di} and where aibi is the
missing edge in Di. Let Nk be obtained from the disjoint union of these k diamonds by adding the edges
{aibi+1|i = 1, 2, ..., k − 1} and adding the edge akb1. We call Nk a diamond-necklace with k diamonds. A
diamond-necklace, N6, with six diamonds can be depicted as in the following figure:

Figure 6. Diamond-Necklace Graph N6

Theorem 3.5. Let Nn be a diamond-necklace graph with 4n vertices, then
a.) γe(Nn) = d 3n+1

4 e

b.)

γ+
e (Nn) =

{
2, i f γe(Nn) = γe(Nn−1)
4, otherwise
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c.)

γ−e (Nn) =


7, i f n ≡ 0(mod 4)
5, i f n ≡ 1(mod 4)
4, i f n ≡ 2(mod 4)
3, i f n ≡ 3(mod 4)

Proof. a.) Let S be an exponential dominating set. The vertices c and d are exponentially dominated
by the same vertex in S because of d(c, d) = d(c, a) = d(c, b) = d(d, a) = d(d, b) = 1 and d(a, b) =

2 for every diamond in the graph. Hence, we can regard every diamond as a path P3. We know
γe(Pn) = d n+1

4 e from the Theorem 2.1. There are n diamonds in the diamond-necklace graph Nn. So,
γe(Nn) = γe(P3n) = d 3n+1

4 e.
b.) If we remove the vertices ai and bi from the diamond Di in Nn, then the graph Nn−1 and the edge
(cidi) remains. To dominate the vertices ci and di, one of them is added to S when γe(Nn) = γe(Nn−1).
Hence, the exponential domination number of the graph increases.

But, When γe(Nn) , γe(Nn−1) we need to remove the vertices ci, di ∈ Di and ci+2, di+2 ∈ Di+2, where
ci−1, ci+3 ∈ S . Hence, the graph Nn−3, one diamond Di+1 with two pendant vertices bi, ai+2 and two
pendant vertices ai, bi+2 remain. So,

γe(Nn−3) + γe(P5) + 2 = d
3(n − 3) + 1

4
e + d

6
4
e + 2

= d
3n − 8

4
e + 2 + 2

= d
3n
4
e + 2

> d
3n + 1

4
e.

= γe(Nn)

where, d 3n
4 e = k, k ∈ Z holds ∀n ∈ ( 4

3k, 4
3 (k + 1)) and d 3n

4 e + 2 = k + 2. Also, d 3n−8
4 e + 4 > d 3n+1

4 e due to
k ≤ d3n+1

4 e ≤ k + 1. Hence, the exponential domination number of the graph is increased by subtracting
4 vertices in total.
c.) We add one vertex from each three consecutive diamonds to S and we don’t need to add any vertex
from the fourth diamond. Therefore, we have three vertices from every four consecutive diamonds in
S . To decrease the exponential domination number by one;
Case 1. n ≡ 0(mod 4)
In this case, six vertices that are four of them at distance 2 and two of them at distance 1 to the vertex
v ∈ S can’t be dominated exponentially.
Case 2. n ≡ 1(mod 4)
In this case, four vertices that are three of them at distance 1 and one of them at distance 2 to the vertex
v ∈ S can’t be dominated exponentially.
Case 3. n ≡ 2(mod 4)
In this case, three vertices that are two of them at distance 1 and one of them at distance 2 to the vertex
v ∈ S can’t be dominated exponentially.
Case 4. n ≡ 3(mod 4)
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In this case, two vertices that are at distance 1 to the vertex v ∈ S can’t be dominated exponentially.
Hence, the exponential domination number decreases by subtracting these vertices as well as the vertex
v ∈ S from the graph.
The proof is completed. �

Definition 3.7. [16] For k ≥ 1, we define a diamond-bracelet Bk with k diamonds as follows. Let
Bk be obtained from a diamond-necklace Nk+1 with k + 1 diamonds D1,D2, ...,Dk+1 by removing the
diamond Dk+1 and adding a triangle T with V(T ) = {a, b, c}, and adding the edges bb1 and aak. A
diamond-bracelet, B5 with five diamonds can be depicted as in the following figure:

Figure 7. Diamond-bracelet Graph B5.

Theorem 3.6. Let Bn for n ≥ 5 be a diamond-bracelet graph with 4n + 3 vertices, then
a)

γe(Bn) =

{
d 3n+1

4 e, i f n ≡ 3, 6, 7(mod 8)
d 3n+1

4 e + 1, i f n ≡ 0, 1, 2, 4, 5(mod 8)

b)

γ+
e (Bn) =


1, i f n = 5, 6, 7
2, i f n = 8
4, i f n ≥ 9

c)

γ−e (Bn) =



4, i f n ≡ 0(mod 8)
3, i f n ≡ 1(mod 8)
2, i f n ≡ 2(mod 8)
6, i f n ≡ 3(mod 8)
4, i f n ≡ 4(mod 8)
3, i f n ≡ 5(mod 8)
7, i f n ≡ 6(mod 8)
6, i f n ≡ 7(mod 8)

Proof. The proof is similar to the proof of Theorem 3.5. �
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Definition 3.8. [16] For k ≥ 1, we define a diamond-chain Lk with k diamonds as follows. Let Lk be
obtained from a diamond-necklace Nk+1 with k + 1 diamonds D1,D2, ...,Dk+1 by removing the diamond
Dk+1 and adding two disjoint triangles T1 and T2 and adding an edge joining b1 to a vertex of T1 and
adding an edge joining ak to a vertex of T2. A diamond-chain, L2, with two diamonds can be depicted
as in the following figure:

Figure 8. Diamond-chain Graph L2.

Theorem 3.7. Let Ln be a diamond-chain graph with 4n + 6 vertices, then
a.)

γe(Ln) =


3bn

4c + 2, i f n ≡ 0, 1(mod 4)
3bn

4c + 3, i f n ≡ 2(mod 4)
3bn

4c + 4, i f n ≡ 3(mod 4)

b.) γ+
e (Ln) = 2

c.)

γ−e (Ln) =


2, i f n ≡ 0(mod 4)
6, i f n ≡ 1(mod 4)
4, i f n ≡ 2(mod 4)
3, i f n ≡ 3(mod 4)

Proof. a.) Let S be an exponential dominating set of Ln. To dominate all vertices in the graph Ln, there
must be one vertex from the triangle T1 and one vertex from the triangle T2 in S . Also, there must
be one vertex from each consecutive three diamonds and there is no need to add any vertex from the
fourth diamond for the set S . If we continue in this manner, we have at least 3b n

4c+ 2 vertices in S and
also;
Case 1. n ≡ 0, 1(mod 4)
In this case, the number of the diamonds is either a multiple of four or one more. So, we don’t need to
choose another vertex for S .
Case 2. n ≡ 2(mod 4)
In this case, the number of the diamonds is more than two times the quadruple. Hence, to dominate all
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vertices exponentially we must also add one vertex from the last diamond to S .
Case 3. n ≡ 3(mod 4)
In this case, the number of the diamonds is more than three times the quadruple. Hence, to dominate
all vertices exponentially we must also add two vertices from the last two diamonds to S .
b.) If we remove the vertices a and b from the second diamond in the case n ≡ 0(mod 4) or from any
diamond in other cases, then the exponential domination number increases by one.
c.) To decrease the exponential domination number, it is sufficient to remove the vertex v choosen from
the triangle T2 for S and the vertices that are exponentially dominated by this vertex. So,
Case 1. n ≡ 0(mod 4)
In this case, it is sufficient to remove two vertices with degree 2 in triangle.
Case 2. n ≡ 1(mod 4)
In this case, there is the vertex v with deg(v) = 3 from T2 in S . The vertices except the vertex a in
the last diamond before this triangle are exponentially dominated by the vertex v. To decrease the
exponential domination number of the graph, we must remove the vertices in T2 and three vertices
except the vertex a from the last diamond .
Case 3. n ≡ 2(mod 4)
In this case, the last two vertices in S are the vertices with degree 2 in T2 and the other is the vertex a
in the last diamond. The vertices c and d are exponentially dominated by the vertex a due to d(a, c) =

d(a, d) = 1. But, d(a, b) = 2. So, we must remove the vertex b and three vertices in T2 to decrease the
exponential domination number.
Case 4. n ≡ 3(mod 4)
In this case, the last two vertices in S are the vertices c or d in the last diamond and the vertex v ∈ T2.
We know d(c, b) = 1 and d(v, c) ≥ 2 ∀v ∈ T2. So, if we remove the all vertices in the triangle T2, then
the exponential domination number of the graph Ln decreases.
The proof is completed. �

4. Conclusions

If we think of the graph as modelling a communication network, some vertices play a critical role
with the deterioration of some centers and connecting lines. Many graph theoretical parameters have
been used to describe the stability of communication networks including connectivity, toughness,
integrity, scattering number, binding number, domination and its variations [1, 4]. In this paper, we
have discussed the graph-theoretic concept of exponential domination number and we investigate the
influence of some vertices on this parameter. Analogous work can be carried out for other graph
families.
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