Mathematics

Research article

Stability and domination exponentially in some graphs

Betül ATAY ATAKUL*

Department of Computer Education and Instructional Technology, Ağri İbrahim Çeçen University, 04100, Ağri, Turkey

* Correspondence: Email: batay @agri.edu.tr.

Abstract

For a graph $G=(V, E)$ and the exponential dominating set $S \subseteq V(G)$ of G such that $\sum_{u \in S}(1 / 2)^{\bar{d}(u, v)-1} \geq 1, \forall v \in V(G)$, where $\bar{d}(u, v)$ is the length of a shortest path in $\langle V(G)-(S-\{u\})\rangle$ if such a path exists, and ∞ otherwise, the minimum exponential domination number, $\gamma_{e}(G)$ is the smallest cardinality of S. The minimum exponential domination number can be decreased or increased by removal of some vertices from G. In this paper, we continue to study on exponential domination number and stability of some graphs. We consider γ_{e}^{+}and γ_{e}^{-}stability of the lollipop graph $L_{m, n}$, the comet graph $C_{m, n}$, the sunflower graph $S F_{n}$, the helm graph H_{n}, the diamond-necklace graph N_{n}, the diamond-bracelet graph B_{n} and the diamond-chain graph L_{n} to give us an idea about the resistance of these graphs.

Keywords: graph vulnerability; network design and communication; domination; exponential domination number
Mathematics Subject Classification: 05C69, 05C40, 68M10, 68R10

1. Introduction

A graph G, a mathematical modelling in which we show some structures is represented by a set of vertices $V(G)$ and a set of edges $E(G)$. Firstly, we mention some of the definitions related to graph theory in this article. For any vertex $v \in V(G)$, the open neighbourhood of v is $N(v)=\{u \in V(G) \mid u v \in$ $E(G)\}$ and closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. The distance $d(u, v)$ between two vertices u and v in G is the length of a shortest path between them. The diameter of G, denoted by $\operatorname{diam}(G)$ is the largest distance between two vertices in $V(G)$. The number of the neighbour vertices of the vertex v is called degree of v and denoted by $\operatorname{deg}_{G}(v)$. A vertex v is said to be pendant vertex if $d e g_{G}(v)=1$. A vertex u is called support if u is adjacent to a pendant vertex [1]. Throughout this article, the largest integer not greater than x is denoted by $\lfloor x\rfloor$ and the least integer not less than x is denoted by $\lceil x\rceil$. The graph with n vertices labeled $x_{1}, x_{2}, \ldots, x_{n}$ and edges $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}$ is called a path of length
$n-1$, denoted by P_{n}. The cycle of length n, C_{n} is the graph with n vertices $x_{1}, x_{2}, \ldots, x_{n}$ and the edges $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n} x_{1}$ [2]. Paths are trees. A tree is a path if and only if its maximum degree is 2 . The wheel with $n+1$ vertices, W_{n}, is the graph that consists of an n-cycle and one additional vertex that is adjacent to all the vertices of the cycle. Complete graph K_{n} is the graph with n vertices, and every vertex is adjacent to every other vertex [2]. A star is a tree consisting of one vertex adjacent to all the others. The n-vertex star is the biclique $K_{1, n-1}$ [3]. The complement \bar{G} of a simple graph G is the simple graph with vertex set $V(G)$ defined by $u v \in E(\bar{G})$ if and only if $u v \notin E(\bar{G})$ [3].

The domination in graph theory, which has an important role in many fields of study such as optimization, design and analysis of communication networks, social sciences and military surveillance. A dominating set in a graph G is a set of vertices of G such that every vertex in $V(G)-S$ is adjacent to at least one vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G[4,5]$.

There are many domination parameters that measure the robustness and stability of graphs under any attack or influence. In such cases some vertices in the graph are critical. When we remove a vertex from the graph, resume of the remaining structure gives us information about the importance of the vertex.

Dankelmann et al. [6] recently defined exponential domination. Let G be a graph and $S \subseteq V(G)$. We denote by $\langle S\rangle$ the subgraph of G induced by S. For each vertex $u \in S$ and for each $v \in V(G)-S$, we define $\bar{d}(u, v)$ to be the length of a shortest $u-v$ path in $\langle G-(S-\{u\})\rangle$ if such a path exists, and ∞ otherwise. If, for each $v \in V(G)-S$ we have $\sum_{u \in S} 1 / 2^{\bar{d}(u, v)} \geq 1$, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, $\gamma_{e}(G)$. One can think of this in the following way: each vertex dominates its neighbors, $1 / 2$-dominates those at distance 2 , and so on. Hence a vertex v can be dominated by a neighbor of v or by a number of vertices that are not too far from v. Such a model could be used, for example, for the analysis of dissemination of information in social networks, where the impact of the information decreases every time it is passed on. The assumption is that gossip heard directly from a source is totally reliable, while gossip passed from person to person loses half its credibility with each individual in the chain. Finding the exponential domination number in this application amounts to determining the minimum number of sources needed so that each person gets fully reliable information.

In this paper, firstly known results are given. Then, some results about the exponential domination number, γ_{e}^{+}-stability and γ_{e}^{-}-stability for some graphs are established. Finally, conclusion section is presented.

2. Known results

Theorem 2.1. [6] $\forall n \in \mathbb{Z}^{+}, \gamma_{e}\left(P_{n}\right)=\lceil(n+1) / 4\rceil$.
Theorem 2.2. [7] $\forall n \geq 6 \in \mathbb{Z}^{+}$,

$$
\gamma_{e}^{+}\left(P_{n}\right)= \begin{cases}2, & \text { if } n \equiv 0(\bmod 4) \\ 1, & \text { otherwise }\end{cases}
$$

Theorem 2.3. [7] $\forall n \geq 7 \in \mathbb{Z}^{+}$,

$$
\gamma_{e}^{-}\left(P_{n}\right)= \begin{cases}4, & \text { if } n \equiv 3(\bmod 4) \\ 3, & \text { if } n \equiv 2(\bmod 4) \\ 2, & \text { if } n \equiv 1(\bmod 4) \\ 1, & \text { if } n \equiv 0(\bmod 4)\end{cases}
$$

Theorem 2.4. [6] $\forall n \in \mathbb{Z}^{+}$,

$$
\gamma_{e}\left(C_{n}\right)= \begin{cases}2, & \text { if } n=4 \\ \lceil n / 4\rceil, & \text { if } n \neq 4\end{cases}
$$

Theorem 2.5. [7] $\forall n \geq 12 \in \mathbb{Z}^{+}$,

$$
\gamma_{e}^{+}\left(C_{n}\right)= \begin{cases}3, & \text { if } n \equiv 1(\bmod 4) \\ 2, & \text { otherwise }\end{cases}
$$

Theorem 2.6. [7] $\forall n \geq 6 \in \mathbb{Z}^{+}$,

$$
\gamma_{e}^{-}\left(C_{n}\right)= \begin{cases}5, & \text { if } n \equiv 0(\bmod 4) \\ 2, & \text { if } n \equiv 1(\bmod 4) \\ 3, & \text { if } n \equiv 2(\bmod 4) \\ 4, & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Theorem 2.7. [6] If G is a connected graph with diametre d, then $\gamma_{e}(G) \geq \frac{[d+2]}{4}$.
Theorem 2.8. [6] If G is a connected graph with order n, then $\gamma_{e}(G) \leq \frac{2}{5}(n+2)$.
Theorem 2.9. [6] Let G be a connected graph with order n and T be a spanning tree of G. Then, $\gamma_{e}(G) \leq \gamma_{e}(T)$.
Theorem 2.10. [6] For every graph $G, \gamma_{e}(G) \leq \gamma(G)$. Also, $\gamma_{e}(G)=1$ if and only if $\gamma(G)=1$.
Theorem 2.11. [6] There is a tree T with order 375 and $\gamma_{e}(T)=144$.
Theorem 2.12. [8] If G is a connected graph with n vertices and there is a vertex such that $\exists v \in V(G)$ $\operatorname{deg}(v)=n-1$, then $\gamma_{e}(G)=1$.
Theorem 2.13. [8] Let G be a connected graph with n vertices. If diam $(G)=2$ and there isn't any vertex such that $\operatorname{deg}(v)=n-1$, then $\gamma_{e}(G)=2$.
Theorem 2.14. [8] For binary graph operations join and corona:
a) For any two graphs G_{1} and $G_{2}, \gamma_{e}\left(G_{1} \circ G_{2}\right) \geq\left\lceil\frac{\operatorname{diam}\left(G_{1} \circ G_{2}\right)}{2}\right\rceil$.
b) Let G_{1} and G_{2} be any two graphs with diameters d_{1} and d_{2} respectively. If $\operatorname{diam}\left(G_{1}\right)=d_{1}<$ $\operatorname{diam}\left(G_{2}\right)=d_{2}$, then $\gamma_{e}\left(G_{1}+G_{2}\right)=\gamma_{e}\left(G_{1}\right)$.

Theorem 2.15. [1, 3] If G is a simple graph and $\operatorname{diam}(G) \geq 3 \Rightarrow \operatorname{diam}(\bar{G}) \leq 3$.
Corollary 2.1. [1, 3] If graph G has diameter at least 3 , then $\gamma(\bar{G}) \leq 2$.
Theorem 2.16. [9] Let G is a connected graph with n vertices. Then the exponential domination number of the complement prism $G \bar{G}$ with $2 n$ vertices is $\gamma_{e}(G \bar{G})=2$.
Theorem 2.17. Let G be a graph with diam $(G)=d$ and $|V(G)|=n$, then $G^{d} \cong K_{n}$.
Theorem 2.18. [7] Let $K_{m, n}$ be a bipartite complete graph with $m+n$ vertices $(m<n)$. Then, $\gamma_{e}^{-}\left(K_{m, n}\right)=m-1$ and $\gamma_{e}^{+}\left(K_{m, n}\right)=m$.

3. Exponential domination and stability of a graph

We partition the vertices of G into three disjoint sets according to how their removal affects $\gamma_{e}(G)$ [10]. Let $V=V_{e}^{0} \cup V_{e}^{+} \cup V_{e}^{-}$for

$$
\begin{aligned}
V_{e}^{0}(G) & =\left\{v \in V(G): \gamma_{e}(G-v)=\gamma_{e}(G)\right\} \\
V_{e}^{+}(G) & =\left\{v \in V(G): \gamma_{e}(G-v)>\gamma_{e}(G)\right\} \\
V_{e}^{-}(G) & =\left\{v \in V(G): \gamma_{e}(G-v)<\gamma_{e}(G)\right\}
\end{aligned}
$$

Definition 3.1. [11]
i.) γ_{e} - stability of graph G is the minimum number of vertices whose removal changes $\gamma_{e}(G)$.
ii.) $\gamma_{e}^{+}-$stability $\left(\gamma_{e}^{-}-\right)$stability of a graph G written $\gamma_{e}^{+}\left(\gamma_{e}^{-}\right)$is the minimum number of vertices whose removal increase (decrease) $\gamma_{e}(G)$.

When the graph under consideration is clear from the context we simply write $V_{e}^{0}, V_{e}^{+}, V_{e}^{-}$. For the graph in Figure $1, S=\left\{v_{2}, v_{4}, v_{7}\right\}$ is an any minimum exponential domination set. $\operatorname{So}, \gamma_{e}(G)=3$. If we remove $V_{e}^{+}(G)=\left\{v_{9}, v_{6}\right\}$ we have a remaining graph G^{*} has an any minimum exponential domination set $S^{*}=\left\{v_{2}, v_{5}, v_{7}, v_{11}\right\}$. So, $\gamma_{e}\left(G^{*}\right)=4$ and $\gamma_{e}^{+}(G)=2$. If we remove $V_{e}^{-}(G)=\left\{v_{1}\right\}$ from G then, we have a remaining graph $G^{* *}$ has an any minimum exponential domination set $S^{* *}=\left\{v_{3}, v_{7}\right\}$. So, $\gamma_{e}\left(G^{* *}\right)=2$ and $\gamma_{e}^{-}(G)=1$.

Figure 1. Graph G.

Definition 3.2. [12] The graph G is said to be a lollipop graph if there exists one edge $e \in E$ such that the removal of the bridge e disconnects G into two graphs K_{m} and P_{n} such that K_{m} is a clique and P_{n} is a path graph. The lollipop graph $L_{4,5}$ can be depicted as in the following figure:

Figure 2. Lollipop Graph $L_{4,5}$.

Theorem 3.1. Let $L_{m, n}$ be a lollipop graph with $m+n$ vertices. Then,
a.) $\gamma_{e}\left(L_{m, n}\right)=\left\lceil\frac{n+3}{4}\right\rceil$.
b.)

$$
\gamma_{e}^{+}\left(L_{m, n}\right)= \begin{cases}1, & \text { if } n \equiv 0,1(\bmod 4) \\ 2, & \text { if } n \equiv 2,3(\bmod 4)\end{cases}
$$

c.)

$$
\gamma_{e}^{-}\left(L_{m, n}\right)= \begin{cases}3, & \text { if } n \equiv 0(\bmod 4) \\ 4, & \text { if } n \equiv 1(\bmod 4) \\ 1, & \text { if } n \equiv 2(\bmod 4) \\ 2, & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Proof. a.) The graph $L_{m, n}$ consists of a path graph with $n+2$ vertices and a complete graph K_{m-2} with $m-2$ vertices. Let S be an exponential domination set of $L_{m, n}$. We know from the Theorem 2.1 that $\gamma_{e}\left(P_{n}\right)=\left\lceil\frac{n+1}{4}\right\rceil$. The first vertex of the path graph and any vertex of the complete graph are common. So, adding the first vertex of P_{n+2} to the set S, all vertices of K_{m-2} are dominated. So, we have $\gamma_{e}\left(L_{m, n}\right)=\left\lceil\frac{n+3}{4}\right\rceil$.
b.) Case 1. $n \equiv 0,1(\bmod 4)$

In this case, if we remove the vertex $v \in K_{m}$ with $\operatorname{deg}(v)=m$, then we have two graphs with a complete graph K_{m-1} and a path graph P_{n}. We know $\gamma_{e}\left(K_{m-1}\right)=1$ and $\gamma_{e}\left(P_{n}\right)=\left\lceil\frac{n+1}{4}\right\rceil$. If $n \equiv 0,1(\bmod 4)$, then $\gamma_{e}\left(P_{n}\right)=\left\lceil\frac{n+1}{4}\right\rceil=\left\lceil\frac{n+3}{4}\right\rceil=\gamma_{e}\left(L_{m, n}\right)$. Also, we add any vertex from K_{m-1} to S to be dominated the complete graph. Hence, the exponential domination number of $L_{m, n}$ increases.
Case 2. $n \equiv 2,3(\bmod 4)$
In this case, removing the vertex $v \in K_{m}$ with $\operatorname{deg}(v)=m$ isn't enough to increase the exponential domination number. Because, for the remaining graphs K_{m-1} and P_{n}, $\gamma_{e}\left(P_{n}\right)=\left\lceil\frac{n+1}{4}\right\rceil<\left\lceil\frac{n+3}{4}\right\rceil=\gamma_{e}\left(L_{m, n}\right)$ and $K_{m-1}=1$. So, $\gamma_{e}\left(P_{n}\right)+\gamma_{e}\left(K_{m-1}\right)=\gamma_{e}\left(L_{m, n}\right)$. Therefore, we also remove the second vertex of the path graph and we have three remaining graphs that are K_{m-1}, P_{1}, P_{n-2} which has $\gamma_{e}\left(K_{m-1}\right)=1, \gamma_{e}\left(P_{1}\right)=1$ and $\gamma_{e}\left(P_{n-2}\right)=\left\lceil\frac{n-1}{4}\right\rceil=\left\lceil\frac{n+3}{4}\right\rceil-1=L_{m, n}-1$. So, $\gamma_{e}\left(K_{m-1}\right)+\gamma_{e}\left(P_{1}\right)+\gamma_{e}\left(P_{n-2}\right)=\gamma_{e}\left(L_{m, n}\right)+1$.
c.) Case 1. $n \equiv 0(\bmod 4)$

In this case, when we remove the last three vertices v_{n-2}, v_{n-1}, v_{n} of P_{n}, we have two remaining graphs K_{m} and P_{n-3}. Hence, we have a lollipop graph $L_{m, n-3} . \gamma_{e}\left(L_{m, n-3}\right)=\left\lceil\frac{n}{4}\right\rceil<\left\lceil\frac{n+3}{4}\right\rceil=\gamma_{e}\left(L_{m, n}\right)$.
Case 2. $n \equiv 1(\bmod 4)$
In this case, when we remove the last four vertices $v_{n-3}, v_{n-2}, v_{n-1}, v_{n}$ of P_{n}, we have a lollipop graph $L_{m, n-4}$. Hence, $\gamma_{e}\left(L_{m, n-4}\right)=\left\lceil\frac{n-1}{4}\right\rceil<\left\lceil\frac{n+3}{4}\right\rceil=\gamma_{e}\left(L_{m, n}\right)$.
Case 3. $n \equiv 2(\bmod 4)$
In this case, when we remove the last vertex v_{n} of P_{n}, we have a lollipop graph $L_{m, n-1}$. Hence, $\gamma_{e}\left(L_{m, n-1}\right)=\left\lceil\frac{n+2}{4}\right\rceil<\left\lceil\frac{n+3}{4}\right\rceil=\gamma_{e}\left(L_{m, n}\right)$.
Case 4. $n \equiv 3(\bmod 4)$
In this case, when we remove the last two vertices v_{n-1}, v_{n} of P_{n}, we have a lollipop graph $L_{m, n-2}$. Hence, $\gamma_{e}\left(L_{m, n-2}\right)=\left\lceil\frac{n+1}{4}\right\rceil<\left\lceil\frac{n+3}{4}\right\rceil=\gamma_{e}\left(L_{m, n}\right)$.
The proof is completed.
Definition 3.3. [13] For integer $m \geq 2$ and $n \geq 1$, the comet graph $C_{m, n}$ is defined to be the graph of order $m+n$ obtained from disjoint union of a star $K_{1, m}$ and a path P_{n} with n vertices by adding an
edge joining the central vertex of the star with an end-vertex of the path. The Comet graph $C_{7,6}$ can be depicted as in the following figure:

Figure 3. Comet Graph $C_{7,6}$.

Theorem 3.2. Let $C_{m, n}$ be a comet graph with $m+n$ vertices. Then,
a.) $[9] \gamma_{e}\left(C_{m, n}\right)=\gamma_{e}\left(P_{n+2}\right)=\left\lceil\frac{n+3}{4}\right\rceil$
b.) $\gamma_{e}^{+}\left(C_{m, n}\right)=1$
c.)

$$
\gamma_{e}^{-}\left(C_{m, n}\right)= \begin{cases}3, & \text { if } n \equiv 0(\bmod 4) \\ 4, & \text { if } n \equiv 1(\bmod 4) \\ 1, & \text { if } n \equiv 2(\bmod 4) \\ 2, & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Proof. b.) Let S be an exponential domination set of $C_{m, n}$. If we remove the center vertex c of the star graph with $\operatorname{deg}(c)=m+1$, then we have a null graph $\overline{K_{m}}$ and a path graph P_{n}. We know $\gamma_{e}\left(P_{n}\right)=\left\lceil\frac{n+1}{4}\right\rceil$ and $\gamma_{e}\left(\overline{K_{m}}\right)=m$. If, $n \equiv 0(\bmod 4)$, then $\left\lceil\frac{n+1}{4}\right\rceil=\left\lceil\frac{n}{4}\right\rceil+1$, otherwise $\left\lceil\frac{n+1}{4}\right\rceil=\left\lceil\frac{n}{4}\right\rceil=\gamma_{e}\left(C_{m, n}\right)-1$. Also, due to $m \geq 2$, if $n \equiv 0(\bmod 4)$, then $\gamma_{e}\left(\overline{K_{m}}\right)+\gamma_{e}\left(P_{n}\right)=m+\left\lceil\frac{n+1}{4}\right\rceil=m+\left\lceil\frac{n}{4}\right\rceil+1>\gamma_{e}\left(C_{m, n}\right)$; otherwise $\gamma_{e}\left(\overline{K_{m}}\right)+\gamma_{e}\left(P_{n}\right)=m+\left\lceil\frac{n+1}{4}\right\rceil=m+\gamma_{e}\left(C_{m, n}\right)-1>\gamma_{e}\left(C_{m, n}\right)$. Hence, $\gamma_{e}^{+}\left(C_{m, n}\right)=1$.
c.) The proof is similar to the proof of Theorem 3.1.c.)

The proof is completed.
Definition 3.4. [14] Sunflower graph is a graph obtained by taking a wheel with the central vertex c and the n-cycle $u_{1}, \ldots, u_{(n)}$ combined with additional vertices $v_{1}, \ldots, v_{(n)}$, where v_{i} is joined by edges $u_{i}, u_{(i+1)}$, where $i+1$ is taken from modulo n. The sunflower graph $S F_{3}$ can be depicted as in the following figure:

Figure 4. Sunflower Graph $S F_{3}$.

Theorem 3.3. Let $S F_{n}$ be a sunflower graph and $n>12$, then
a.) $\gamma_{e}\left(S F_{n}\right)=\left\lceil\frac{n}{5}\right\rceil+1$
b.) $\gamma_{e}^{+}\left(S F_{n}\right)=1$,
c.)

$$
\gamma_{e}^{-}\left(S F_{n}\right)=\left\{\begin{array}{lr}
6, & \text { if } n \equiv 0(\bmod 5) \\
n(\bmod 5)+1, & \text { if } n \equiv \text { otherwise }
\end{array}\right.
$$

Proof. a.) We can split the $V\left(S F_{n}\right)$ into three vertex sets that are $V\left(S F_{n}\right)=V_{1}\left(S F_{n}\right) \cup V_{2}\left(S F_{n}\right) \cup$ $V_{3}\left(S F_{n}\right)$ as the following:
$V_{1}\left(S F_{n}\right)=\{c$: the central vertex with $\operatorname{deg}(c)=n\}$
$V_{2}\left(S F_{n}\right)=\left\{u_{i}\right.$: the vertices with $\operatorname{deg}\left(u_{i}\right)=5$ on the cycle graph of $\left.S F_{n}, i=\overline{(1, n)}\right\}$
$V_{3}\left(S F_{n}\right)=\left\{v_{i}\right.$: the vertices that are corresponding the edges $\left.\left(u_{i}, u_{(i+1)}\right), i=\overline{(1, n)}\right\}$
Let S be an exponential dominating set. When we add the vertex c to S, then all vertices of $V_{2}\left(S F_{n}\right)$ are dominated because of $d\left(c, u_{i}\right)=1$. If we add the vertices $u_{(i-2)}$ and $u_{(i+4)}$ to S, then the vertex v_{i} is dominated because of $d\left(v_{i}, u_{(i-2)}\right)=d\left(v_{i}, u_{(i+4)}\right)=3$ and $d\left(v_{i}, c\right)=2$. So, we have $w\left(v_{i}\right)=$ $\frac{1}{2^{2}}+\frac{1}{2^{2}}+\frac{1}{2}=1$. Hence, the distance between the vertices in $V_{2}\left(S F_{n}\right)$ must be at most 5 for S namely $S=\left\{u_{i}, u_{i+5}, u_{i+10}, \ldots\right\}$. Therefore, we have $\left\lceil\frac{n}{5}\right\rceil$ vertices from $V_{2}\left(S F_{n}\right)$ for S and considering the central vertex c, we have $\gamma_{e}\left(S F_{n}\right)=\left\lceil\frac{n}{5}\right\rceil+1$.
b.) If we remove the central vertex c from S, then we need to add the vertices u_{i-1} and u_{i+2} to dominate the vertex v_{i} since $d\left(u_{i-1}, v_{i}\right)=d\left(u_{i+2}, v_{i}\right)=2$ for $n>12$. Hence the distance between the vertices in $V_{2}\left(S F_{n}\right)$ is at most 3 in S and the exponential domination number increases.
c.) Case 1. $n \equiv 0(\bmod 5)$

In this case, if we remove the last vertex u_{n-4} from S, then the vertices $v_{n-7}, v_{n-6}, v_{n-5}, v_{n-4}, v_{n-3}$ and v_{n-2} can't be dominated exponentially. Therefore, if we omit these vertices from the graph, then we don't need to add the vertex u_{n-4} to S. So, the exponential domination number decreases.
Case 2. $n \equiv 1,2,3,4(\bmod 5)$
The distance between the last vertex u_{x} and the first vertex u_{1} that are picked for S in $V_{2}\left(S F_{n}\right)$ is at $1,2,3,4$ in cases $n \equiv 1(\bmod 5), n \equiv 2(\bmod 5), n \equiv 3(\bmod 5), n \equiv 4(\bmod 5)$ respectively. If we remove u_{x} from S, then $v_{x}, v_{x-1}, v_{x-2}, \ldots, v_{x-(\text { (nmod } 5)}$ can't be dominated exponentially. Since, the number of these vertices are $n(\bmod 5)+1$, we have $\gamma_{e}^{-}\left(S F_{n}\right)=n(\bmod 5)+1$.
The proof is completed.

Definition 3.5. [15] A helm H_{n} is constructed from a wheel W_{n} by adding n vertices of degree 1 , one adjacent to each terminal vertex. It follows that the Helm graph denoted H_{n} has $2 n+1$ vertices (n vertices of degree $4, n$ vertices of degree one an one vertex of degree n) and $3 n$ edges. The Helm graph H_{n} can be depicted as in the following figure:

Figure 5. Helm Graph H_{5}.
Theorem 3.4. Let H_{n} be a Helm graph with $2 n+1$ vertices and $n>12$, then
a.) $\gamma_{e}\left(H_{n}\right)=\left\lceil\frac{n}{4}\right\rceil+1$
b.) $\gamma_{e}^{+}\left(H_{n}\right)=1$,
c.)

$$
\gamma_{e}^{-}\left(H_{n}\right)=\left\{\begin{array}{lr}
5, & \text { if } n \equiv 0(\bmod 4) \\
n(\bmod 4)+1, & \text { if } n \equiv \text { otherwise }
\end{array}\right.
$$

Proof. The proof is similar to the proof of Theorem 3.3.
Definition 3.6. [16] For $k \geq 2$ an integer, let N_{k} be the connected cubic graph constructed as follows. Take k disjoint copies $D_{1}, D_{2}, \ldots, D_{k}$ of a diamond, where $V\left(D_{i}\right)=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ and where $a_{i} b_{i}$ is the missing edge in D_{i}. Let N_{k} be obtained from the disjoint union of these k diamonds by adding the edges $\left\{a_{i} b_{i+1} \mid i=1,2, \ldots, k-1\right\}$ and adding the edge $a_{k} b_{1}$. We call N_{k} a diamond-necklace with k diamonds. A diamond-necklace, N_{6}, with six diamonds can be depicted as in the following figure:

Figure 6. Diamond-Necklace Graph N_{6}
Theorem 3.5. Let N_{n} be a diamond-necklace graph with $4 n$ vertices, then
a.) $\gamma_{e}\left(N_{n}\right)=\left\lceil\frac{3 n+1}{4}\right\rceil$
b.)

$$
\gamma_{e}^{+}\left(N_{n}\right)=\left\{\begin{array}{lr}
2, & \text { if } \gamma_{e}\left(N_{n}\right)=\gamma_{e}\left(N_{n-1}\right) \\
4, & \text { otherwise }
\end{array}\right.
$$

c.)

$$
\gamma_{e}^{-}\left(N_{n}\right)= \begin{cases}7, & \text { if } n \equiv 0(\bmod 4) \\ 5, & \text { if } n \equiv 1(\bmod 4) \\ 4, & \text { if } n \equiv 2(\bmod 4) \\ 3, & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Proof. a.) Let S be an exponential dominating set. The vertices c and d are exponentially dominated by the same vertex in S because of $d(c, d)=d(c, a)=d(c, b)=d(d, a)=d(d, b)=1$ and $d(a, b)=$ 2 for every diamond in the graph. Hence, we can regard every diamond as a path P_{3}. We know $\gamma_{e}\left(P_{n}\right)=\left\lceil\frac{n+1}{4}\right\rceil$ from the Theorem 2.1. There are n diamonds in the diamond-necklace graph N_{n}. So, $\gamma_{e}\left(N_{n}\right)=\gamma_{e}\left(P_{3 n}\right)=\left\lceil\frac{3 n+1}{4}\right\rceil$.
b.) If we remove the vertices a_{i} and b_{i} from the diamond D_{i} in N_{n}, then the graph N_{n-1} and the edge $\left(c_{i} d_{i}\right)$ remains. To dominate the vertices c_{i} and d_{i}, one of them is added to S when $\gamma_{e}\left(N_{n}\right)=\gamma_{e}\left(N_{n-1}\right)$. Hence, the exponential domination number of the graph increases.

But, When $\gamma_{e}\left(N_{n}\right) \neq \gamma_{e}\left(N_{n-1}\right)$ we need to remove the vertices $c_{i}, d_{i} \in D_{i}$ and $c_{i+2}, d_{i+2} \in D_{i+2}$, where $c_{i-1}, c_{i+3} \in S$. Hence, the graph N_{n-3}, one diamond D_{i+1} with two pendant vertices b_{i}, a_{i+2} and two pendant vertices a_{i}, b_{i+2} remain. So,

$$
\begin{aligned}
\gamma_{e}\left(N_{n-3}\right)+\gamma_{e}\left(P_{5}\right)+2 & =\left\lceil\frac{3(n-3)+1}{4}\right\rceil+\left\lceil\frac{6}{4}\right\rceil+2 \\
& =\left\lceil\frac{3 n-8}{4}\right\rceil+2+2 \\
& =\left\lceil\frac{3 n}{4}\right\rceil+2 \\
& >\left\lceil\frac{3 n+1}{4}\right\rceil . \\
& =\gamma_{e}\left(N_{n}\right)
\end{aligned}
$$

where, $\left\lceil\frac{3 n}{4}\right\rceil=k, k \in \mathbb{Z}$ holds $\forall n \in\left(\frac{4}{3} k, \frac{4}{3}(k+1)\right)$ and $\left\lceil\frac{3 n}{4}\right\rceil+2=k+2$. Also, $\left\lceil\frac{3 n-8}{4}\right\rceil+4>\left\lceil\frac{3 n+1}{4}\right\rceil$ due to $k \leq\left\lceil\frac{3 n+1}{4}\right\rceil \leq k+1$. Hence, the exponential domination number of the graph is increased by subtracting 4 vertices in total.
c.) We add one vertex from each three consecutive diamonds to S and we don't need to add any vertex from the fourth diamond. Therefore, we have three vertices from every four consecutive diamonds in S. To decrease the exponential domination number by one;
Case 1. $n \equiv 0(\bmod 4)$
In this case, six vertices that are four of them at distance 2 and two of them at distance 1 to the vertex $v \in S$ can't be dominated exponentially.
Case 2. $n \equiv 1(\bmod 4)$
In this case, four vertices that are three of them at distance 1 and one of them at distance 2 to the vertex $v \in S$ can't be dominated exponentially.
Case 3. $n \equiv 2(\bmod 4)$
In this case, three vertices that are two of them at distance 1 and one of them at distance 2 to the vertex $v \in S$ can't be dominated exponentially.
Case 4. $n \equiv 3(\bmod 4)$

In this case, two vertices that are at distance 1 to the vertex $v \in S$ can't be dominated exponentially. Hence, the exponential domination number decreases by subtracting these vertices as well as the vertex $v \in S$ from the graph.
The proof is completed.
Definition 3.7. [16] For $k \geq 1$, we define a diamond-bracelet B_{k} with k diamonds as follows. Let B_{k} be obtained from a diamond-necklace N_{k+1} with $k+1$ diamonds $D_{1}, D_{2}, \ldots, D_{k+1}$ by removing the diamond D_{k+1} and adding a triangle T with $V(T)=\{a, b, c\}$, and adding the edges $b b_{1}$ and $a a_{k} . A$ diamond-bracelet, B_{5} with five diamonds can be depicted as in the following figure:

Figure 7. Diamond-bracelet Graph B_{5}.

Theorem 3.6. Let B_{n} for $n \geq 5$ be a diamond-bracelet graph with $4 n+3$ vertices, then a)

$$
\gamma_{e}\left(B_{n}\right)=\left\{\begin{array}{lr}
\left\lceil\frac{3 n+1}{4}\right\rceil, & \text { if } n \equiv 3,6,7(\bmod 8) \\
\left\lceil\frac{3 n+1}{4}\right\rceil+1, & \text { if } n \equiv 0,1,2,4,5(\bmod 8)
\end{array}\right.
$$

b)

$$
\gamma_{e}^{+}\left(B_{n}\right)=\left\{\begin{array}{lr}
1, & \text { if } n=5,6,7 \\
2, & \text { if } n=8 \\
4, & \text { if } n \geq 9
\end{array}\right.
$$

c)

$$
\gamma_{e}^{-}\left(B_{n}\right)= \begin{cases}4, & \text { if } n \equiv 0(\bmod 8) \\ 3, & \text { if } n \equiv 1(\bmod 8) \\ 2, & \text { if } n \equiv 2(\bmod 8) \\ 6, & \text { if } n \equiv 3(\bmod 8) \\ 4, & \text { if } n \equiv 4(\bmod 8) \\ 3, & \text { if } n \equiv 5(\bmod 8) \\ 7, & \text { if } n \equiv 6(\bmod 8) \\ 6, & \text { if } n \equiv 7(\bmod 8)\end{cases}
$$

Proof. The proof is similar to the proof of Theorem 3.5.

Definition 3.8. [16] For $k \geq 1$, we define a diamond-chain L_{k} with k diamonds as follows. Let L_{k} be obtained from a diamond-necklace N_{k+1} with $k+1$ diamonds $D_{1}, D_{2}, \ldots, D_{k+1}$ by removing the diamond D_{k+1} and adding two disjoint triangles T_{1} and T_{2} and adding an edge joining b_{1} to a vertex of T_{1} and adding an edge joining a_{k} to a vertex of T_{2}. A diamond-chain, L_{2}, with two diamonds can be depicted as in the following figure:

Figure 8. Diamond-chain Graph L_{2}.

Theorem 3.7. Let L_{n} be a diamond-chain graph with $4 n+6$ vertices, then
a.)

$$
\gamma_{e}\left(L_{n}\right)=\left\{\begin{array}{lr}
3\left\lfloor\frac{n}{4}\right\rfloor+2, & \text { if } n \equiv 0,1(\bmod 4) \\
3\left\lfloor\frac{n}{4}\right\rfloor+3, & \text { if } n \equiv 2(\bmod 4) \\
3\left\lfloor\frac{n}{4}\right\rfloor+4, & \text { if } n \equiv 3(\bmod 4)
\end{array}\right.
$$

b.) $\gamma_{e}^{+}\left(L_{n}\right)=2$
c.)

$$
\gamma_{e}^{-}\left(L_{n}\right)= \begin{cases}2, & \text { if } n \equiv 0(\bmod 4) \\ 6, & \text { if } n \equiv 1(\bmod 4) \\ 4, & \text { if } n \equiv 2(\bmod 4) \\ 3, & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Proof. a.) Let S be an exponential dominating set of L_{n}. To dominate all vertices in the graph L_{n}, there must be one vertex from the triangle T_{1} and one vertex from the triangle T_{2} in S. Also, there must be one vertex from each consecutive three diamonds and there is no need to add any vertex from the fourth diamond for the set S. If we continue in this manner, we have at least $3\left\lfloor\frac{n}{4}\right\rfloor+2$ vertices in S and also;
Case 1. $n \equiv 0,1(\bmod 4)$
In this case, the number of the diamonds is either a multiple of four or one more. So, we don't need to choose another vertex for S.
Case 2. $n \equiv 2(\bmod 4)$
In this case, the number of the diamonds is more than two times the quadruple. Hence, to dominate all
vertices exponentially we must also add one vertex from the last diamond to S.
Case 3. $n \equiv 3(\bmod 4)$
In this case, the number of the diamonds is more than three times the quadruple. Hence, to dominate all vertices exponentially we must also add two vertices from the last two diamonds to S.
b.) If we remove the vertices a and b from the second diamond in the case $n \equiv 0(\bmod 4)$ or from any diamond in other cases, then the exponential domination number increases by one.
c.) To decrease the exponential domination number, it is sufficient to remove the vertex v choosen from the triangle T_{2} for S and the vertices that are exponentially dominated by this vertex. So,
Case 1. $n \equiv 0(\bmod 4)$
In this case, it is sufficient to remove two vertices with degree 2 in triangle.
Case 2. $n \equiv 1(\bmod 4)$
In this case, there is the vertex v with $\operatorname{deg}(v)=3$ from T_{2} in S. The vertices except the vertex a in the last diamond before this triangle are exponentially dominated by the vertex v. To decrease the exponential domination number of the graph, we must remove the vertices in T_{2} and three vertices except the vertex a from the last diamond .
Case 3. $n \equiv 2(\bmod 4)$
In this case, the last two vertices in S are the vertices with degree 2 in T_{2} and the other is the vertex a in the last diamond. The vertices c and d are exponentially dominated by the vertex a due to $d(a, c)=$ $d(a, d)=1$. But, $d(a, b)=2$. So, we must remove the vertex b and three vertices in T_{2} to decrease the exponential domination number.
Case 4. $n \equiv 3(\bmod 4)$
In this case, the last two vertices in S are the vertices c or d in the last diamond and the vertex $v \in T_{2}$. We know $d(c, b)=1$ and $d(v, c) \geq 2 \forall v \in T_{2}$. So, if we remove the all vertices in the triangle T_{2}, then the exponential domination number of the graph L_{n} decreases.
The proof is completed.

4. Conclusions

If we think of the graph as modelling a communication network, some vertices play a critical role with the deterioration of some centers and connecting lines. Many graph theoretical parameters have been used to describe the stability of communication networks including connectivity, toughness, integrity, scattering number, binding number, domination and its variations [1, 4]. In this paper, we have discussed the graph-theoretic concept of exponential domination number and we investigate the influence of some vertices on this parameter. Analogous work can be carried out for other graph families.

Conflict of interest

The author declares no conflicts of interest in this paper.

References

1. F. Harary, Graph Theory, In: Addition-Wesley Publishing Co., Reading, MA/Menlo Park, CA/London, 1969.
2. N. Hartsfield, G. Ringel, Pearls in Graph Theory, In: Academic Press, INC, 1990.
3. D. B. West, Introduction to Graph Theory, In: Pearson Education (Second Edition), 2001.
4. T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs, In: Marcel Dekker, Inc, New York, 1998.
5. M. A. Henning, Domination in Graphs: A survey. Cong. Number., In: G. Chartrand and M. Jacobson, editors, Surveys in Graph Theory, Vol. 116, 1996, 139-172.
6. P. Dankelmann, D. Day, D. Erwin, et al. Domination with exponential decay, Discrete Math., 309 (2009), 5877-5883.
7. A. Aytaç, B. A. Atakul, Exponential domination critical and stability in some graphs, Int. J. Found. Comput. Sci., 30 (2019), 781-791.
8. A. Aytaç, B. Atay, On exponential domination of some Graphs, Nonlinear Dyn. Syst. Theory, 16 (2016), 12-19.
9. A. Aytaç, B. A. Atakul, Exponential domination of tree related graphs, TWMS J. App. Eng. Math., 9 (2019), 186-197.
10. S. R. Ramachandra, N. D. Soner, Strong domination critical and stability in graphs, J. Como. Math. Sci., 1 (2010), 294-299.
11. M. Ebrahimi, K. Ebadi, Weak domination critical and stability in graphs, Int. J. Contemp. Math. Sci., 6 (2011), 337-344.
12. J. Jonasson, Lollipop graphs are extremal for commute times, Random Struct. Algorithms, March, 16 (2000), 131-142.
13. M. Cygan, M. Pilipczuk, R. Skrekovski, Relation between Randic index and average distance of trees, Commun. Math. Comput. Chem., 66 (2011), 605-612.
14. J. A. Gallian, A dynamic survey of graph labeling, Elect. J. Comb., 15 (2016), DS6.
15. W. D. Wallis, Magic Graph, In: Birkhäuser, Boston, Basel, Berlin, 2001.
16. M. A. Henning, A. J. Marcon, Semitotal domination in claw-free cubic graphs, Ann. Comb., 20 (2016), 799-813.

AIMS Press

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

