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1. Introduction 

The study of the stability of functional equations originated from a question by Ulam [1] 

concerning the stability of group homomorphisms. Since then, Ulam-type stability problems for 

different types of functional equations in various abstract spaces have been widely and extensively 

studied (see [2–9] and the refs. contained therein). Meanwhile, it has been successfully implemented 

in optimization theory (see, e.g., [10]) and economics ( see [11]). 

Recently, some fuzzy versions of Ulam stability have begun to emerge; however, most of the 

results were obtained in fuzzy normed spaces (see [12–15]). By contrast, in a Banach space, the 

Ulam stability of a fuzzy number-valued functional equation was first discussed in the authors’ 

previous work [16], in which it was demonstrated that, under some suitable conditions, the following 

can be approximated by additive mappings: 

( )
2 2

x y x y
f f f x

    
    

   
 and      f ax by rf x sf y   , 

where f  is a fuzzy number-valued mapping. 
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The present paper will continue the research originating from the authors’ previous work [16]. 

More precisely, the Ulam stability of the following fuzzy number-valued functional Eqs (1) and (2) 

are respectively investigated: 

2 ( )
x y x y

rf sg h x
r s

    
    

   
,        (1) 

( ) 2 ( )
2

x y
f x y z f f z

 
    

 
.        (2) 

2. Preliminaries 

Throughout this paper, R  denotes the set of all real numbers,  0,R   , X  and Y  are 

Banach spaces, ( )kcP X  denotes the set of all non-empty compact convex subsets of X , and B  is 

a subspace of Y . 

Some necessary notions and fundamental results that are used in this paper are herein recalled. 

The reader is referred to the work by Refs. [17–19] for more information and details. 

If a function : [0,1]u X   satisfies the following conditions: 

(i) [ ] { : ( ) } ( )kcu x X u x P X     , (0,1]  ; 

(ii) the support set of u : 
0[ ] supp( ) cl{ : ( ) 0}u u x u x    is a compact set, where the notation 

“ cl ” denotes the closure operation, then u  is called a fuzzy number on X . The set of all fuzzy 

numbers on X  is denoted by FX . 

For , Fu v X , R , the following properties regarding addition u v  and scalar 

multiplication u   can be proven via the Zadeh extension principle (see [17]): 

[ ] [ ] [ ]u v u v      and [ ] [ ]u u    . 

The mapping :D  F FX X  {0}R U  is defined by 

 ( , ) sup [ ] ,[ ]H
I

D u v d u v 



 , 

where Hd  is the Hausdorff metric. Then, ( , )FX D  is a complete metric space, and D  satisfies 

the following properties: for all R  and , , , Fu v w e X , 

(P1) ( , ) | | ( , )D u v D u v    , 

(P2) ( , ) ( , )D u w v w D u v   , 

(P3) ( , ) ( , ) ( , )D u v w e D u w D v e    . 

3. Main results 

In this section, the Ulam stability of Eqs (1) and (2) is established, in which f  indicates a 

fuzzy number-valued mapping. The Ulam stability of Eq (1) was investigated in the work by Ebadian 

et al. [20], in which f  was a single value function. Additionally, the Ulam stability of Eq (2) was 

explored in the work by Lu and Park [21], in which f  was a set-valued function. Therefore, the 

results obtained in the present study are generalizations of the corresponding results in previous 

works [20, 21]. 
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Theorem 1. If fuzzy number-valued mappings , , : Ff g h B X  satisfy the inequality 

 , 2
x y x y

D rf sg h x
r s


      

     
    

       (3) 

for all ,x y B , where 0   and  , \ 0r s R , then there exists a unique additive mapping 

: FT B X  such that  
3

( ), ( )
2

D T x h x
 

  for all x B , where  , (0) (0)D sg rf    and 

  is the zero element in FX . 

Moreover, if  ( ) : ,Fh tx R X D  is continuous for each given x B , then T  is linear on B . 

Meanwhile, we obtain 

4
( ), ( ) (0)

s
D T x f x g

r r

  
  

 
 and 

4
( ), (0) ( )

r
D T x f g x

s s

  
  

 
. 

Proof. In inequality (3), let 0y  , y x , and y x  , respectively; the following is then obtained: 

 ,2
x x

D r f sg h x
r s


    

     
    

;        (4) 

 
2

(0),2
x

D rf sg h x
r


  

   
  

;        (5) 

   
2

0 ,2
x

D rf sg h x
s


  

   
  

.        (6) 

Then, 

   
1

2 ,
2

D h x h x
 
 
   

    
1

2 2 ,4
4

D h x h x
 

 
1 2 2

,2 2
4

x x
D r f sg h x

r s

    
     

      

   
1 2 2 2 2

, 0 0
4

x x x x
D r f sg r f sg rf sg

r s r s

        
            

          

     
1 2 2

0 0 4
4

x x
D r f sg rf sg h x

r s

    
       

    
，

 

4


     

1 2
0 2

4

x
D rf sg h x

r

  
   

  
，  

   
1 2

0 2
4

x
D rf sg h x

s

  
    

  
，  

3

4

 


. 
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Next,    0h x h x  and  nh x  
1

2
2

n

n
h x  n N  are set. The following is then obtained: 

    1,n nD h x h x    1

1

1 1
2 , 2

2 2

n n

n
D h x h x



 
  

 
1

3

2n

 



 .    (7) 

It is then known that  ( )nf x  is a Cauchy sequence in FX . From the completeness of the metric 

space  ,FX D , there exists a mapping : FT B X  such that ( ) lim ( )n
n

T x h x


  for each x B . 

Next, the additivity of T  is proven. From Eqs (3)–(6), it can be concluded that 

      12 2 2 2 , 2n n n n nD h x y h x y h x    

     
   1 12 2

2 2 , (0) (0)
2 2 2 2

n n

n n
x y x yr s r s

D h x y h x y f g f g
r s

      
              

    
 

 12
(0)

2 2

n x yr s
D f g

r

  
    

 

 12
(0) ,

2 2

n x yr s
f g

s

 
    

 

   1 12 2

2 2

n nx y x yr s
f g

r s

      
       

     

   
 

1 1

1
2 2

, 2
2 2

n n

n
x y x yr s

D f g h x
r s

 


     

         
    

 

  
 121

2 2 , (0)
2

n

n
x y

D h x y rf sg
r

  
      

  
  

 121
2 2 , (0)

2

n

n
x y

D h x y rf sg
s

  
      

  

(0) (0),
2 2

s r
D g f 
 

  
  2


  

3

2

 
 .

 
Therefore, 

      , 2D T x y T x y T x         
1

lim 2 2 0
2

n n

nn
h x y h x y


     . 

Thus,      2T x y T x y T x    . As a result,      T x y T x T y    for all ,x y B , i.e.,

T  is additive.  

Via inequality (7), the following is obtained: 

              1

=1

, lim , lim ,
n

n i i
n n

i

D h x T x D h x h x D h x h x
 

    
1

1

3 3
lim

2 2

n

in
i

   




 
  . 

Moreover, if  ( ) : ,Fh tx R X D  is continuous for each given x B , then 
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     
0 0 0

0 0

1 1 1
lim ( ) lim lim 2 lim lim 2 lim 2 ( )

2 2 2

n n n

n n na a a a n n a a n
T ax h ax h ax h a x T a x

     
      (8) 

for each 0a R  and x B . Recalling that T  is additive, ( ) ( )T cx cT x  for each rational number 

c R  and x B . This fact, together with (8), ensures that ( ) ( )T cx cT x  for each c R  and 

x B . As a result, T  is linear on B . 

Hence, from the linearity of T  and the inequality (5), the following is obtained: 

   (0),
s

D f x g T x
r

 
 

 
 

 
2

(0),
2

s rx
D f x g h

r r

  
    

  

2 2
,

2 2

rx rx
D h T

r r

    
     

    
 

2
,

2

rx
D T T x

r

  
   

  
 

 
1

(0),2
2

rx
D rf x sg h

r

  
   

  


2
,

2 2

rx rx
D h T

r

    
     

    
    ,D T x T x . 

Similarly, the linearity of T  and the inequality (6) imply that 

   
4

(0),
r

D g x f T x
s s

  
  

 
. 

Finally, the uniqueness of T  is proven. Suppose that there are two additive mappings 

1 2, : FT T B X  satisfying     
3

,
2

iD T x h x
 

  1,2,i x B  . 

Then, as n , 

        1 2 1 2 1 2

1 1
( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )D T x T x D nT x nT x D T nx h nx D h nx T nx

n n
  

 

3
0

n

 
  . 

Thus, 1 2( ) ( )T x T x  for all x B . 

Theorem 2. If a fuzzy number-valued mapping : Ff B X  satisfies the inequality 

   , 2
2

x y
D f x y z f f z 
   

     
  

      (9) 

for all , , x y z B , where 0 , then there exists a unique additive mapping : FT B X  such that 

 ( ), ( )
2

D T x f x


  for all x B . 

Proof. In inequality (9), let x y z  ; the following is then obtained: 

( (3 ),3 ( ))D f x f x  .         (10) 

Replacing x  with 3n x  ( n N ) in (10), the following is obtained: 
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 +1(3 ),3 (3 )n nD f x f x 
 
or 

1

1 1

(3 ) (3 )
,

3 3 3

n n

n n n

f x f x
D



 

 
 

 
. 

Denoting 
0( ) ( )f x f x , 

(3 )
( )

3

n

n n

f x
f x  , then  1( ), ( )

3
n n n

D f x f x


   n N . From the 

completeness of the metric space  ,FX D , a mapping : FT B X  with ( ) lim ( )n
n

T x f x


  is 

obtained. Moreover, noting that 

   1

1

( ), ( ) ( ), ( )n n n

n

D f x f x D f x f x







1

=
3 2n

n

 



 , 

it is known that  ( ), ( )
2

D T x f x


  for all x B . 

It is now demonstrated that T  is additive. Via (9), the following is obtained: 

( ) 2 ( )
2

x y
D T x y z T T z
   

    
  

,  

= lim ( ),2 ( )
2

n n n
n

x y
D f x y z f f z



   
    

  
 

 
 31

= lim 3 ( ) ,2 (3 )
3 2

n

n n

nn

x y
D f x y z f f z



  
     

  

lim 0
3nn




  . 

Thus, 

( )T x y z   2
2

x y
T

 
 
 

( )T z , , ,x y z B  .      (11) 

Following from Eq (11), it is known that (0) 0T   and 2 ( )
2

x
T T x
 

 
 

 for all x B . 

Consequently, 

   2 = 2
2 2

x y x
T T x y T T y

   
     

   
,  2 =

2

y
T T y
 
 
 

. 

Hence, 

 ( ), ( ) ( ) ( )D T x y z T x T y T z   

 

2 ( ),2 2 ( )
2 2 2

x y x y
D T T z T T T z
       

         
      

2 ,2 2
2 2 2

x y x y
D T T T
       

       
        

2 ( ),2 2
2 2 2

x x y
D T T y T T
      

        
      

( ),2 0
2

y
D T y T
  

   
  

. 

Thus, T  is additive. 
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Noting that  ( ), ( )
2

D T x f x


  for all x B , the uniqueness of T  can be proven by using a 

similar approach as that in the proof of Theorem 1. 

4. Conclusions 

The main objective of this paper was to discuss the Ulam stability of two fuzzy number-valued 

functional equations in Banach spaces via the metric defined on a fuzzy number space. The results 

made a new a connection between the Ulam stability and fuzzy number-valued functional equations, 

which together with the authors’ previous work. In addition, we will work on different type of fuzzy 

equations including fuzzy differential equations and higher dimensional fuzzy equations. The work 

on the Ulam stability of fuzzy differential equations is now in progress. 
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