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1. Introduction

Let q ≥ 3 is a positive integer. For any integral coefficient polynomial f (x) and any Dirichlet
character χ mod q, we define a generalized Gauss sums G( f , χ; q) as

G( f , χ; q) =

q∑
a=1

χ(a)e
(

f (a)
q

)
,

where as usual, e(y) = e2πiy.
If f (x) = x, then G( f , χ; q) = τ(χ) is the classical Gauss sums. That is,

τ(χ) =

q∑
a=1

χ(a)e
(
a
q

)
.

A very important property of τ(χ) is that if χ is a primitive character mod q, then we have the
identity |τ(χ)| =

√
q (see Theorem 8.15 in [1]).

If f (x) = ax2 + bx, then G( f , χ; q) becomes the generalized quadratic Gauss sums. Many authors
have studied its properties and obtained interesting results. For example, if q = p is an odd prime, then
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from A. Weil’s important work [2] we can get the estimate

|G( f , χ; p)| ≤ 2 ·
√

p

for all integers a and b with (a, b, p) = 1.
Let p be an odd prime, α be a positive integer α ≥ 2, and λ be a primitive character modulo pα.

Zhang Wenpeng and Lin Xin [3] proved that for any integer n with (n, p) = 1, we have

pα∑′

m=1

∣∣∣∣∣∣∣
pα∑

a=1

λ(a)e
(
ma2 + na

pα

)∣∣∣∣∣∣∣
4

= p2αφ (pα)
(
α + 1 −

5
p − 1

)
;

If λ is any non-primitive character modulo pα, then we have the identity

pα∑′

m=1

∣∣∣∣∣∣∣
pα∑

a=1

λ(a)e
(
ma2 + na

pα

)∣∣∣∣∣∣∣
4

= p2αφ (pα) ,

where φ(n) denotes the Euler function.
Li Xiaoxue and Xu Zhefeng [4] also studied the special case q = p, an odd prime, and obtained

several interesting identities.
On the other hand, Lv Xingxing and Zhang Wenpeng [5] introduced a new sum analogous to

Kloosterman sum as follows:

K(m, n, r, χ; q) =

q∑
a=1

χ (ma + na) e
(
ra
q

)
, (1.1)

where m, n and r are integers, a denotes a · a ≡ 1 mod q.
Using properties of the character modulo p and analytic methods, they proved the following results:

For any odd prime p with p ≡ 3 mod 4 and integers m and n with (mn, p) = 1, one has the identity

∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma2

p

)∣∣∣∣∣∣∣
2

·

∣∣∣∣∣∣∣
p−1∑
b=1

χ
(
b + b

)∣∣∣∣∣∣∣
2

= (p − 1)
(
3p2 − 6p − 1

)
and

∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma2

p

)∣∣∣∣∣∣∣
2

·

∣∣∣∣∣∣∣
p−1∑
b=1

χ
(
b + b

)
e
(
nb
p

)∣∣∣∣∣∣∣
2

= (p − 1)
(
p2 − 2p − 1

)
+ p(p − 1)

 p−2∑
b=2

e

n
(
b + b

)
p

 +

p−2∑
b=2

e

n
(
b − b

)
p


 .

From the second formula and the estimate for Kloosterman sums, Lv Xingxing and Zhang Wenpeng
[5] deduced the asymptotic formula

∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma2

p

)∣∣∣∣∣∣∣
2

·

∣∣∣∣∣∣∣
p−1∑
b=1

χ
(
b + b

)
e
(
nb
p

)∣∣∣∣∣∣∣
2

= p3 + O
(
p

5
2
)
.
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Shane Chern [6] also studied the properties of K(m, n, r, χ; q), and obtained the identity

∑
χ mod p

∣∣∣∣∣∣∣∣
p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

χ (ma + na) e
(
ka
p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

= (p − 1)
(
p4 − 7p3 + 17p2 − 5p − 25

)
,

where p is an odd prime, n and k are integers with (nk, p) = 1.
Some other papers related to Gauss sums and two-term exponential sums can also be found in

[5–13], but we will not go into further detail here.
Inspired by [5] and [6], it is natural to study the 2k-th power means

p−1∑
m=0

∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=0

χ
(
a2 + 1

)
e
(
ma
p

)∣∣∣∣∣∣∣
2k

, k ≥ 2. (1.2)

To the best knowledge of the authors, sums of the type (1.2) have not been previously investigated
but the authors think that this problem is meaningful, and can be viewed as a new combination of
additive and multiplicative functions.

In this paper, we will use the number of the solutions of some congruence equations mod p and
the properties of the Legendre symbol to study the problem of calculating (1.2) with k = 2, and give
two exact calculating formulae according to p ≡ 1 mod 4 or p ≡ 3 mod 4. That is, we will prove the
following results:

Theorem 1. Let p be an odd prime with p ≡ 3 mod 4, then we have

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

χ
(
a2 + 1

)
e
(
ma
p

)∣∣∣∣∣∣∣
4

= p(p − 1)
(
3p2 − 4p + 4

)
.

Theorem 2. Let p be an odd prime with p ≡ 1 mod 4, then we have

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

χ
(
a2 + 1

)
e
(
ma
p

)∣∣∣∣∣∣∣
4

= 3p(p − 1)
(
p2 − 6p + 10

)
.

Some notes: For k ≥ 3, whether there exists an exact calculating formula for (1.2) is an open
problem. It is also interesting to ask whether a general formula analogous to Theorems 1 and 2 can be
obtained for all integers q ≥ 3 and k = 2.

2. Some basic lemmas

In this section, we first give four basic lemmas, which are necessary in the proof of our theorems. Of
course, in order to prove these lemmas, we need some knowledge of elementary and analytic number
theory. They can be found in reference [1], and we do not repeat them all here. First we have the
following:

Lemma 1. For any odd prime p, we have the identity
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab≡cd mod p
a+b≡c+d mod p

1 = 2p2 − p.
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Proof. Note that if a, b, c pass through a reduced residue system mod p, then da, db and cd also pass
through a reduced residue system mod p, providing (d, p) = 1. So from these properties we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab≡cd mod p
a+b≡c+d mod p

1 = 4(p − 1) + 1 +

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

ab≡cd mod p
a+b≡c+d mod p

1

= 4p − 3 +

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

ab≡c mod p
a+b≡c+1 mod p

1 = 4p − 3 + (p − 1)
p−1∑
a=1

p−1∑
b=1

a+b≡ab+1 mod p

1

= 4p − 3 + (p − 1)
p−1∑
a=1

p−1∑
b=1

(a−1)(b−1)≡0 mod p

1 = 4p − 3 + (p − 1)

2 p−1∑
a=1

1 − 1


= 4p − 3 + (p − 1)(2p − 3) = 2p2 − p.

This proves Lemma 1.
Lemma 2. If p is an odd prime, then we have the identity

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab+cd≡2 mod p
a+b≡c+d mod p

1 = p2 +

(
−1
p

)
· p.

Proof. It is clear that if d passes through a reduced residue system mod p, then d also passes
through a reduced residue system mod p. From the properties of the reduced residue system and
quadratic residue mod p we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab+cd≡2 mod p
a+b≡c+d mod p

1 =

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=1

ab+cd≡2 mod p
a+b≡c+d mod p

1 +

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

ab≡2 mod p
a+b≡c mod p

1

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=1

ab+c≡2d
2

mod p
a+b≡c+1 mod p

1 +

p−1∑
a=0

p−1∑
b=0

ab≡2 mod p

1 =

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=1

ab+c≡2d2 mod p
a+b≡c+1 mod p

1 + (p − 1)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab+c≡2d mod p
a+b≡c+1 mod p

(
1 +

(
d
p

))
−

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

ab+c≡0 mod p
a+b≡c+1 mod p

1 + (p − 1)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a+b≡c+1 mod p

1 +

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab+c≡2d mod p
a+b≡c+1 mod p

(
d
p

)
−

p−1∑
a=0

p−1∑
b=0

ab+a+b≡1 mod p

1 + (p − 1)
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= p2 +

p−1∑
a=0

p−1∑
b=0

p−1∑
d=0

ab+a+b≡1+2d mod p

(
d
p

)
−

p−1∑
a=1

p−1∑
b=1

ab≡2 mod p

1 + (p − 1). (2.1)

It is clear that if a passes through a complete residue system mod p, then a + 1 also passes through a
complete residue system mod p. So we make the change of variables a to a − 1 and b to b − 1 modulo
p to change the congruence from ab + a + b ≡ c mod p to ab ≡ c + 1 mod p. Then from (2.1) and the
orthogonality property for the Dirichlet character modulo p we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab+cd≡2 mod p
a+b≡c+d mod p

1 = p2 +

p∑
a=1

p∑
b=1

p−1∑
d=0

ab≡2+2d mod p

(
d
p

)
= p2 +

(
2
p

) p∑
a=1

p∑
b=1

(
ab − 2

p

)

= p2 +

(
2
p

) p−1∑
a=1

p∑
b=1

(
ab − 2

p

)
+

(
2
p

) p∑
b=1

(
−2
p

)

= p2 +

(
2
p

) p−1∑
a=1

p∑
b=1

(
b − 2

p

)
+

(
−1
p

)
· p = p2 +

(
−1
p

)
· p.

This proves Lemma 2.
Lemma 3. If p is an odd prime, then we have the identity

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab+cd≡2 mod p
ab≡cd mod p

a+b≡c+d mod p

1 = 2p − 4.

Proof. It is clear that the conditions ab ≡ cd mod p and ab + cd ≡ 2 mod p are equivalent to
ab ≡ cd ≡ 1 mod p. So we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab+cd≡2 mod p
ab≡cd mod p

a+b≡c+d mod p

1 =

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

ab≡cd≡1 mod p
a+b≡c+d mod p

1 =

p−1∑
a=1

p−1∑
c=1

a+a≡c+c mod p

1

=

p−1∑
a=1

p−1∑
c=1

(a−c)(ac−1)≡0 mod p

1 =

p−1∑
a=1

p−1∑
c=1

a≡c mod p

1 +

p−1∑
a=1

p−1∑
c=1

ac≡1 mod p

1 −
p−1∑
a=1

p−1∑
c=1

a≡c mod p
ac≡1 mod p

1

= p − 1 + p − 1 − 2 = 2p − 4.

This proves Lemma 3.
Lemma 4. If p is an odd prime with p ≡ 1 mod 4, then we have the identity

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

(a2+1)(b2+1)≡(c2+1)(d2+1)≡0 mod p
a+b≡c+d mod p

1 = 16p − 26.
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Proof. Since p ≡ 1 mod 4, there exists an integer k satisfying the congruence (±k)2 ≡ −1 mod p. In
fact, these are all such solutions modulo p. Choosing 0 ≤ h ≤ p−1 for which a + b ≡ c + d ≡ h mod p,
we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

(a2+1)(b2+1)≡(c2+1)(d2+1)≡0 mod p
a+b≡c+d mod p

1 =

p−1∑
h=0


p−1∑
a=0

p−1∑
b=0

(a2+1)(b2+1)≡0 mod p
a+b≡h mod p

1



2

=

p−1∑
h=0


p−1∑
a=0

p−1∑
b=0

a2+1≡0 mod p
a+b≡h mod p

1 +

p−1∑
a=0

p−1∑
b=0

b2+1≡0 mod p
a+b≡h mod p

1 −
p−1∑
a=0

p−1∑
b=0

a2+1≡b2+1≡0 mod p
a+b≡h mod p

1



2

=

p−1∑
h=0


2

p−1∑
b=0

k+b≡h mod p

1 + 2
p−1∑
b=0

−k+b≡h mod p

1 −
p−1∑
a=0

p−1∑
b=0

a2+1≡b2+1≡0 mod p
a+b≡h mod p

1



2

=

p−1∑
h=0

h,−2k,2k,0

(2 + 2 − 0)2 +


4 −

p−1∑
a=0

p−1∑
b=0

a2+1≡b2+1≡0 mod p
a+b≡0 mod p

1



2

+


4 −

p−1∑
a=0

p−1∑
b=0

a2+1≡b2+1≡0 mod p
a+b≡2k mod p

1



2

+


4 −

p−1∑
a=0

p−1∑
b=0

a2+1≡b2+1≡0 mod p
a+b≡−2k mod p

1



2

= 16(p − 3) + (4 − 2)2 + (4 − 1)2 + (4 − 1)2 = 16p − 26.

3. Proof of the theorems

In this section, we use the four basic lemmas of the previous section to prove our theorems. First
we prove Theorem 1. If p ≡ 3 mod 4, then

(
−1
p

)
= −1 and p -

(
a2 + 1

)
for all 0 ≤ a ≤ p − 1. Then

from Lemma 1, Lemma 2, Lemma 3, the trigonometric identity

p−1∑
a=0

e
(
ma
p

)
=

{
p, if p | m;
0, if p - m
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and the orthogonality of characters mod p

∑
χ mod p

χ(a) =

{
p − 1, if a ≡ 1 mod p;
0, otherwise

we have

1
p(p − 1)

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

χ
(
a2 + 1

)
e
(
ma
p

)∣∣∣∣∣∣∣
4

=
1
p

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

(a2+1)(b2+1)≡(c2+1)(d2+1) mod p

p−1∑
m=0

e
(
m(a + b − c − d)

p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

a2b2+a2+b2+1≡c2d2+c2+d2+1 mod p
a+b≡c+d mod p

1 =

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

(ab−1)2+(a+b)2≡(cd−1)2+(c+d)2 mod p
a+b≡c+d mod p

1

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

(ab−1)2≡(cd−1)2 mod p
a+b≡c+d mod p

1 =

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

(ab−cd)(ab+cd−2)≡0 mod p
a+b≡c+d mod p

1

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab≡cd mod p
a+b≡c+d mod p

1 +

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab+cd≡2 mod p
a+b≡c+d mod p

1 −
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

ab−cd≡ab+cd−2≡0 mod p
a+b≡c+d mod p

1

= 2p2 − p + p2 − p − (2p − 4) = 3p2 − 4p + 4.

This proves Theorem 1.
Now we prove Theorem 2. Note that if p ≡ 1 mod 4, then

(
−1
p

)
= 1. If a2 + 1 ≡ 0 mod p, then

for any character χ mod p, we have χ
(
a2 + 1

)
= 0. So from Lemma 4 and the methods of proving

Theorem 1 we have

1
p(p − 1)

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

χ
(
a2 + 1

)
e
(
ma
p

)∣∣∣∣∣∣∣
4

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

(a2+1)(b2+1)≡(c2+1)(d2+1) mod p
a+b≡c+d mod p

1 −
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

(a2+1)(b2+1)≡(c2+1)(d2+1)≡0 mod p
a+b≡c+d mod p

1

= 2p2 − p + p2 + p − (2p − 4) − (16p − 26) = 3
(
p2 − 6p + 10

)
.

This completes the proof of all of our results.
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