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Abstract: Some fourth-order two-point boundary value problems are considered in this paper. Firstly,
the Green’s function is obtained by the use of the Laplace transform. Secondly, the first eigenvalue
is given by using Ritz method. Then, by the use of the properties of self-adjoint operators and the
fixed point index theory, the existence of positive solutions is obtained. Finally, an example is given to
illustrate the main results.
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1. Introduction

In scientific research and engineering technology, many problems, such as the deformation of
engineering building beams and the load of turbine blades under the impact of airflow in fluid
mechanics, can be attributed to the existence of solutions of differential equations. And in elastic
mechanics and engineering physics, elastic beam is one of the basic components of engineering
building. The nonlinear boundary value problem of the fourth order differential equation with
different boundary conditions can describes the deflection of elastic beam under external force, the
reflects, and the stress. The static beam equation:

y(4)(x) = f (x, y(x)), 0 < x < 1, (1.1)

is most studied under the following boundary conditions:

y(0) = y(1) = y′′(0) = y′′(1) = 0, (1.2)

or
y(0) = y′(1) = y′′(0) = y′′′(1) = 0, (1.3)
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where f : [0, 1] × [0,∞)→ [0,∞) is continuous. They are often used to describe the equilibrium state
of the elastic beams. While the problem (1.1), (1.2) describes the static beam with simple support at
both ends, the problem (1.1), (1.3) describes the static beam with simple support at one end and sliding
support at the other end. These two types of problems, can be converted into second-order equation
by simple transformation. Therefore, some methods of studying ordinary differential equations can be
applied to the study of problems (1.1), (1.2) and (1.1), (1.3).

The problem (1.1), (1.2) has been investigated in many literutures, see [1–6]. Among them, Bai [1]
used a new maximum principle to give the solutions for the problem. Gabriele [2] used a local
minimum theorem to give the existence of at least one non-trivial solution. Li [3] got the existence of
positive solutions based on the fixed point index theory. And Yao [6] used the approximation by
operators of completely continuous operator sequence and the Guo-Krasnosel’skii fixed point theorem
for cone expansion and compression.

The problem (1.1), (1.3) also has been investigated by many authors, see [7–9]. Yao gave the
existence of n solutions by choosing suitable cone and using the Krasnosel’skii fixed point theorem
in [7]. Yao and Li [8] used the Leray-schauder fixed point theorem to get the existence of positive
solutions. Zhao [9] used the fixed point theorem due to Avery-Peterson and Leggett-williams to get the
existence of positive solutions. The upper and lower solution method and the fixed-point techniques
have been used to study many other problems. We provide reference alone this line for some research
on beam equation [10, 11].

The typical static elastic beam equation with fixed ends can be described by Eq (1.1) with
boundary condition

y(0) = y(1) = y′(0) = y′(1) = 0. (1.4)

Compared with the above two type problems, this problem can not be solved by directly converting
it into some second-order problems. But due to its wide application, many authors set out to find a
positive solution to problem (1.1), (1.4). In 1984, Agarwal [12] first considered the problem, and used
the compression mapping principle and numerical iteration method to study the existence of solutions.
Later, Wu and Ma [13, 14] used the Krasnoselskii’s fixed point theorem to get the existence results
under the following conditions:

(1) lim
l→0

min
{

f (x, v)|(x, v) ∈
[
1
4
,

3
4

]
×

[
l

24
, l
]}
/l > A;

(2) lim
l→∞

min
1
4≤x≤ 3

4

f (x, l)/l >
A
24
.

Caballero [15] applied a fixed point theorem in partially ordered metric spaces to get a unique
symmetric positive solution for problem (1.1), (1.4), where f (x, y) is a nondecreasing function with
respect to y for each x ∈ [0, 1], and satisfy the Lipschitz type condition. Obviously the function f (x, y)
has strong constraints in above literatures.

This paper study the existence of positive solutions for the following fourth-order two-point
boundary value problem:

y(4)(x) = f (x, y(x)), 0 < x < 1, (1.5)

y(0) = y(1) = y′(0) = y′(1) = 0, (1.6)
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where f : [0, 1] × [0,∞)→ [0,∞) is continuous. In section 2, the Green’s function is given by the use
of the Laplace transform, and some preliminary lemmas also be obtained. In section 3, the eigenvalue
of the linear equation corresponding to problem (1.5), (1.6) is given by Ritz method in calculus of
variations with the help of the mathematical tool software. The fixed point index value is obtained by
using the theory of the self-adjoint operator, and the existence of positive solutions is given by the use
of the fixed point index theorem. In section 4, an examples is given to illustrate the main results.

Compared with other literature, in this paper, the way to get the eigenvalue of problem considered is
new. We use Laplace transform to get the Green function of this problem, this way is more convenient
and easier. And the constraint of f (t, u) in this paper is more weaker than which get in other paper.

2. Preliminaries

For convenience, we introduce some symbols,

f̄0 = lim
y→0+

max
x∈[0,1]

f (x, y)
y

, f
0

= lim
y→0+

min
x∈[0,1]

f (x, y)
y

,

f̄∞ = lim
y→+∞

max
x∈[0,1]

f (x, y)
y

, f
∞

= lim
y→+∞

min
x∈[0,1]

f (x, y)
y

.

Lemma 2.1. Given h ∈ C[0, 1], the unique solution of

y(4)(x) − h(x) = 0, 0 < x < 1, (2.1)

y(0) = y(1) = y′(0) = y′(1) = 0 (2.2)

is

y(x) =

∫ 1

0
G(x, s)h(s)ds, (2.3)

where

G(x, s) =


s2(1−x)2[(x−s)+2(1−s)x]

6 , 0 ≤ s ≤ x ≤ 1;

x2(1−s)2[(s−x)+2(1−x)s]
6 , 0 ≤ x ≤ s ≤ 1.

(2.4)

Proof. By the use of Laplace transform on equation (2.1), one has

s4Y(s) − s3y(0) − s2y′(0) − sy′′(0) − y′′′(0) = H(s),

where Y(s) = £[y(x)],H(s) = £[h(x)]. Thus,

Y(s) =
1
s4 H(s) +

1
s4 y′′′(0) + +

1
s3 y′′(0) +

1
s2 y′(0) +

1
s

y(0).

By the use of the inverse Laplace transform and the boundary condition (2.2), one has
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y(x) = £−1[Y(s)]

=
1
6

x3 ∗ h(x) +
1
6

x3y′′′(0) +
1
2

x2y′′(0)

=
1
6

∫ x

0
(x − s)3h(s)ds +

1
6

x3y′′′(0) +
1
2

x2y′′(0), (2.5)

then
y′(x) =

∫ x

0

1
2

(x − s)2h(s)ds +
1
2

x2y′′′(0) + xy′′(0). (2.6)

Let x = 1 in (2.5) and (2.6), then we can get

y′′(0) =

∫ 1

0
s(1 − s)2h(s)ds,

y′′′(0) = −

∫ 1

0
(1 + 2s)(1 − s)2h(s)ds.

Put them into Eq (2.5), we get

y(x) =

∫ x

0

1
6

(x − s)3h(s)ds −
∫ 1

0

1
6

x3(1 + 2s)(1 − s)2h(s)ds

+

∫ 1

0

1
2

x2s(1 − s)2h(s)ds

=

∫ x

0

1
6

s2(1 − x)2[(x − s) + 2(1 − s)x]h(s)ds

+

∫ 1

x

1
6

x2(1 − s)2[(s − x) + 2(1 − x)s]h(s)ds

=

∫ 1

0
G(x, s)h(s)ds.

The proof is completed. �

Remark 2.1. The Green’s function (2.4) have been obtained before in some literatures, but to my best
knowledge, the way to get it by Laplace transform hadn’t been mentioned yet. Obviously, this way is
more convenient and easier.

Lemma 2.2. [13] Let a(s) : [0, 1]→ [0, 1] define as

G(a(s), s) = max
0≤x≤1

G(x, s),

then a(s) = 1
3−2s , for 0 ≤ s ≤ 1

2 ; a(s) = 2
1+2s , for 1

2 ≤ s ≤ 1.

Lemma 2.3. [13] The function G(x, s) defined by (2.4) satisfies:
(i) G(x, s) = G(s, x) > 0, for x, s ∈ [0, 1];
(ii) G(x,s)

G(a(s),s) ≥ q(x), where q(x) = min{ 23 x2, 2
3 (1 − x)2}, for x, s ∈ [0, 1];

(iii) G(x, s) ≥ 1
24G(a(s), s), for x ∈ [1

4 ,
3
4 ], s ∈ [0, 1].
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Let C+[0, 1] be the cone of all nonnegative functions in C[0, 1] which is a Banach space with ‖y‖ =

max
x∈[0,1]

|y(x)|. And the cone

D =

{
y ∈ C+[0, 1]

∣∣∣∣∣y(x) ≥
1

24
‖y‖,∀x ∈

[
1
4
,

3
4

]}
⊂ C+[0, 1].

Then denote

m = min
1
4≤s≤ 3

4

G
(
1
2
, s

)
=

3
4
,

and define T : C+[0, 1]→ C+[0, 1] by

(Ty)(x) :=
∫ 1

0
G(x, s) f (s, y(s))ds. (2.7)

Lemma 2.4. [13] By Lemma 2.3 and formula (2.7), there holds

(Ty)(x) =

∫ 1

0
G(x, s) f (s, y(s))ds ≥ q(x)‖Ty‖, x ∈ [0, 1].

Lemma 2.5. Let f : [0, 1] × [0,∞)→ [0,∞) be continuous, then
(1) the operator T : D→ D is completely continuous,
(2) the solution of boundary value problem (1.5), (1.6) y(x) satisfies

y(x) ≥ q(x)‖y‖.

Proof. The positive solution of problem (1.5), (1.6) is equivalent to the nonzero fixed point of T . On
the one hand,

min
x∈[ 1

4 ,
3
4 ]

(Ty)(x) = min
x∈[ 1

4 ,
3
4 ]

∫ 1

0
G(x, s) f (s, y(s))ds

≥
1

24
‖Ty‖.

By the arbitrariness of y and G(x, s) ≥ 0, we obtain T (D) ⊂ D. Then by the continuity of f and
Arzela-Ascoli Theorem, we get (1) holds. On the other hand, by the definition of the operator T and
the function a(s), we have

‖Ty‖ ≤
∫ 1

0
G(a(s), s) f (s, y(s))ds.

Suppose y ∈ D is a solution of problem (1.5), (1.6), then

y(x) = (Ty)(x) =

∫ 1

0
G(x, s) f (s, y(s))ds ≥ q(x)‖Ty‖ = q(x)‖y‖.

The proof is completed. �
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Given b > 0, let

Db =

{
y ∈ D

∣∣∣∣∣y(x) < b
}

and ∂Db =

{
y ∈ D

∣∣∣∣∣y(x) = b
}
.

Lemma 2.6. [16] Suppose T : D→ D is completely continuous and
(i) inf

y∈∂Db
‖Ty‖ > 0,

(ii) αTy , y for ∀y ∈ ∂Db and α ≥ 1.
Then i(T,Db,D) = 0.

Lemma 2.7. [16] Suppose T : D → D is completely continuous. If αTy , y for ∀y ∈ ∂Db and
0 < α ≤ 1, then i(T,Db,D) = 1.

Lemma 2.8. Assume that G(x, s) is defined as formula (2.4). Then the operator H : C[0, 1]→ C[0, 1],

(Hz)(x) =

∫ 1

0
G(x, s)z(s)ds,

is a self-adjoint operator.

Proof. By Lemma 2.1, it is clear that G(x, s) is a real symmetric function, that is to say that, G(x, s) =

G(s, x) for 0 ≤ s, x ≤ 1. Thus, for ∀z1 = z1(s), z2 = z2(s) ∈ C[0, 1], there holds

(Hz1, z2) =

∫ 1

0
(Hz1)(x)z2(x)dx

=

∫ 1

0

∫ 1

0
G(x, s)z1(s)z2(x)dsdx

=

∫ 1

0
z1(s)

∫ 1

0
G(x, s)z2(x)dxds

=

∫ 1

0
z1(s)

∫ 1

0
G(s, x)z2(x)dxds

=

∫ 1

0
z1(s)(Hz2)(s)ds

= (z1,Hz2).

So, the operator H is a self-adjoint operator. �

3. Main results

Lemma 3.1. The first eigenvalue λ1 of the problem

y(4)(x) − λy(x) = 0, (3.1)

y(0) = y(1) = y′(0) = y′(1) = 0, (3.2)

is λ1 ≈ 500.564.
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Proof. Define the linear differential operator L : {y ∈ C4[0, 1] | y(0) = y(1) = y′(0) = y′(1) = 0} →
C[0, 1] as

(Ly)(x) = y(4)(x). (3.3)

With Ritz method, the problem which to get the first eigenvalue λ1 can be transformed to get the
extreme value of the functional

J[y] =

∫ 1

0
yLydx =

∫ 1

0
y(x)[y(4)(x)]dx, (3.4)

under the normalization condition ∫ 1

0
y2(x)dx = 1. (3.5)

Combing the definition of the functional J and the boundary condition (3.2), one has

J[y] =

∫ 1

0
y(x)[y(4)(x)]dx

=

∫ 1

0
[y′′(x)]2dx.

Choose the primary function as

yk(x) = (1 − x)2x2k, (k = 1, 2, 3, · · · ),

then, the n-th order approximate solution of the functional extremum function is

yn(x) = x2(1 − x)2(a1 + a2x + · · · + anxn−1). (3.6)

By (3.4), (3.5), there is

J[yn(x)] =

∫ 1

0
[y′′n (x)]2dx, (3.7)∫ 1

0
y2

n(x)dx = 1. (3.8)

Then the Lagrangian function

F(a1, a2, · · · , an, τ) = J[yn(x)] + τ

[∫ 1

0
y2

n(x)dx − 1
]

=

∫ 1

0
[y′′n (x)]2dx + τ

[∫ 1

0
y2

n(x)dx − 1
]
.

Now, we solve the following equation system by the use of the mathematical tool software
Mathematica,

∂F
∂ai

= 0 ( i = 1, 2, 3, · · · , n), and
∂F
∂τ

= 0.

Firstly, we get ai(i = 1, 2, 3, · · · , n) and τ, then, plug them into (3.6) to get yn(x). By Eq (3.7) we
get the corresponding eigenvalue λ1 = J[yn(x)] ≈ 500.564 for n ≥ 6. The proof is completed. �
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Remark 3.1. Although some authors mentioned the eigenvalue before, but to my best knowledge, the
eigenvalue of problem (3.1), (3.2) hadn’t been obtained yet. However, we use the Ritz-Method to get
the concrete eigenvalue λ1 here.

Theorem 3.1. Suppose one of the following relation is true:
(i) f̄0 < λ1, f

∞
> λ1;

(ii) f
0
> λ1, f̄∞ < λ1.

Then boundary value problem (1.5), (1.6) has at least one positive solution.

Proof. (i) By f̄0 < λ1, for ε ∈ (0, λ1), there exists b0 > 0 such that

f (x, y) ≤ (λ1 − ε)y, ∀ x ∈ [0, 1], y ∈ [0, b0]. (3.9)

Set b ∈ (0, b0). Assume there exist y0 ∈ ∂Db and α0 ∈ (0, 1] such that α0Ty0 = y0. Then y0 satisfies

y(4)
0 (x) = α0 f (x, y0(x)), 0 ≤ x ≤ 1. (3.10)

Taking into account (3.9) and (3.10), there is

y(4)
0 (x) = α0 f (x, y0(x)) ≤ α0(λ1 − ε)y0(x) ≤ (λ1 − ε)y0(x).

Due to the fact that the inverse operator of a self-adjoint operator is self-adjoint and Lemma 2.8,
the operator L defined by (3.3) is a self-adjoint operator. Suppose ŷ ∈ D is a eigenfunction of L with
respect to λ1 such that

∫ 1

0
ŷ(x)dx = 1, that is to say that

Lŷ = λ1ŷ.

Then
(Ly0, ŷ) = (y0, Lŷ) = (y0, λ1ŷ) = λ1(y0, ŷ).

So we get
λ1(y0, ŷ) ≤ (λ1 − ε)(y0, ŷ).

obviously this is a contradictory. Hence Lemma 2.7 yields that

i(T,Db,D) = 1. (3.11)

Since f
∞
> λ1, for given ε > 0, there exists K > 0 such that

f (x, y) ≥ (λ1 + ε)y, ∀x ∈ [0, 1], y ≥ K, (3.12)

suppose C = max
0≤x≤1,0≤y≤K

| f (x, y) − (λ1 + ε)y| + 1, then

f (x, y) ≥ (λ1 + ε)y −C, ∀x ∈ [0, 1], y ∈ [0,+∞).

Let r > r0 := max{24K, b0}. For y ∈ ∂Dr, there is y(s) ≥ 1
24‖y‖ > K for s ∈

[
1
4 ,

3
4

]
, then, by (3.12)
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‖Ty‖ ≥ (Ty)
(
1
2

)
=

∫ 1

0
G

(
1
2
, s

)
f (s, y(s))ds

≥

∫ 3
4

1
4

m(λ1 + ε)y(s)ds

≥
1

24

∫ 3
4

1
4

m(λ1 + ε)‖y‖ds

≥
1

48
m(λ1 + ε)‖y‖ (3.13)

So inf
y∈∂Dr
‖Ty‖ > 0.

Suppose there exist y0 ∈ Dr and µ0 ≥ 1 such that µ0Ty0 = y0, then

(Ly0)(x) = µ0 f (x, y0(x)) ≥ (λ1 + ε)y0(x) −C.

Thus,
λ1(y0, ŷ) = (y0, λ1ŷ) = (y0, Lŷ) = (Ly0, ŷ) ≥ (λ1 + ε)(y0, ŷ) − C.

So,

(y0, ŷ) ≤
C
ε
.

Similar to the proof of Lemma 2.5, by µ0Ty0 = y0, one has

y0(x) ≥ (Ty0)(x) ≥ q(x)‖y0‖.

So,

(y0, ŷ) ≥ ‖y0‖

∫ 1

0
q(x)ŷ(x)dx.

Thus,

‖y0‖ ≤
C
ε

[∫ 1

0
q(x)ŷ(x)dx

]−1

:= r̄. (3.14)

Now set r > max{r̄, b0}, then there is µTy , y for ∀y ∈ ∂Dr and µ ≥ 1. Consequently, two conditions
of Lemma 2.6 all hold, thus

i(T,Dr,D) = 0. (3.15)

By (3.11) and (3.15) there is

i(T,Dr\Db,D) = i(T,Dr,D) − i(T,Db,D) = −1. (3.16)

Hence T has a fixed point in Dr\Db.

(ii) Since f
0
> λ1, for ε > 0, there exists h0 > 0 such that

f (x, y) ≥ (λ1 + ε)y, ∀x ∈ [0, 1], 0 ≤ y ≤ h0. (3.17)
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Set h ∈ (0, h0), similar to (3.13), one has

‖Ty‖ ≥
1

48
m(λ1 + ε)‖y‖, ∀y ∈ ∂Dh,

so inf
y∈∂Db

‖Ty‖ > 0.

Assume there exist y1 ∈ ∂Dh and α1 ≥ 1 such that α1Ty1 = y1, then

λ1(y1, ŷ) = (y1, λ1ŷ) = (y1, Lŷ) = (Ly1, ŷ) ≥ (λ1 + ε)(y1, ŷ).

Obviously this is a contradiction, because (y1, ŷ) > 0. Therefore, Lemma 2.5 yields that

i(T,Dh,D) = 0. (3.18)

On the other hand, since f̄∞ < λ1, for ε ∈ (0, λ1), there exists K2 > 0 such that

f (x, y) ≤ (λ1 − ε)y, ∀x ∈ [0, 1], y ≥ K2.

Let C = max
0≤x≤1,0≤y≤K2

| f (x, y) − (λ1 − ε)y| + 1, then

f (x, y) ≤ (λ1 − ε)y + C,∀x ∈ [0, 1], y ∈ [0,+∞). (3.19)

Assume there exist y2 ∈ D and α2 ∈ (0, 1] such that α2Ty2 = y2, then

λ1(y2, ŷ) = (y2, λ1ŷ) = (y1, Lŷ) = (Ly1, ŷ) ≤ (λ1 − ε)(y2, ŷ) + C.

Similar to the previous proof, one has ‖y2‖ ≤ r̄. Set r > max{r̄, h0}, we get αTy , y for ∀y ∈ ∂Dr

and α ∈ (0, 1]. Hence by Lemma 2.7,
i(T,Dr,D) = 1, (3.20)

then
i(T,Dr\Db,D) = i(T,Dr,D) − i(T,Db,D) = 1.

In conclusion, the boundary value problem (1.5), (1.6) has at least one positive solution. �

Remark 3.2. Compared with literatures [14, 15] and so on, the constraint of f (x, y) in our results is
weaker.

4. Example

Example 4.1. Consider the problem:

y(4)(x) = [y(x)]θ + (300 − x)y(x), 0 < x < 1, θ , 1, (4.1)

y(0) = y(1) = y′(0) = y′(1) = 0. (4.2)

It’s obviously that f (x,y)
y = yθ−1 + 300 − x.

Case (1): θ > 1, there are

AIMS Mathematics Volume 5, Issue 5, 4983–4994.
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(i) f̄0 = lim
y→0+

max
x∈[0,1]

f (x, y)
y

= 300 < 500.564 u λ1;

(ii) f
∞

= lim
y→+∞

min
x∈[0,1]

f (x, y)
y

= +∞ > 500.564 u λ1,

Case (2): θ < 1, there are

(i) f
0

= lim
y→0+

min
x∈[0,1]

f (x, y)
y

= +∞ > 500.564 u λ1;

(ii) f̄∞ = lim
y→+∞

max
x∈[0,1]

f (x, y)
y

= 300 < 500.564 u λ1,

By Theorem 3.1, for θ , 1, Problem (4.1), (4.2) has at least one positive solution.

5. Conclusions

The fourth order differential equations have been applied in different aspects of applied mathematics
and physics, especially in the theory of elastic beams and stability. In this paper, the fourth-order
two-point boundary value problem is studied, which can describe some changes when the elastic beam
deforms or rotates when it is subjected to external forces, and provides an important theoretical basis for
solving the problem. And compare with other literature, our method in this paper makes the equation
more widely used and describes the equilibrium state of the elastic beam better.

Acknowledgments

This work is supported by Natural Science Foundation of China (Grant No.11571207), the Taishan
Scholar project, and SDUST graduate innovation project SDKDYC190237.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. Z. Bai, The method of lower and upper solutions for a bending of an elastic beam equation, J.
Math. Anal. Appl., 248 (2000), 195–202.

2. G. Bonanno, B. Bella, D. O’Regan, Non-trivial solutions for nonlinear fourth-order elastic beam
equations, Comput. Math. Appl., 62 (2011), 1862–1869.

3. Y. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math.
Anal. Appl., 281 (2003), 477–484.

4. R. Ma, J. Zhang, S. Fu, The method of lower and upper solutions for fourth-order two-point
boundary value problems, J. Math. Anal. Appl., 215 (1997), 415–422.

AIMS Mathematics Volume 5, Issue 5, 4983–4994.



4994

5. Y. Wei, Q. Song, Z. Bai, Existence and iterative method for some fourth order nonlinear boundary
value problems, Appl. Math. Lett., 87 (2019), 101–107.

6. Q. Yao, The positive solution of singular beam equation with simple support at both ends, Adv.
Math. China, 5 (2009), 590–598.

7. Q. Yao, Existence and multiplicity of positive solutions to a class of elastic beam equations, J.
Shandong Univ., 5 (2004), 64–67. (in Chinese)

8. Q. Yao, Y. Li, Existence theorem for a class of nonlinear elastic beam equations, J. South China
Univ. Tech., 37 (2006), 124–127. (in Chinese)

9. D. Zhao, H. Wang, J. Wang, Existence of three positive solutions for a class of singular beam
equations with corner angles and bending moments, Acta. Math. Appl. Sinica, 34 (2011), 813–
821. (in Chinese)

10. Z. Bai, Z. Du, S. Zhang, Iterative method for a class of fourth-order p-Laplacian beam equation,
J. Appl. Anal. Comput., 9 (2019), 1443–1453.

11. F. Zhu, L. Liu, Y. Wu, Positive solutions for systems of a nonlinear fourth-order singular
semipositone boundary value problems, Comput. Math. Appl., 15 (2010), 448–457.

12. R. Agarwal, Y. Chow, Iterative methods for a fourth order boundary value problem, J. Comput.
Appl. Math., 10 (1984), 203–217.

13. R. Ma, X. Wu, Existence of multiple positive solutions for a class of fourth-order two-point
boundary value problems, Acta Math. Sci., 22A (2002), 244–249. (in Chinese)

14. X. Wu, R. Ma, Existence of multiple positive solutions for a class of fourth-order two-point
boundary value problems, Acta Anal. Funct. Appl., 2 (2000), 342–348. (in Chinese)

15. J. Caballero, J. Harjani, K. Sadarangani, Uniqueness of positive solutions for a class of fourth-order
boundary value problems, Abstr. Appl. Anal., 2011 (2011), 1–13.

16. D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, New York, Academic Press,
1988.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 5, 4983–4994.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Example
	Conclusions

