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1. Introduction and definitions

LetA denote the class of all functions f which are analytic in the open unit disk E = {z ∈ C : |z| < 1}
and has the Taylor series expansion of the form

f (z) = z +

∞∑
n=2

anzn. (1.1)
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Let S be the subclass of all functions in A which are univalent in E (see [1]). Goodman [2]
introducedUCV of the uniformly convex functions and ST of starlike functions. A function f ∈ A is
called uniformly convex if every (positively oriented) circular arc of the form {z ∈ E : |z − ξ| = r} and
ξ ∈ E, the arc f (ξ) is convex. For more details of the classUCV and ST see [3].

Later in [4] Kanas and Wisniowska introduced the class k−UCV and the class k − ST , defined as:

f (z) ∈ k − ST ⇐⇒ f (z) ∈ A and 1 > k

∣∣∣∣∣∣z f
′

(z)
f ′(z)

− 1

∣∣∣∣∣∣ −<
{

z f
′

(z)
f ′(z)

}
, z ∈ E

and

f (z) ∈ k −UCV ⇐⇒ f (z) ∈ A and 1 > k

∣∣∣∣∣∣z f
′′

(z)
f ′(z)

∣∣∣∣∣∣ −<
{

z f
′′

(z)
f ′(z)

}
, z ∈ E.

Note that f (z) ∈ k −UCV ⇐⇒ z f
′

(z) ∈ k − ST .
In [4], if k ≥ 0, the class k − UCV is defined geometrically as a subclass of univalent functions

which map the intersection of E with any disk center et ζ, |ζ | ≤ k, onto a convex domain. Therefore,
the notion of k- uniform convexity is a generalization of the notion of convexity. For k = 0, the center
ζ is the origin and the class k − UCV reduces to the class C of convex univalent functions, (see [1]).
Moreover for k = 1 it coincides with the class of uniformly convex functions (UCV) introduced
by Goodman [2] and studied extensively by Ronning [5] and Ma and Minda [3]. We note that the
class k − UCV started much earlier in [6] with some additional conditions but without the geometric
interpretation.

We say that a function f ∈ A is in the class S∗k,γ, k ≥ 0, γ ∈ C\{0}, if and only if

1 > k

∣∣∣∣∣∣1γ
(
z f
′

(z)
f (z)

− 1
)∣∣∣∣∣∣ −<

{
1
γ

(
z f
′

(z)
f (z)

− 1
)}
, z ∈ E.

For more detail about the class S∗k,γ, (see [7]).
If f (z) and g(z) are analytic in E, we say that f (z) is subordinate to g(z), written as f (z) ≺ g(z),

if there exists a Schwarz function w(z), which is analytic in E with w(0) = 0 and |w(z)| < 1 such
that f (z) = g(w(z)). Furthermore, if the function g(z) is univalent in E, then we have the following
equivalence, (see [1]).

f (z) ≺ g(z)⇐⇒ f (0) = g(0) and f (E) ⊂ g(E).

For two analytic functions

f (z) =

∞∑
n=0

anzn and g(z) =

∞∑
n=0

bnzn, (z ∈ E).

The convolution (Hadamard product) of f (z) and g(z) is defined as:

f (z) ∗ g(z) =

∞∑
n=0

anbnzn.

Let P denote the well-known Carathéodory class of functions p, analytic in the open unit disk E,
which are normalized by

p(z) = 1 +

∞∑
n=1

cnzn,
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such that
< (p(z)) > 0.

We have discussed above that Kanas and Wisniowska [4] introduced and studied the class k−UCV
of k-uniformly convex functions and the corresponding class k − ST of k-starlike functions. Then
Kanas and Wisniowska [4] defined these classes subject to the conic domain Ωk, (k ≥ 0) as follows:

Ωk =

{
u + iv : u > k

√
(u − 1)2 + v2

}
,

or
Ωk =

{
w : <w > k |w − 1|

}
.

This domain represents the right half plane for k = 0, a hyperbola for 0 < k < 1, a parabola for
k = 1 and an ellipse for k > 1. Deniz et al. [8] defined new subclasses of analytic functions subject to
the conic domain Ωk,, (also see [9]). Theses classes were then generalized to KD(k, γ) and SD(k, γ)
respectively by Shams et al. [10] subject to the conic domain Ωk,γ (k ≥ 0), 0 ≤ γ < 1, which is

Ωk,γ =

{
u + iv : u > k

√
(u − 1)2 + v2 + γ

}
,

or
Ωk,γ =

{
w : <w > k |w − 1| + γ

}
.

For this conic domains, the following function play the role of extremal function.

pk,γ(z) =



1+z
1−z for k = 0

1 +
2γ
π2

(
log 1+

√
z

1−
√

z

)2
for k = 1

1 +
2γ

1−k2 sinh2
{(

2
π

arccos k
)

arctan h
√

z
}

for 0 < k < 1

1 +
γ

k2−1 sin
(

π
2K(i)

∫ u(z)
√

t

0
1

√
1−x2
√

1−(ix)2
dx

)
+

γ

1−k2 for k > 1,

(1.2)

where i ∈ (0, 1), k = cosh
(
πK
′
(i)

4K(i)

)
, K(i) is the first kind of Legendre’s complete elliptic integral. For

details (see [4]). Indeed, from (1.2), we have

pk,γ(z) = 1 + Q1z + Q2z2 + ..., (1.3a)

where

Q1 =


2γ( 2

π arccos k)2

1−k2 for 0 ≤ k < 1,
8γ
π2 for k = 1,

π2γ

4(1+t)
√

tK2(t)(k2−1) for k > 1,
(1.4)
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Q2 =


( 2
π arccos k)2

+2
3 Q1 for 0 ≤ k < 1,

2
3 Q1 for k = 1,
4K2(t)(t2+6t+1)−π2

24K2(t)(1+t)
√

t
Q1 for k > 1.

(1.5)

The quantum (or q-) calculus is an important tools used to study various families of analytic
functions and has inspired the researchers due to its applications in mathematics and some related
areas. Srivastava [11] studied univalent functions using q-calculus. The quantum (or q-)calculus is
also widely applied in the approximation theory, especially for various operators, which include
convergence of operators to functions in a real and complex domains. Jackson [12] was among the
first few researchers who defined the q-analogue of derivative and integral operator as well as
provided some of their applications. Later on, Aral and Gupta [13] introduced the
q-Baskakov-Durrmeyer operator by using q-beta function while [14] studied the q-generalization of
complex operators known as q-Picard and q-Gauss-Weierstrass singular integral operators. Kanas and
Raducanu [15] introduced the q-analogue of Ruscheweyh differential operator and Arif et al. [16]
discussed some of its applications for multivalent functions while [17] studied q-calculus by using the
concept of convolution. Authors in [18] and [19] studied q-differential and q-integral operators for the
class of analytic functions. Here we will present the basic definitions of quantum (or q-) calculus
which will help us in onwards study.

Definition 1. ([20]). The q-number [t]q for q ∈ (0, 1) is defined as:

[t]q =


1−qt

1−q , (t ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + ... + qn−1 (t = n ∈ N).
(1.6)

Definition 2. The q-factorial [n]q! for q ∈ (0, 1) is defined as:

[n]q! =


1 (n = 0)

n∏
k=1

[k]q (n ∈ N).
(1.7)

Definition 3. The q-generalized Pochhammer symbol [t]n,q, t ∈ C, is defined as:

[t]n,q =

(
qt, q

)
n

(1 − q)n
=


1 (n = 0)

[t]q[t + 1]q[t + 2]q...[t + n − 1]q (n ∈ N).

Furthermore, the q-Gamma function be defined as:

Γq(t + 1) = [t]qΓq(t) and Γq(1) = 1.

Definition 4. ([12]). For f ∈ A, the q-derivative operator or q-difference operator be defined as:

Dq f (z) =
f (qz) − f (z)

(q − 1)z
, z ∈ E. (1.8)
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From (1.1) and (1.8), we have

Dq f (z) = 1 +

∞∑
n=2

[n]qanzn−1.

For n ∈ N and z ∈ E, we have

Dqzn = [n]qzn−1, Dq

 ∞∑
n=1

anzn

 =

∞∑
n=1

[n]qanzn−1.

We can observe that
lim

q→1−
Dq f (z) = f

′

(z).

Definition 5. ([21]). A function f ∈ A is said to belong to the class S ∗q if

f (0) = f
′

(0) = 1, (1.9)

and ∣∣∣∣∣∣zDq f (z)
f (z)

−
1

1 − q

∣∣∣∣∣∣ ≤ 1
1 − q

. (1.10)

Equivalently, we can rewrite the conditions in (1.9) and (1.10) as follows, (see [22]).

zDq f (z)
f (z)

≺
1 + z

1 − qz
.

Now, making use of quantum (or q-) calculus and principle of subordination we present the
following definition as:

Definition 6. Let k ∈ [0,∞), q ∈ (0, 1) and γ ∈ C\{0}. A function p(z) is said to be in the class k −Pq,γ

if and only if
p(z) ≺ pk,γ,q(z), (1.11)

where

pk,γ,q(z) =
2pk,γ(z)

(1 + q) + (1 − q) pk,γ(z)
, (1.12)

and pk,γ(z) is given by (1.2).

Geometrically, the function p(z) ∈ k − Pq,γ takes all values from the domain Ωk,q,γ which is defined
as follows:

Ωk,q,γ = γΩk,q + (1 − γ), (1.13)

where

Ωk,q =

{
w : <

(
(1 + q) w

(q − 1) w + 2

)
> k

∣∣∣∣∣ (1 + q) w
(q − 1) w + 2

− 1
∣∣∣∣∣} .

The domain Ωk,q,γ represents a generalized conic region.

Remark 1. When q → 1−, then Ωk,q,γ = Ωk,γ, where Ωk,γ is the conic domain considered by Shams et
al [10].
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Remark 2. When γ = 1, q → 1−, then Ωk,q,γ = Ωk, where Ωk is the conic domain considered by by
Kanas and Wisniowska [7].

Remark 3. For γ = 1, q→ 1−, then k − Pq,γ = P(pk), where P(pk) is the well-known class introduced
by Kanas and Wisniowska [7].

Remark 4. For γ = 1, k = 0, q → 1−, then k − Pq,γ = P, where P is the well-known class of analytic
functions with positive real part.

Definition 7. A function f ∈ A is said to be in class k −UST (q, γ) if it satisfies the condition

<

{
1 +

1
γ

(J(q, f (z)) − 1)
}
> k

∣∣∣∣∣1γ (J(q, f (z)) − 1)
∣∣∣∣∣ , (1.14)

or equivalently
J(q, f (z)) ∈ k − Pq,γ, (1.15)

where

J(q, f (z)) =
(1 + q) zDq f (z)

f (z)

(q − 1) zDq f (z)
f (z) + 2

. (1.16)

Special cases:
i. For q→ 1−, then the class k −UST (q, γ) reduces to the S∗k,γ (see [7]).
ii. For γ = 1 and q→ 1−, then the class k −UST (q, γ) reduces to the k −UCV (see [4]).

Geometrically a function f (z) ∈ A is said to be in the class k − UST (q, γ), if and only if the
function J(q, f (z)) takes all values in the conic domain Ωk,q,γ given by (1.13). Taking this geometrical
interpretation into consideration, one can rephrase the above definition as:

Definition 8. A function f ∈ A is said to be in the class k −UST (q, γ) if and only if

J(q, f (z)) ≺ pk,γ,q(z), (1.17)

where pk,γ,q(z) is defined by (1.12).

We also set k − UST −(q, γ) = k − UST (q, γ) ∩ T, T is the subclass of k − UST (q, γ) consisting
of functions of the form

f (z) = z −
∞∑

n=2

anzn, an ≥ 0, for all n ≥ 2. (1.18)

2. Set of lemmas

In order to prove our main results in this paper, we need each of the following lemmas.

Lemma 1. (see [23]). Let p(z) = 1 +
∞∑

n=1
pnzn ≺ F(z) = 1 +

∞∑
n=1

Cnzn. If F(z) is convex univalent in E,

then
|pn| ≤ |C1| , n ≥ 1.

AIMS Mathematics Volume 5, Issue 5, 4830–4848.
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Lemma 2. Let k ∈ [0,∞) be fixed and

pk,γ,q(z) =
2pk,γ(z)

(1 + q) + (1 − q) pk,γ(z)
.

Then

pk,γ,q(z) = 1 +
2

1 + q
Q1z +

{
2

1 + q
Q2 −

2(1 − q)
1 + q

Q2
1

}
z2 + · · · ,

where Q1, and Q2 is given by (1.4) and (1.5) .

Proof. From (1.12), we have

pk,γ,q(z) =
2pk,γ(z)

(1 + q) + (1 − q) pk,γ(z)

=
2

(1 + q)

{
pk,γ(z)

}
−

2(1 − q)
(1 + q)2

{
p2

k,γ(z)
}

+
2(1 − q)2

(1 + q)3

{
p3

k,γ(z)
}

−
2(1 − q)3

(1 + q)4

{
p4

k,γ(z)
}

+ · · · . (2.1)

By using (1.3a) in (2.1), we have

pk,γ,q(z) =

∞∑
n=1

2 (−1)n−1 (1 − q)n−1

(1 + q)n +

∞∑
n=1

2n (−1)n−1 (1 − q)n−1

(1 + q)n+1 Q1z

+

 ∞∑
n=1

2n (−1)n−1 (1 − q)n−1

(1 + q)n+1 Q2

−

∞∑
n=1

2(2n − 1) (−1)n−1 (1 − q)n

(1 + q)n+1 Q2
1

 z2 + · · · . (2.2)

The series
∞∑

n=1

2(−1)n−1(1−q)n−1

(1+q)n ,
∞∑

n=1

2n(−1)n−1(1−q)n−1

(1+q)n+1 , and
∞∑

n=1

2(2n−1)(−1)n−1(1−q)n

(1+q)n+1 are convergent and convergent

to 1, 2
1+q , and 2(1−q)

(1+q) .

Therefore (2.2) becomes

pk,γ,q(z) = 1 +
2

1 + q
Q1z +

{
2

1 + q
Q2 −

2(1 − q)
1 + q

Q2
1

}
z2 + · · · . (2.3)

This complete the proof of Lemma 2. �

Remark 5. When q→ 1−, the Lemma 2, reduces to the lemma which was introduced by Sim et. al [24].

Lemma 3. Let p(z) = 1 +
∞∑

n=1
pnzn ∈ k − Pq,γ, then

|pn| ≤
2

1 + q
|Q1| , n ≥ 1.
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Proof. By definition (6), a function p(z) ∈ k − Pq,γ if and only if

p(z) ≺ pk,γ,q(z), (2.4)

where k ∈ [0,∞), and pk,γ(z) is given by (1.2).
By using (2.3) in (2.4), we have

p(z) ≺ 1 +
2

1 + q
Q1z +

{
2

1 + q
Q2 −

2(1 − q)
1 + q

Q2
1

}
z2 + · · · . (2.5)

Now by using Lemma 1 on (2.5), we have

|pn| ≤
2

1 + q
|Q1| .

Hence the proof of Lemma 3 is complete. �

Remark 6. When q → 1−, then Lemma 3 reduces to the lemma which was introduced by Noor et.
al [25].

Lemma 4. [26]. Let h(z) = 1 +
∞∑

n=1
cnzn and h(z) be analytic in E and satisfy Re{h(z)} > 0 for z in E,

then the following sharp estimate holds;∣∣∣c2 − vc2
1

∣∣∣ ≤ 2 max {1, |2v − 1|} , ∀v ∈ C.

3. Main results

Theorem 1. If a function f ∈ A of the form (1.1) and it satisfies

∞∑
n=2

{
2(k + 1)q[n − 1]q + |γ|

{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}
|an| ≤ (q + 1) |γ| , (3.1)

then f (z) ∈ k −UST (q, γ).

Proof. Assume that (3.1) is holds, then it is suffice to show that∣∣∣∣∣ kγ (J(q, f (z) − 1)
∣∣∣∣∣ −<{

1
γ

(J(q, f (z)) − 1)
}
≤ 1.

Using (1.16), we have

AIMS Mathematics Volume 5, Issue 5, 4830–4848.
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∣∣∣∣∣∣∣∣ kγ
 (1 + q) zDq f (z)

f (z)

(q − 1) zDq f (z)
f (z) + 2

− 1


∣∣∣∣∣∣∣∣ −<

1
γ

 (1 + q) zDq f (z)
f (z)

(q − 1) zDq f (z)
f (z) + 2

− 1




≤
k
|γ|

∣∣∣∣∣∣∣∣
(1 + q) zDq f (z)

f (z)

(q − 1) zDq f (z)
f (z) + 2

− 1

∣∣∣∣∣∣∣∣ +
1
|γ|

∣∣∣∣∣∣∣∣
(1 + q) zDq f (z)

f (z)

(q − 1) zDq f (z)
f (z) + 2

− 1

∣∣∣∣∣∣∣∣ ,
≤

(k + 1)
|γ|

∣∣∣∣∣∣∣∣
(1 + q) zDq f (z)

f (z)

(q − 1) zDq f (z)
f (z) + 2

− 1

∣∣∣∣∣∣∣∣ ,
=

2(k + 1)
|γ|

∣∣∣∣∣∣∣∣
∑∞

n=2 q[n − 1]qanzn

(q + 1) +
∑∞

n=2

{
(q − 1) [n]q + 2

}
anzn

∣∣∣∣∣∣∣∣ ,
≤

2(k + 1)
|γ|


∑∞

n=2

∣∣∣q[n − 1]q

∣∣∣ |an|

(q + 1) −
∑∞

n=2

∣∣∣(q − 1) [n]q + 2
∣∣∣ |an|

 .
The last expression is bounded above by 1.

2(k + 1)
|γ|


∑∞

n=2

∣∣∣q[n − 1]q

∣∣∣ |an|

(q + 1) −
∑∞

n=2

∣∣∣(q − 1) [n]q + 2
∣∣∣ |an|

 < 1.

After some simple calculation we have

∞∑
n=2

{
2(k + 1)q[n − 1]q + |γ|

{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}
|an| ≤ (q + 1) |γ| .

Hence we complete the proof of Theorem 1. �

When q→ 1− and γ = 1 − α with 0 ≤ α < 1, we have the following known result proved by Shams
et. al in [10].

Corollary 1. A function f ∈ A and of the form (1.1) is in the class k − UST (1 − α) if it satisfies the
condition

∞∑
n=2

{n(k + 1) − (k + α)} |an| ≤ 1 − α,

where 0 ≤ α < 1 and k ≥ 0.

Inequality (3.1) gives us a tool to obtain some special member of k −UST (q, γ). Thus we have the
following corollary:

Corollary 2. Let 0 ≤ k < ∞, q ∈ (0, 1) and γ ∈ C\{0}. If the inequality

|an| ≤
(q + 1) |γ|{

2(k + 1)q[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}} , n ≥ 2,

AIMS Mathematics Volume 5, Issue 5, 4830–4848.
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holds for f (z) = z + anzn, then k −UST (q, γ). In particular,

f (z) = z +
(q + 1) |γ|{

2q(k + 1) + |γ|
{∣∣∣1 − q2

∣∣∣ + 2
}}z2 ∈ k −UST (q, γ),

and
|a2| =

(q + 1) |γ|{
2q(k + 1) + |γ|

{∣∣∣1 − q2
∣∣∣ + 2

}} .
Theorem 2. If f (z) ∈ k −UST (q, γ) and is of the form (1.1). Then

|a2| ≤
|Q1|ϕ0

q (1 + q)
(3.2)

and

|an| ≤

n−2∏
j=0


∣∣∣Q1 − q[ j]q

∣∣∣
q(q + 1)[ j + 1]q

ϕ j for n ≥ 3, (3.3)

where Q1 and ϕ j are defined by (1.4) and (3.6).

Proof. Let
(1 + q) zDq f (z)

f (z)

(q − 1) zDq f (z)
f (z) + 2

= p(z). (3.4)

Now from (3.4), we have

(1 + q) zDq f (z) =
{
(q − 1) zDq f (z) + 2 f (z)

}
p(z),

which implies that

z +
∑∞

n=2

(
2q[n − 1]q

q + 1

)
anzn

=
(
1 +

∑∞

n=1
cnzn

) (
z +

∑∞

n=2

(
[n]q (q − 1) + 2

q + 1

)
anzn

)
.

Equating coefficients of zn on both sides, we have(
2q[n − 1]q

q + 1

)
an =

∑n−1

j=1

([ j − 1
]
q (q − 1) + 2

q + 1

)
an− jc j, a1 = 1.

This implies that

|an| ≤
1

2q[n − 1]q

∑n−1

j=1

{[
j − 1

]
q (q − 1) + 2

} ∣∣∣an− j

∣∣∣ ∣∣∣c j

∣∣∣ .
By using Lemma 3, we have
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|an| ≤
|Q1|

q (1 + q) [n − 1]q

∑n−1

j=1

{[
j − 1

]
q (q − 1) + 2

} ∣∣∣a j

∣∣∣ ,
|an| ≤

|Q1|

q (1 + q) [n − 1]q

∑n−1

j=1
ϕ j−1

∣∣∣a j

∣∣∣ , (3.5)

where
ϕ j−1 =

[
j − 1

]
q (q − 1) + 2. (3.6)

Now we prove that

|Q1|

q (1 + q) [n − 1]q

∑n−1

j=1
ϕ j−1

∣∣∣a j

∣∣∣ ≤ n−2∏
j=0


∣∣∣Q1 − q[ j]q

∣∣∣
q (1 + q) [ j + 1]q

ϕ j. (3.7)

For this we use the induction method. For n = 2 from (3.5) we have

|a2| ≤
|Q1|ϕ0

q (1 + q)
.

From (3.3) we have

|a2| ≤
|Q1|ϕ0

q (1 + q)
.

For n = 3, from (3.5), we have

|a3| ≤
|Q1|

q (1 + q) [2]q
(ϕ0 + ϕ1 |a2|) ,

≤
|Q1|ϕ0

q (1 + q) [2]q

(
1 +

|Q1|ϕ1

q (1 + q)

)
.

From (3.3), we have

|a3| ≤
|Q1|ϕ0

q (1 + q)



∣∣∣Q1 − q[1]q

∣∣∣
q (1 + q) [2]q

ϕ1

 ,
≤

|Q1|ϕ0

q (1 + q)

{(
|Q1| + q[1]q

q (1 + q) [2]q

)
ϕ1

}
,

=
|Q1|ϕ1

q (1 + q) [2]q

(
|Q1|ϕ0

q (1 + q)
+

ϕ0

(1 + q)

)
,

=
|Q1|ϕ1

q (1 + q) [2]q

(
|Q1|ϕ0

q (1 + q)
+

2
(1 + q)

)
.

Let the hypothesis be true for n = m. From (3.5), we have

|am| ≤
|Q1|

q (1 + q) [m − 1]q

∑m−1

j=1
ϕ j−1

∣∣∣a j

∣∣∣ .
From (3.3) we have
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|am| ≤

m−2∏
j=0


∣∣∣Q1 − q[ j]q

∣∣∣
q (1 + q) [ j + 1]q

ϕ j, n ≥ 2,

≤

m−2∏
j=0

(
|Q1| + q[ j]q

q (1 + q) [ j + 1]q

)
ϕ j, n ≥ 2.

By the induction hypothesis, we have

|Q1|

q (1 + q) [m − 1]q

∑m−1

j=1
ϕ j−1

∣∣∣a j

∣∣∣ ≤ m−2∏
j=0

(
|Q1| + q[ j]q

q (1 + q) [ j + 1]q

)
ϕ j. (3.8)

Multiplying |Q1 |+q(q+1)[m−1,q]
q(1+q)[m−1]q

on both sides of (3.8), we have

m−2∏
j=0

(
|Q1| + q[ j]q

q (1 + q) [ j + 1]q

)
ϕ j,

≥
|Q1| + q(q + 1)[m − 1, q]

q (1 + q) [m − 1]q

{
|Q1|

q (1 + q) [m − 1]q

∑m−1

j=1
ϕ j−1

∣∣∣a j

∣∣∣} ,
=

|Q1|

q (1 + q) [m − 1]q

{
|Q1|

q (1 + q) [m − 1]q
+ 1

}∑m−1

j=1
ϕ j−1

∣∣∣a j

∣∣∣ ,
≥

|Q1|

q (1 + q) [m − 1]q

{
|am| +

∑m−1

j=1
ϕ j−1

∣∣∣a j

∣∣∣} ,
=

|Q1|

q (1 + q) [m − 1]q

∑m

j=1
ϕ j−1

∣∣∣a j

∣∣∣ .
That is,

|Q1|

q (1 + q) [m − 1]q

∑m

j=1
ϕ j−1

∣∣∣a j

∣∣∣ ≤ m−2∏
j=0

(
|Q1| + q[ j]q

q (1 + q) [ j + 1]q

)
ϕ j,

which shows that inequality (3.8) is true for n = m + 1. Hence the proof of Theorem 2 is complete �

When q→ 1−, then we have the following known result, proved by Kanas and Wisniowska in [4].

Corollary 3. If f (z) ∈ k −UST (q, γ) and is of the form (1.1). Then

|an| ≤

n−2∏
j=0

(
|Q1 − j|
( j + 1)

)
for n ≥ 3.

Theorem 3. Let 0 ≤ k < ∞, q ∈ (0, 1), be fixed and let f (z) ∈ k −UST (q, γ) and is of the form (1.1).
Then for a complex number µ, ∣∣∣a3 − µa2

2

∣∣∣ ≤ |Q1|

2q[2]q
max {1, |2v − 1|} , (3.9)

where v is given by (3.13).
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Proof. If f (z) ∈ k−UST (q, γ), then there exist a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1,
such that

J(q, f (z)) ≺ pk,γ,q(z),

(1 + q) zDq f (z)
f (z)

(q − 1) zDq f (z)
f (z) + 2

= pk,γ,q(w(z)). (3.10)

Let h(z) ∈ P be a function defined as:

h(z) =
1 + w(z)
1 − w(z)

= 1 + c1z + c2z2 + · · · ,

This gives

w(z) =
c1

2
z +

1
2

(c2 −
c2

1

2
)z2 + · · ·

and

pk,γ,q(w(z)) = 1 +
Q1c1

(1 + q)
z +

1
(1 + q)

{
Q2c2

1

2
+ (c2 −

c2
1

2
)Q1 −

(1 − q)Q2
1c2

1

2

}
z2 + · · · . (3.11)

By using (3.11) in (3.10) we obtain

a2 =
Q1c1

2q
,

and

a3 =
1

2q [2]q

Q2
1c2

1

2
+

{(
c2 −

c2
1

2

)
Q1 −

(1 − q)
2

Q2
1c2

1

}
+

{
(q − 1) [2]q + 2

}
Q2

1c2
1

2q(1 + q)

 .
For any complex number µ we have∣∣∣a3 − µa2

2

∣∣∣ =
|Q1|

2q[2]q

{
c2 − vc2

1

}
, (3.12)

where

v =
1
2

1 −
Q2

Q1
+ (1 − q)Q1 −

{
(q − 1) [2]q + 2

}
Q1

q(1 + q)
+ µ

[2]q Q1

q

 . (3.13)

Now by using Lemma 4 on (3.12) we have∣∣∣a3 − µa2
2

∣∣∣ ≤ |Q1|

2q[2]q
max {1, |2v − 1|} .

Hence we complete the proof of Theorem 3. �

Theorem 4. Let k ∈ [0,∞), q ∈ (0, 1) and γ ∈ C\{0}. A necessary and sufficient condition for f (z) of
the form (1.18) to be in the class k −UST −(q, γ) can be formulated as follows:

∞∑
n=2

{
2(k + 1)q[n − 1]q + |γ|

{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}

an ≤ (q + 1) |γ| . (3.14)
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The result is sharp for the function

f (z) = z −
(q + 1) |γ|{

2(k + 1)q[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}zn.

Proof. In view of Theorem 1, it remains to prove the necessity. If f ∈ k − UST −(q, γ), then in virtue
of the fact that

∣∣∣<(z)
∣∣∣ ≤ |z| , for any z, we have∣∣∣∣∣∣∣∣1 +

1
γ (q + 1)


∑∞

n=2 2q[n − 1]qanzn−1

1 −
∑∞

n=2
1

(q+1)

{
(q − 1) [n]q + 2

}
anzn−1


∣∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣∣ k
γ (q + 1)


∑∞

n=2 2q[n − 1]qanzn−1

1 −
∑∞

n=2

{
(q − 1) [n]q + 2

}
anzn−1


∣∣∣∣∣∣∣∣ . (3.15)

Letting z→ 1−, along the real axis, we obtain the desired inequality (3.14). Hence we complete the
proof of Theorem 4. �

Corollary 4. Let the function f (z) of the form (1.18) be in the class k −UST −(q, γ). Then

an ≤
(q + 1) |γ|{

2(k + 1)q[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}} , n ≥ 2. (3.16)

Corollary 5. Let the function f (z) of the form (1.18) be in the class k −UST −(q, γ). Then

a2 =
(q + 1) |γ|{

2(k + 1)q + |γ|
{∣∣∣1 − q2

∣∣∣ + 2
}} . (3.17)

Theorem 5. Let k ∈ [0,∞), q ∈ (0, 1) and γ ∈ C\{0} and let

f1(z) = z,

and
fn(z) = z −

(q + 1) |γ|{
2(k + 1)q[n − 1]q + |γ|

{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}zn, n ≥ 3. (3.18)

Then f ∈ k −UST −(q, γ), if and only if f can be expressed in the form of

f (z) =

∞∑
n=1

λn fn(z), λn > 0, and
∞∑

n=1

λn = 1. (3.19)

Proof. Suppose that
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f (z) =

∞∑
n=1

λn fn(z) = λ1 f1(z) +

∞∑
n=2

λn fn(z),

= λ1 f1(z) +

∞∑
n=2

λn

z −
(q + 1) |γ|{

2q(k + 1)[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}zn

 ,
= λ1z +

∞∑
n=2

λnz −
∞∑

n=2

λn
(q + 1) |γ|{

2q(k + 1)[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}zn,

=

 ∞∑
n=1

λn

 z −
∞∑

n=2

λn
(q + 1) |γ|{

2q(k + 1)[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}zn,

= z −
∞∑

n=2

λn
(q + 1) |γ|{

2q(k + 1)[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}zn.

Then

∞∑
n=2

λn

(q + 1) |γ|
{
2q(k + 1)[n − 1]q + |γ|

{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}{

2q(k + 1)[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}

(q + 1) |γ|

=

∞∑
n=2

λn =

∞∑
n=1

λn − λ1 = 1 − λ1 ≤ 1,

and we find k −UST −(q, γ).
Conversely, assume that k −UST −(q, γ). Since

|an| ≤
(q + 1) |γ|{

2q(k + 1)[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}} ,

we can set

λn =

{
2q(k + 1)[n − 1]q + |γ|

{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}

(q + 1) |γ|
|an| ,

and

λ1 = 1 −
∞∑

n=2

λn.

Then

f (z) = z +

∞∑
n=2

anzn = z +

∞∑
n=2

λn
(q + 1) |γ|{

2(k + 1)q[n − 1]q + |γ|
{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}zn,

= z +

∞∑
n=2

λn(z + fn(z)) = z +

∞∑
n=2

λnz +

∞∑
n=2

λn fn(z),

=

1 − ∞∑
n=2

λn

 z +

∞∑
n=2

λn fn(z) = λ1z +

∞∑
n=2

λn fn(z) =

∞∑
n=1

λn fn(z).

The proof of Theorem 5 is complete. �
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Theorem 6. Let k ∈ [0,∞), q ∈ (0, 1), and γ ∈ C\{0}. Let f defined by (1.18) belongs to the class
k −UST −(q, γ). Thus for |z| = r < 1, the following inequality is true:

r −
(q + 1) |γ|{

2(k + 1)q + |γ|
{∣∣∣1 − q2

∣∣∣ + 2
}}r2 ≤ | f (z)| ≤ r +

(q + 1) |γ|{
2(k + 1)q + |γ|

{∣∣∣1 − q2
∣∣∣ + 2

}}r2. (3.20)

Equality in (3.20) is attained for the function f given by the formula

f (z) = z +
(q + 1) |γ|{

2(k + 1)q + |γ|
{∣∣∣1 − q2

∣∣∣ + 2
}}z2. (3.21)

Proof. Since f ∈ k −UST −(q, γ), in view of Theorem 4 we find

{
2(k + 1)q + |γ|

{∣∣∣(q − 1) [2]q

∣∣∣ + 2
}} ∞∑

n=2

an

≤

∞∑
n=2

{
2(k + 1)q[n − 1]q + |γ|

{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}
|an| ≤ (q + 1) |γ| .

This gives
∞∑

n=2

an ≤
(q + 1) |γ|{

2(k + 1)q + |γ|
{∣∣∣(q − 1) [2]q

∣∣∣ + 2
}} . (3.22)

Therefore

| f (z)| ≤ |z| +
∞∑

n=2

an |z|n ≤ r +
(q + 1) |γ|{

2(k + 1)q + |γ|
{∣∣∣(q − 1) [2]q

∣∣∣ + 2
}}r2,

and

| f (z)| ≥ |z| −
∞∑

n=2

an |z|n ≥ r −
(q + 1) |γ|{

2(k + 1)q + |γ|
{∣∣∣(q − 1) [2]q

∣∣∣ + 2
}}r2.

The required results follows by letting r → 1−. Hence the proof of Theorem 6 is complete. �

Theorem 7. Let k ∈ [0,∞), q ∈ (0, 1), and γ ∈ C\{0}. Let f defined by (1.18) belongs to the class
k −UST −(q, γ). Thus, for |z| = r < 1, the following inequality is true:

1 −
2 (q + 1) |γ|{

2(k + 1)q + |γ|
{∣∣∣1 − q2

∣∣∣ + 2
}}r ≤

∣∣∣ f ′(z)
∣∣∣ ≤ 1 +

2 (q + 1) |γ|{
2(k + 1)q + |γ|

{∣∣∣1 − q2
∣∣∣ + 2

}}r. (3.23)

Proof. Differentiating f and using triangle inequality for the modulus, we obtain

∣∣∣ f ′(z)
∣∣∣ ≤ 1 +

∞∑
n=2

nan |z|n−1
≤ 1 + r

∞∑
n=2

nan, (3.24)
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and ∣∣∣ f ′(z)
∣∣∣ ≥ 1 −

∞∑
n=2

nan |z|n−1
≥ 1 − r

∞∑
n=2

nan. (3.25)

Assertion (3.23) follows from (3.24) and (3.25) in view of rather simple consequence of (3.22) given
by the inequality

∞∑
n=2

nan ≤
2 (q + 1) |γ|{

2(k + 1)q + |γ|
{∣∣∣(q − 1) [2]q

∣∣∣ + 2
}} .

Hence we complete the proof of Theorem 7. �

Theorem 8. The class k −UST −(q, γ) is closed under convex linear combination.

Proof. Let the functions f (z) and g(z) are in class k−UST −(q, γ). Suppose f (z) is given by (1.18) and

g(z) = z −
∞∑

n=2

dnzn, (3.26)

where an, dn ≥ 0.
It is sufficient to prove that for 0 ≤ λ ≤ 1, the function

H(z) = λ f (z) + (1 − λ)g(z), (3.27)

is also in the class k −UST −(q, γ).
From (1.18), (3.26) and (3.27), we have

H(z) = z −
∞∑

n=2

{λan + (1 − λ) dn} zn. (3.28)

As f (z) and g(z) are in class k −UST −(q, γ) and 0 ≤ λ ≤ 1, so by using Theorem 4, we obtain
∞∑

n=2

{
2(k + 1)q[n − 1]q + |γ|

{∣∣∣(q − 1) [n]q

∣∣∣ + 2
}}
{λan + (1 − λ) dn} ≤ (1 + q) |γ| . (3.29)

Again by Theorem 4 and inequality (3.29), we have H(z) ∈ k − UST −(q, γ). Hence the proof of
Theorem 8 is complete. �

4. Conclusions

In this paper, motivated significantly by a number of recent works, we have made use of a certain
general conic domain Ωk,q,γ and the quantum (or q-) calculus in order to define and investigate a new
subclass of normalized analytic functions in the open unit disk E and we have successfully derived
several properties and characteristics of newly defined subclass of analytic functions. For verification
and validity of our main results we have also pointed out relevant connections of our main results with
those in several earlier related works on this subject.

For further investigation, we can make obvious connections between the q-analysis and
(p, q)-analysis and the results for q-analogues which we have consider in this article for 0 < q < 1,
can easily be translated into the corresponding results for the (p, q)-analogues with (0 < q < p ≤ 1) by
applying some obvious parameter and argument variations.
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