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1. Introduction

Differential equations of noninteger order can represent the dynamics of various memory systems
and arise from a variety of applications, including several fields of science and engineering such as
geology, physics, optics, chemistry, biology, economics, signal and image processing,... Although
the literature on fractional differential equations is now vast, more studies are needed. Recently, the
investigation of the qualitative properties of solutions to fractional initial and boundary value problems
has attracted the attention of many authors [1–17], and different tools are used in these researches, such
as the method of upper and lower solutions, the variational method, the coincidence degree theory, the
fixed point theorems ...

The aim of this work is the study of the existence of solutions, for the following nonlinear boundary
value problem (P) involving both the right Caputo and the left Riemann-Liouville fractional derivatives:

−C Dα
1−D

β
0+u(t) + ω2u(t) + f (t, u(t)) = 0, t ∈ J = [0, 1]. (1.1)

u(0) = 0,Dβ
0+u(1) = 0, (1.2)
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where 0 < α, β < 1, α + β > 1, ω ∈ R, CDα
1− and Dβ

0+ denote respectively the right Caputo derivative
and the left Riemann Liouville derivative, u is the unknown function and f : J × R −→ R is a
Caratheodory function. Let us mention that if α and β tend to one, then problem (P) is a classical
oscillator boundary value problem that is investigated in [2]. Note that problem (P) is studied in [13]
by lower and upper solutions method, the authors proved the existence of solution under some specific
conditions on the nonlinear term f . In the present study, we prove the existence of solution for
problem (P) under Lipschitz type condition on the nonlinear term f and by using Krasnoselskii’s fixed
point theorem.

Different methods are used in the study of differential equations involving mixed type fractional
derivatives. By the help of operational method and the successive approximations, some linear
differential equations containing left and right fractional derivatives that may appear in fractional
variational calculus, are studied in [8,9].

Recently, the method of upper and lower solutions is applied in [13,15,16] to solve nonlinear
differential equations containing mixed fractional derivatives.

In [3], the authors considered a coupled system of nonlinear differential equations involving mixed
type fractional derivatives

−CDα
1−D

β
0+ x(t) = f (t, x(t), y (t)) = 0,

−CDp
1−D

p
0+y(t) = f (t, x(t), y (t)) = 0, 0 < t < 1,

with nonlocal boundary conditions

x (0) = x′ (0) = 0, x (1) = γy (η) , 0 < η < 1,
y (0) = y′ (0) = 0, y (1) = δx (θ) , 0 < θ < 1,

here 1 < α, p < 2, 0 < β, p < 1, γ, δ ∈ R. The existence and uniqueness of solution is proved by the
help of Leray-Schauder alternative and Banach fixed point theorem.

By Krasnoselskii’s fixed point theorem, the authors in [12,14], investigated some boundary value
problems involving mixed type fractional derivatives. In particular in [12], proved, under Lipschitz
type condition on the nonlinear term, the existence of solution in a weighted space, for the following
boundary value problem

−CDα
1−D

β
0+u(t) + f (t, u(t)) = 0, 0 < t < 1,

lim
t→0+

t1−βu(t) = u(1) = u (η)

where 0 < α, β < 1, 1 < α + β < 2.
In [14], the authors studied by the help of Krasnoselskii’s fixed point theorem and Arzela Ascoli’s

theorem, the existence of solution for the problem

−CDα
1−D

β
0+u (t) + f (t, u (t)) = 0, 0 < t < 1

u (0) = u′ (0) = u (1) = 0

where 0 < α ≤ 1, 1 < β ≤ 2, CDα
1− denotes right Caputo derivative, Dβ

0+ denotes the left Riemann–
Liouville and f : [0, 1] × R→ R satisfies Lipschitz type condition.
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Motivated by the above papers, we study the existence of solutions for problem (P). For this, we
convert the problem (P) into an integral equation which we write as a sum of two integral operators,
including a contraction and a completely continuous operator, then we apply Riesz compactness criteria
and Krasnoselskii fixed point theorem to prove the existence of solution.

2. Preliminaries

We give some background on fractional calculus that can be found in [18,19,20]. Let g be a real
function defined on [0, 1] and α > 0. Then the left and right Riemann-Liouville fractional integrals of
order α of g are defined respectively by

Iα0+g(t) =
1

Γ(α)

∫ t

0

g(s)
(t − s)1−αds,

Iα1−g(t) =
1

Γ(α)

∫ 1

t

g(s)
(s − t)1−αds.

The left Riemann-Liouville fractional derivative of order α > 0, of a function g is

Dα
0+g(t) =

dn

dtn (In−α
0+ g(t))

where n = [α] + 1.
The left and right Caputo fractional derivatives of order α > 0 of a function g are defined

respectively as
CDα

0+g(t) = In−α
0+

(
dn

dtn g(t)
)
,

CDα
1−g(t) = (−1)nIn−α

1−

(
dn

dtn g(t)
)
.

Proposition 2.1. Let f ∈ Cn ([0, 1]). Then

Iα0+
CDα

0+ f (t) = f (t) −
n−1∑
k=0

f (k)(0)
k!

tk,

Iα1−
CDα

1− f (t) = f (t) −
n−1∑
k=0

(−1)k f (k)(1)
k!

(1 − t)k.

Theorem 2.1 (Riesz compactness criteria). [11]. Let F be a bounded set in Lp(0, 1), 1 ≤ p < ∞.

Assume that
(i) limh→0 ‖τh f − f ‖Lp = 0 uniformly on F, where τh f (t) = f (t + h).
(ii) limε→0

∫ 1

1−ε
| f (t)|p dt = 0 uniformly on F.

Then F is relatively compact in Lp(0, 1).

Theorem 2.2 (Krasnoselskii fixed point Theorem). [21]. Let Ω be a closed bounded convex nonempty
subset of a Banach space E. Suppose that A and B map Ω into E such that
(i) A is completely continuous,
(ii) B is a contraction mapping,
(iii) x, y ∈ M implies Ax + By ∈ Ω.

Then there exists z ∈ Ω with z = Az + Bz.
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3. Main results

To study the nonlinear problem (P), we consider first, the associated linear problem

−C Dα
1−D

β
0+u(t) + y(t) = 0, 0 < t < 1, (3.1)

u(0) = 0,Dβ
0+u(1) = 0.

Lemma 3.1. Assume that y ∈ Lp(0, 1), p > 1, then u is a solution for the linear boundary value
problem (3.1)–(1.2) if and only if u satisfies the integral equation

u(t) =

∫ 1

0
G(t, τ)y(τ)dτ,

where

G(t, τ) =
1

Γ(α)Γ(β)


∫ τ

0
(t − s)β−1(τ − s)α−1ds, 0 ≤ τ ≤ t ≤ 1,∫ t

0
(t − s)β−1(τ − s)α−1ds, 0 ≤ t ≤ τ ≤ 1.

Proof. Applying the right-hand side fractional integral Iα1− to equation (3.1), we get

Dβ
0+u(t) = Iα1−y(t) + a, a ∈ R

The boundary condition Dβ
0+u(1) = 0, gives a = 0, then applying the fractional integral Iβ0+ to the

obtained equation, it yields
u(t) = Iβ0+ Iα1−y(t) + ctβ−1, c ∈ R (3.2)

Multiplying the equation (3.2) by t1−β, then using the condition u(0) = 0, we obtain c = 0, thus

u(t) = Iβ0+ Iα1−y(t)

=
1

Γ(α)Γ(β)

∫ t

0
(t − s)β−1

∫ 1

s
(τ − s)α−1y(τ)dτds.

Finally, by Fubini theorem, we get

u(t) =
1

Γ(α)Γ(β)

∫ t

0

∫ τ

0
(t − s)β−1(τ − s)α−1y(τ)dsdτ

+
1

Γ(α)Γ(β)

∫ 1

t

∫ t

0
(t − s)β−1(τ − s)α−1y(τ)dsdτ.

�

Lemma 3.2. The function G is continuous, nonnegative and

G(t, τ) ≤
1

(α + β − 1) Γ(α)Γ(β)
, for all t, τ ∈ J.
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Remark 3.1. Let us mention the case α + β → 1+. Since α + β > 1 and 0 < α, β < 1, then α > 1
2 or

β > 1
2 . If α > 1

2 , then α + β → 1+implies (α → 1− and β → 0) or (α → 1
2

+ and β → 1
2
−), then the

problem (P) is reduced respectively to

u′(t) + ω2u(t) + f (t, u(t)) = 0, t ∈ J = [0, 1]. P1

u(0) = 0

and

−CD
1
2
1−D

1
2
0+u(t) + ω2u(t) + f (t, u(t)) = 0, t ∈ J = [0, 1]. P2

u(0) = 0,D
1
2
0+u(1) = 0,

For problem (P2), let us fix α = 1/2, then we have,

G(1, 1) =
1

Γ(α)Γ(β)

∫ 1

0
(1 − s)β+α−2ds =

1
Γ(α)Γ(β) (β + α − 1)

=
1

Γ(1/2)Γ(β)

∫ 1

0
(1 − s)β−

3
2 ds =

1

Γ(1/2)Γ(β)
(
β − 1

2

) → +∞,

as β →
1
2

−

thus the Green function is not bounded.

Lemma 3.3. The function u ∈ Lp (0, 1) is a solution of the integral equation

u(t) =

∫ 1

0
G(t, τ) f (τ, u(τ))dτ + ω2

∫ 1

0
G(t, τ)u(τ)dτ.

if and only if u is a solution of the fractional boundary value problem (P).

Now we define the operators A and B on Lp (0, 1) as

Au(t) =

∫ 1

0
G(t, τ) f (τ, u(τ))dτ,

Bu(t) = ω2
∫ 1

0
G(t, τ)u(τ)dτ.

Obviously, the problem (P) has a solution if and only if the operator A + B has a fixed point in Lp (0, 1).
Before stating and proving the main results, we introduce the following hypotheses.
(H1) M = sup0≤t≤1 | f (t, 0)| < ∞, and there exists a constant k,
0 < k

(α+β−1)Γ(α)Γ(β) ≤
1
2 , such that

| f (t, u) − f (t, v)| ≤ k |u − v| , 0 ≤ t ≤ 1, u, v ∈ R.

(H2) ω2

(α+β−1)Γ(α)Γ(β) <
1
2 .
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Theorem 3.1. Assume that (H1)–(H2) hold, then the fractional boundary value problem (P) has a
nontrivial solution in Lp (0, 1) .

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.4. Under the hypotheses (H1)–(H2), the operator A is completely continuous on Lp (0, 1).

Proof. Let
Ω = {u ∈ Lp (0, 1) , ‖u‖Lp ≤ R}

such that
R ≥

M
(α + β − 1) Γ(α)Γ(β) −

(
k + ω2) (3.3)

Clearly, Ω is a nonempty, bounded and convex subset of the Banach space Lp (0, 1). We should prove
that A is continuous and relatively compact on Lp(0, 1).
Claim 1. The mapping A is continuous on Ω. In fact, consider the sequence (un)n ∈ Ω, such that
un −→ u in Lp (0, 1), then from Lemma 3.2, hypothesis (H1) and Hölder inequality, we get

|Aun(t) − Au(t)| ≤
∫ 1

0
G(t, τ) | f (τ, un(τ)) − f (τ, u(τ))| dτ

≤
k

(α + β − 1) Γ(α)Γ(β)

∫ 1

0
|un(τ) − u(τ)| dτ

≤
k

(α + β − 1) Γ(α)Γ(β)
‖un (.) − u (.)‖Lp(0,1) .

Hence
‖Aun − Au‖Lp(0,1) ≤

k
(α + β − 1) Γ(α)Γ(β)

‖un (.) − u (.)‖Lp(0,1) → 0, as n→ ∞.

Claim 2. (Au) is bounded in Lp(0, 1). Indeed, let u ∈ Ω, then by condition (H1) and Hölder inequality,
it yields

|Au(t)| ≤
1

(α + β − 1) Γ(α)Γ(β)

∫ 1

0
| f (τ, u(τ))| dτ

≤
1

(α + β − 1) Γ(α)Γ(β)

(
k
(∫ 1

0
|u(τ)| dτ

)
+

∫ 1

0
| f (τ, 0)| dτ

)
1

(α + β − 1) Γ(α)Γ(β)

k (∫ 1

0
|u(τ)|p dτ

) 1
p

+

∫ 1

0
| f (τ, 0)| dτ


≤

kR + M
(α + β − 1) Γ(α)Γ(β)

,

thus
‖Au‖Lp ≤

kR + M
(α + β − 1) Γ(α)Γ(β)

.

Claim 3. (Au) is relatively compact. In fact, let u ∈ Ω, and p > 1, we have

|Au(t + h) − Au(t)| ≤
∫ 1

0
|G(t + h, τ) −G(t, τ)| | f (τ, u(τ))| dτ
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≤

∫ 1

0
|G(t + h, τ) −G(t, τ)| (k |u(τ)| + | f (τ, 0)|)dτ

≤ (kR + M)
(∫ 1

0
|G(t + h, τ) −G(t, τ)|p dτ

) 1
p

≤ (kR + M)
(∫ t

0
|G(t + h, τ) −G(t, τ)|p dτ +

∫ t+h

t
|G(t + h, τ) −G(t, τ)|p dτ

+

∫ 1

t+h
|G(t + h, τ) −G(t, τ)|p dτ

) 1
p

≤
kR + M
Γ(α)Γ(β)

(∫ t

0

(∫ τ

0
((t − s)β−1 − (t + h − s)β−1)(τ − s)α−1ds

)p

dτ

+

∫ 1

t

(∫ t

0
((t − s)β−1 − (t + h − s)β−1)(τ − s)α−1ds

)p

dτ

+

∫ t+h

t

(∫ τ

t
(t + h − s)β−1ds

)p

dτ
) 1

p

=
(kR + M)
Γ(α)Γ(β)

(I1 + I2 + I3)
1
p ,

hence
|Au(t + h) − Au(t)| ≤

(kR + M)
Γ(α)Γ(β)

(I1 + I2 + I3)
1
p . (3.4)

Let us calculate Ii, i = 1, 2, 3.

I1 =

∫ t

0

(∫ τ

0
((t − s)β−1 − (t + h − s)β−1)(τ − s)α−1ds

)p

dτ

≤ (h (1 − β))p
∫ t

0

(∫ τ

0
(τ − s)α−1ds

)p

dτ ≤
(

h (1 − β)
α (α + 1)

)p

.

I2 =

∫ 1

t

(∫ t

0
((t − s)β−1 − (t + h − s)β−1)(τ − s)α−1ds

)p

dτ

≤ (h (1 − β))p
∫ t

0
((1 − s)α − (t − s)α)p ds ≤

(h (1 − β))p

αp + 1
.

I3 =

∫ t+h

t

(∫ τ

t
(t + h − s)β−1ds

)p

dτ

≤
1
βp

∫ t+h

t

(
hβ − (t + h − τ)β

)p
dτ ≤

hβp+1

βp .

Finally, we get

‖Au(. + h) − Au(.)‖Lp ≤
(kR + M)
Γ(α)Γ(β)

((
h (1 − β)
α (α + 1)

)p

+
(h (1 − β))p

αp + 1
+

hβp+1

βp

) 1
p

(3.5)
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By taking the limit in (3.5) as h→ 0, we obtain that ‖Au(. + h) − Au(.)‖Lp → 0 for any u ∈ Ω.

On the other hand we have by the help of claim 2∫ 1

1−ε
|Au(t)|p dt ≤ ε

(
kR + M

(α + β − 1) Γ(α)Γ(β)

)p

→ 0 as ε→ 0.

By Theorem 2.1, we conclude that A is relatively compact on Ω. From the above discussion we
conclude that A completely continuous on Lp (0, 1) . �

Lemma 3.5. Under the hypothesis (H2), the mapping B is a contraction on Ω.

Proof. Let u ∈ Ω and t ∈ J, we have

|Bu(t)| ≤ ω2
∫ 1

0
G(t, τ) |u(τ)| dτ ≤

ω2R
(α + β − 1) Γ(α)Γ(β)

<
R
2
.

thus ‖Bu‖Lp(0,1) <
R
2 , and consequently B(Ω) ⊂ Ω. Now for u, v ∈ Ω and t ∈ J, we have

|Bu(t) − Bv (t)| ≤ ω2
∫ 1

0
G(t, τ) |u(τ) − v(τ)| dτ

≤
ω2

(α + β − 1) Γ(α)Γ(β)
‖u − v‖Lp ,

hence

‖Bu − Bv‖Lp ≤
ω2

(α + β − 1) Γ(α)Γ(β)
‖u − v‖Lp ,

by hypothesis (H2), we conclude that B is a contraction. �

Lemma 3.6. Assume that hypotheses (H1) and (H2) hold, then Au + Bv ∈ Ω for all u, v ∈ Ω.

Proof. Let u, v ∈ Ω, then taking (3.3) into account, it yields

‖Au − Bv‖Lp ≤ ‖Au‖Lp + ‖Bv‖Lp

≤
R

(
ω2 + k

)
+ M

(α + β − 1) Γ(α)Γ(β)
≤ R,

hence Au + Bv ∈ Ω. �

Proof of Theorem 3.1. By Lemmas 3.4, 3.5 and 3.6, we conclude respectively that the mapping A
is completely continuous, the mapping B is a contraction and Au + Bv ∈ Ω for all u, v ∈ Ω, then all
hypotheses of Theorem 2.2 are satisfied. Hence, there exists a nontrivial solution u ∈ Ω for problem
(P) such that u = Au + Bu. The proof is complete.

Now, we give an example to illustrate the usefulness of the obtained results.
Example 1. Consider the problem (P) with

f (t, x) =
e−tx

9 + et(1 + x2)
+ et, (t, x) ∈ J × R,

ω = 0.5, α = 0.5, β = 0.8,
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M = sup
0≤t≤1
| f (t, 0)| = e = 2.718 3.

Let us check hypotheses (H1)-(H2). We have for all (t, x) ∈ J × R

| f (t, x) − f (t, y)| ≤
e−t

9 + et |x − y| ≤
1

10
|x − y| ,

then k = 1
10 , 0 < k = 0.1 ≤ 1

2 (α + β − 1) Γ(α)Γ(β) = 0.309 53. By Theorem 3.1, we conclude that
the problem (P) has a nontrivial solution u ∈ Lp (0, 1) , such that ‖u‖Lp ≤ R, where R ≥ 10. 103 and
u = Au + Bu.

Example 2. Consider the problem (P) with

f (t, x) =
t

1
3 sin x + t3

15
, (t, x) ∈ J × R,

ω =
1

10
, α =

1
3
, β =

3
4
,

M = sup
0≤t≤1
| f (t, 0)| =

1
15

We have for all (t, x) ∈ J × R

| f (t, x) − f (t, y)| ≤
t

1
3

15
|sin(x) − sin(y)| ≤

1
15
|x − y| ,

and k = 1
15 ,

k
(α+β−1)Γ(α)Γ(β) = 0.243 69 ≤ 1

2 ,
ω2

(α+β−1)Γ(α)Γ(β) = 3.655 4 × 10−2 < 1
2 . Thus hypotheses (H1)

and (H2) are satisfied.
By Theorem 3.1, we conclude that the problem (P) has a nontrivial solution u ∈ Lp (0, 1) , such that

‖u‖Lp ≤ R, where R = 1 ≥ M
(α+β−1)Γ(α)Γ(β)−(k+ω2) = 0.338 58 and u = Au + Bu.

4. Conclusions

In this article, we have proven the existence of non trivial solutions for a boundary value problem
containing different type of fractional derivatives. The existence results are obtained via
Krasnoselskii’s fixed point theorem. For further investigations we propose to study similar problems
with different types of fractional derivatives of higher order, by means of some fixed point theorems.
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14. A. G. Lakoud, R. Khaldi, A. Kılıçman, Existence of solutions for a mixed fractional boundary
value problem, Advances in Difference Equations, 2017, 164.

15. R. Khaldi, A. Guezane-Lakoud, Higher order fractional boundary value problems for mixed type
derivatives, J. Nonlinear Funct. Anal. 2017 (2017), Article ID 30.

16. R. Khaldi, A. Guezane-Lakoud, On generalized nonlinear Euler-Bernoulli Beam type equations,
Acta Univ. Sapientiae, Mathematica, 10 (2018), 90–100.

AIMS Mathematics Volume 5, Issue 5, 4770–4780.



4780
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