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1. Introduction

In this paper, we consider the following p-Laplacian fractional differential equation involving
Riemann-Stieltjes integral boundary condition

−D
β
t (ϕp(−Dα

t z(t) − g(t, z(t),Dγ
t z(t)))) = f (t, z(t),Dγ

t z(t)), 0 < t < 1,
Dα

t z(0) = Dα+1
t z(0) = D

γ
t z(0) = 0,

Dα
t z(1) = 0,Dγ

t z(1) =
∫ 1

0
D

γ
t z(s)dA(s),

(1.1)

where Dα
t ,D

β
t ,D

γ
t are the Riemann-Liouville fractional derivatives of orders α, β, γ with 0 < γ ≤ 1 <

α ≤ 2 < β < 3, α − γ > 1,
∫ 1

0
Dγ

t z(t)dA(s) denotes a Riemann-Stieltjes integral, and A is a function of
bounded variation. The p-Laplacian operator is defined as ϕp(s) = |s|p−2s, p > 2, ϕp(s) is invertible
and its inverse operator is ϕq(s), where q =

p
p−1 is the conjugate index of p.
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Fractional calculus and fractional differential equations arise in many fields, such as, mathematics,
physics, economics, engineering, biology, electroanalytical chemistry, capacitor theory, electrical
circuits, control theory, and fluid dynamics, see [1–49]. The problem (1.1) can be regarded as a
fractional order model for the turbulent flow in a porous medium, see [8,50]. As we know, integral
boundary value problems have different applications in applied fields such as blood flow problems,
chemical engineering, underground water flow and population dynamics. For example, in [31], Meng
and Cui considered the following fractional differential equation involving integral boundary
condition  Dαx(t) = f (t, x(t)), 0 < t < 1,

x(0) =
∫ 1

0
x(t)dA(t),

(1.2)

where f ∈ C([0, 1] × R,R),
∫ 1

0
x(t)dA(t) denotes the Riemann-Stieltjes integral with positive Stieltjes

measure. Dα is the conformable fractional derivative of order 0 < α ≤ 1 at t > 0. By topological
degree theory, the method of lower and upper solutions and a fixed point theorem, they discussed the
existence of at least three solutions to the problem (1.2).

In [8], the authors studied the following fractional differential boundary value problem
−D

β
t (ϕp(−Dα

t x))(t) = f (x(t),Dγ
t x(t)), t ∈ (0, 1),

Dα
t x(0) = Dα+1

t x(0) = Dα
t x(1) = 0,

D
γ
t x(0) = 0, Dγ

t x(1) =
∫ 1

0
D

γ
t x(s)dA(s),

(1.3)

where Dα
t , D

β
t , D

γ
t are the Riemann-Liouville derivatives,

∫ 1

0
x(s)dA(s) is the Riemann-Stieltjes

integral and 0 < γ ≤ 1 < α ≤ 2 < β < 3, α − γ > 1, A is a function bounded variation, ϕp is the
p-Laplacian operator. By employing a fixed point theorem for mixed monotone operator, they
obtained the existence and uniqueness of positive solutions for the problem (1.3).

When g ≡ 0 in (1.1), the author in [21] gave the existence and uniqueness of positive solutions by
using monotone iterative technique. Motivated by the results mentioned above and wide applications
of different boundary value conditions, we consider the existence and uniqueness of positive solutions
for p-Laplacian fractional order differential equation involving Riemann-Stieltjes integral boundary
condition (1.1). In Section 2, we present some preliminaries that can be used to prove our main results.
The main theorems are formulated and proved in Section 3. Two simple examples are given to illustrate
the main results in Section 4.

2. Preliminaries and known results

In the following, we start with some basic concepts and lemmas.
Definition 2.1. [1] For a function x : (0,+∞)→ R, the Riemann-Liouville fractional integral of order
α > 0 is

Iαx(t) =
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds,

provide that the right-hand side is pointwise defined on (0,+∞).
Definition 2.2. [1] For a function x : (0,+∞) → R, the Riemann-Liouville fractional derivative of
order α > 0 is

Dα
t x(t) =

1
Γ(n − α)

(
d
dt

)n
∫ t

0
(t − s)n−α−1x(s)ds,
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where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-hand side is
pointwise defined on (0,+∞).

To reduce the p-Laplacian fractional order differential equation (1.1) to a convenient form, for
x ∈ C[0, 1], making a change of variable z(t) = Iγx(t). By the definitions of the Riemann-Liouville
fractional integral and derivative, we can see that Iγx(t) → 0,Dα

t x(t) → 0 as t → 0+. So we first get
x(0) = 0. From [8,21], the problem (1.1) reduces to an equivalent boundary value problem as follows:

−D
β
t ϕp(−Dα−γ

t x(t) − g(t, Iγx(t), x(t))) = f (t, Iγx(t), x(t))
D

α−γ
t x(0) = Dα−γ+1

t x(0) = D
α−γ
t x(0) = 0,

x(0) = 0, x(1) =
∫ 1

0
x(s)dA(s).

(2.1)

So, to get the existence and uniqueness of positive solutions for the problem (1.1), we only need to
condiser the equivalent problem (2.1). To do this, we fist give an important function

Gβ(t, s) =
1

Γ(β)

{
[t(1 − s)]β−1, 0 ≤ t ≤ s ≤ 1,
1[t(1 − s)]β−1 − (t − s)β−1, 0 ≤ s ≤ t ≤ 1.

(2.2)

From Lemma 2.2 in [8], we have the following conclusion:

Lemma 2.1. Given f , g ∈ L1[0, 1], 0 < γ ≤ 1 < α ≤ 2 < β < 3 and α − γ > 1, the fractional order
p-Laplacian differential equation

−D
β
t (ϕp(−Dα−γ

t x(t) − g(t)) = f (t),
D

α−γ
t x(0) = D

α−γ+1
t x(0) = D

α−γ
t x(1) = 0,

x(0) = 0, x(1) =
∫ 1

0
x(s)dA(s)

(2.3)

has a unique solution

x(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ)dτ

)
ds +

∫ 1

0
H(t, s)g(s)ds,

where
H(t, s) =

GA(s)
1 −A

tα−γ−1 + Gα−γ(t, s) (2.4)

with

A =

∫ 1

0
tα−γ−1dA(t), GA(s) =

∫ 1

0
Gα−β(t, s)dA(t).

Lemma 2.2. [21] Let 0 ≤ A < 1 and GA(s) ≥ 0 for s ∈ [0, 1], then the functions Gβ(t, s) and H(t, s)
satisfy:
(1) Gβ(t, s) > 0,H(t, s) > 0, for t, s ∈ (0, 1);
(2) tβ−1(1−t)s(1−s)β−1

Γ(β) ≤ Gβ(t, s) ≤ β−1
Γ(β) t

β−1(1 − t) for t, s ∈ [0, 1];
(3) There exist two positive constants d, e such that

dtα−γ−1GA(s) ≤ H(t, s) ≤ etα−γ−1, t, s ∈ [0, 1].

Let (E, ‖ · ‖) be a real Banach space and θ be the zero element of E. E is partially ordered by a cone
P ⊂ E, i.e., x ≤ y if and only if y − x ∈ P. A cone P is called normal if there exists a constant N > 0
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such that, for all x, y ∈ E, θ ≤ x ≤ y ⇒ ‖x‖ ≤ N‖y‖; in this case, N is called the normality constant of
P. We say that an operator A : E → E is increasing (decreasing) if x ≤ y implies Ax ≤ Ay(Ax ≥ Ay).

For x, y ∈ E, the notation x ∼ y denotes that there exist λ > 0 and µ > 0 such that λx ≤ y ≤ µx.
Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h , θ), define Ph = {x ∈ E : x ∼ h}.
It is clear to see that Ph ⊂ P.
Definition 2.3. [51] Let 0 < δ < 1. An operator A : P→ P is said to be δ−concave if A(tx) ≥ tδAx for
t ∈ (0, 1), x ∈ P. An operator A : P → P is called to be sub-homogeneous if A(tx) ≥ tAx for t > 0,
x ∈ P.

In papers [52, 53], the authors investigated a sum operator equation

Ax + Bx = x, (2.5)

where A, B are monotone operators. They gave the existence and uniqueness of positive solutions for
(2.5) and obtained some interesting theorems.

Lemma 2.3. [52] Let E be a real Banach space. P is a normal cone in E, A : P → P is an increasing
δ-concave operator and B : P→ P is an increasing sub-homogeneous operator. Suppose that
(i) there is h > θ such that Ah ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ0 > 0 such that Ax ≥ δ0Bx for all x ∈ P.
Then the operator equation (2.5) has a unique solution x∗ in Ph. Further, making the sequence
yn = Ayn−1 + Byn−1, n = 1, 2 . . . for any initial value y0 ∈ Ph, one has yn → x∗ as n→ ∞.

Lemma 2.4. [53] Let E be a real Banach space. P is a normal cone in E, A : P → P is an increasing
operator, and B : P→ P is a decreasing operator. In addition,
(i) for x ∈ P and t ∈ (0, 1), there exist φi(t) ∈ (t, 1), i = 1, 2 such that

A(tx) ≥ φ1(t)Ax, B(tx) ≤
1

φ2(t)
Bx; (2.6)

(ii) there is h0 ∈ Ph such that Ah0 + Bh0 ∈ Ph.
Then the operator equation (2.5) has a unique solution x∗ in Ph. Further, for any initial values

x0, y0 ∈ Ph, making the sequences

xn = Axn−1 + Byn−1, yn = Ayn−1 + Bxn−1, n = 1, 2 . . . ,

one has xn → x∗, yn → x∗ as n→ ∞.

Remark 2.1. If B is a null operator, the conclusions in Lemmas 2.1 and 2.2 are still right.

3. Main results

In this section, we intend to obtain some results on the existence and uniqueness of positive solutions
for the problem (1.1) by using Lemmas 2.3 and 2.4.
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We work in a Banach space E = C[0, 1] with the usual norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Let
P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}, then it is a normal cone in C[0, 1]. Hence this space is equipped
with a partial order

x ≤ y, x, y ∈ C[0, 1]⇔ x(t) ≤ y(t), t ∈ [0, 1].

Theorem 3.1. Let 0 ≤ A < 1 and GA(s) ≥ 0 for s ∈ [0, 1]. Assume
(H1) f , g : [0, 1) × [0,+∞) × [0,+∞) → [0,+∞) are continuous and increasing with respect to the
second and third arguments, g(t, 0, 0) . 0, t ∈ [0, 1];
(H2) for λ ∈ (0, 1), f (t, λx, λy) ≥ λ

1
q−1 f (t, x, y) for x, y ∈ [0,+∞) and there exists a constant δ ∈ (0, 1)

such that g(t, λx, λy) ≥ λδg(t, x, y) for all t ∈ [0, 1], x, y ∈ [0,+∞);
(H3) There exists a constant δ0 > 0 such that f (t, x, y) ≤ δ0 ≤ g(t, 0, 0), t ∈ [0, 1], x ≥ 0, y ≥ 0.
Then there is a unique y∗ ∈ Ph, where h(t) = tα−γ−1, t ∈ [0, 1], such that the problem (1.1) has a unique
positive solution z∗(t) = Iγy∗(t) in set Ω := {Iγy(t)|y ∈ Ph}. And for any initial value y0 ∈ Ph, making
sequences

yn(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγyn−1(τ), yn−1(τ))dτ

)
ds +

∫ 1

0
H(t, s)g(s, Iγyn−1(s), yn−1(s))ds

and zn(t) = Iγyn(t), n = 1, 2 . . . , we have yn(t) → y∗(t) and zn(t) → z∗(t) as n → ∞, where
Gβ(s, τ),H(t, s) are given as in (2.2), (2.4) respectively.
Proof. From Lemma 2.1, we know that the problem (2.1) has an integral formulation give by

y(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγy(τ), y(τ))dτ

)
ds +

∫ 1

0
H(t, s)g(s, Iγy(s), y(s))ds.

Define two operators A : P→ E and B : P→ E by

Ay(t) =

∫ 1

0
H(t, s)g(s, Iγy(s), y(s))ds,

By(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγy(τ), y(τ))dτ

)
ds.

Then we see that y is the solution of the problem (2.1) if and only if y = Ay + By. From (H1), (2.4) and
Lemma 2.2, we can easily get A : P → P and B : P → P. In the following, we show that A, B satisfy
all assumptions of Lemma 2.3.

Firstly, we prove that A, B are two increasing operators. For y1, y2 ∈ P with y1 ≥ y2, we have
y1(t) ≥ y2(t), t ∈ [0, 1] and thus Iγy1(t) ≥ Iγy2(t). By (H1), Lemma 2.2,

Ay1(t) =

∫ 1

0
H(t, s)g(s, Iγy1(s), y1(s))ds ≥

∫ 1

0
H(t, s)g(s, Iγy2(s), y2(s))ds = Ay2(t).

Further, noting that ϕp(t) is increasing in t, we obtain

By1(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγy1(τ), y1(τ))dτ

)
ds

≥

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγy2(τ), y2(τ))dτ

)
ds = By2(t).
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That is, Ay1 ≥ Ay2 and By1 ≥ By2.
Secondly, we claim that operator A is δ−concave and operator B is sub-homogeneous. For any

λ ∈ (0, 1) and y ∈ P, from (H2),

A(λy)(t) =

∫ 1

0
H(t, s)g(s, Iγ(λy)(s), λy(s))ds =

∫ 1

0
H(t, s)g(s, λIγy(s), λy(s))ds

≥λδ
∫ 1

0
H(t, s)g(s, Iγy(s), y(s))ds = λδAy(t),

that is, A(λy) ≥ λδAy for λ ∈ (0, 1), y ∈ P. So operator A is δ−concave. Also, for any λ ∈ (0, 1) and
y ∈ P, by (H2),

B(λy)(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγ(λy)(τ), λy(τ))dτ

)
ds

=

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, λIγy(τ), λy(τ))dτ

)
ds

≥

∫ 1

0
H(t, s)ϕq

(
λ

1
q−1

∫ 1

0
Gβ(s, τ) f (τ, Iγy(τ), y(τ))dτ

)
ds

=λ

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγy(τ), y(τ))dτ

)
ds = λBy(t),

that is, B(λy) ≥ λBy for λ ∈ (0, 1), y ∈ P. So operator B is sub-homogeneous.
Thirdly, we show Ah ∈ Ph and Bh ∈ Ph. Let

m1 = d
∫ 1

0
GA(s)g(s, 0, 0)ds, m2 = e

∫ 1

0
g(s,

1
Γ(γ + 1)

, 1)ds,

l1 =
d

(Γ(β))q−1

∫ 1

0
GA(s)[sβ−1(1 − s)]q−1

ds ·
[∫ 1

0
τβ−1(1 − τ) f (τ, 0, 0)dτ

]q−1

,

l2 = e
(
β − 1
Γ(β)

)q−1 [∫ 1

0
f (τ,

1
Γ(γ + 1)

, 1)dτ
]q−1

.

From (H1) and Lemma 2.2,

Ah(t) =

∫ 1

0
H(t, s)g(s, Iγh(s), h(s))ds ≤ e

∫ 1

0
g(s, Iγ1, 1)ds · tα−γ−1

=e
∫ 1

0
g(s,

tγ

Γ(γ + 1)
, 1)ds · h(t) ≤ e

∫ 1

0
g(s,

1
Γ(γ + 1)

, 1)ds · h(t) = m2 · h(t).

Also,

Ah(t) =

∫ 1

0
H(t, s)g(s, Iγh(s), h(s))ds ≥ d

∫ 1

0
GA(s)g(s, Iγ0, 0)ds · tα−γ−1

=d
∫ 1

0
GA(s)g(s, 0, 0)ds · h(t) = m1 · h(t).

AIMS Mathematics Volume 5, Issue 5, 4754–4769.
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By similar discussion, it follows from (H1) and Lemma 2.2 that

Bh(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγh(τ), h(τ))dτ

)
ds

≤

∫ 1

0
etα−γ−1

(∫ 1

0

β − 1
Γ(β)

sβ−1(1 − s) f (τ, Iγh(τ), h(τ))dτ
)q−1

ds

≤e
(
β − 1
Γ(β)

)q−1 (∫ 1

0
f (τ, Iγh(τ), h(τ))dτ

)q−1

· tα−γ−1

≤e
(
β − 1
Γ(β)

)q−1 (∫ 1

0
f (τ, Iγ1, 1)dτ

)q−1

· tα−γ−1

=e
(
β − 1
Γ(β)

)q−1 (∫ 1

0
f (τ,

τγ

Γ(γ + 1)
, 1)dτ

)q−1

· h(t)

≤e
(
β − 1
Γ(β)

)q−1 (∫ 1

0
f (τ,

1
Γ(γ + 1)

, 1)dτ
)q−1

· h(t) = l2 · h(t)

and

Bh(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγh(τ), h(τ))dτ

)
ds

≥dtα−γ−1
∫ 1

0
GA(s)

(∫ 1

0

τβ−1(1 − τ)s(1 − s)β−1

Γ(β)
f (τ, Iγh(τ), h(τ))dτ

)q−1

ds

=
d

(Γ(β))q−1

∫ 1

0
GA(s)[sβ−1(1 − s)]q−1

ds ·
(∫ 1

0
τβ−1(1 − τ) f (τ, Iγh(τ), h(τ))dτ

)q−1

tα−γ−1

≥
d

(Γ(β))q−1

∫ 1

0
GA(s)[sβ−1(1 − s)]q−1

ds ·
(∫ 1

0
τβ−1(1 − τ) f (τ, Iγ0, 0)dτ

)q−1

· tα−γ−1

=
d

(Γ(β))q−1

∫ 1

0
GA(s)[sβ−1(1 − s)]q−1

ds ·
(∫ 1

0
τβ−1(1 − τ) f (τ, 0, 0)dτ

)q−1

· h(t) = l1 · h(t).

Note that g(t, 0, 0) . 0, GA(s) ≥ 0 and f (τ, 1
Γ(γ+1) ) ≥ f (τ, 0, 0), we can easily prove 0 < m1 ≤ m2 and

0 < l1 ≤ l2, and thus m1h ≤ Ah ≤ m2h, l1h ≤ Bh ≤ l2h. So we have Ah, Bh ∈ Ph. It means that the first
condition of Lemma 2.3 holds.

Next we prove that the second condition of Lemma 2.3 is also satisfied. For y ∈ P, by (H3),

By(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγy(τ), y(τ))dτ

)
ds

≤

∫ 1

0
H(t, s)ϕq

(∫ 1

0

β − 1
Γ(β)

sq−1(1 − s) f (τ, Iγy(τ), y(τ))dτ
)

ds

≤

(
β − 1
Γ(β)

)q−1 ∫ 1

0
H(t, s)ds · ϕq

(∫ 1

0
f (τ, Iγy(τ), y(τ))dτ

)
≤

(
β − 1
Γ(β)

)q−1 ∫ 1

0
δ0

q−1H(t, s)ds =

(
β − 1
Γ(β)

)q−1

δ
q−2
0

∫ 1

0
δ0H(t, s)ds
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≤

(
β − 1
Γ(β)

)q−1

δ
q−2
0

∫ 1

0
H(t, s)g(s, 0, 0)ds

≤

(
1

Γ(β − 1)

)q−1

δ
q−2
0

∫ 1

0
H(t, s)g(s, Iγy(s), y(s))ds

=

(
1

Γ(β − 1)

)q−1

δ
q−2
0 Ay(t).

Let δ0
′ = [Γ(β − 1)]q−1δ

2−q
0 , so we obtain Ay(t) ≥ δ0

′By(t), t ∈ [0, 1]. Therefore, Ay ≥ δ0
′By for y ∈ P.

By the above discussion and Lemma 2.3, we know that operator equation Ay + By = y has a unique
solution y∗ in Ph; for any initial value y0 ∈ Ph, making a sequence yn = Ayn−1 + Byn−1, n = 1, 2, . . . ,
we have yn → y∗ as n → ∞. Evidently, z∗(t) := Iγy∗(t) is the unique solution of the problem (1.1) in
Ω = {Iγy(t)|y ∈ Ph}. And for any initial value y0 ∈ Ph, the sequences

yn+1(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγyn(τ), yn(τ))dτ

)
ds +

∫ 1

0
H(t, s)g(s, Iγyn(s), yn(s))ds

and zn(t) = Iγyn(t), n = 1, 2 . . . satisfy yn(t)→ y∗(t) and zn(t)→ z∗(t) as n→ ∞. �

Corollary 3.1. Let 0 ≤ A < 1 and GA(s) ≥ 0 for s ∈ [0, 1]. Assume that f satisfies (H1) and for
λ ∈ (0, 1), there exists a constant δ ∈ (0, 1) such that f (t, λx, λy) ≥ λδ f (t, x, y) for all
t ∈ [0, 1], x, y ∈ [0,+∞).
Then there is a unique y∗ ∈ Ph, where h(t) = tα−γ−1, t ∈ [0, 1], such that the following problem

−D
β
t (ϕp(−Dα

t z(t)) = f (t, z(t),Dγ
t z(t)), 0 < t < 1,

Dα
t z(0) = Dα+1

t z(0) = D
γ
t z(0) = 0,

Dα
t z(1) = 0,Dγ

t z(1) =
∫ 1

0
D

γ
t z(s)dA(s),

has a unique positive solution z∗ = Iγy∗ in Ω = {Iγy(t)|y ∈ Ph}. And for any initial value y0 ∈ Ph,
making the sequences

yn+1(t) =

∫ 1

0
H(t, s)ϕq(

∫ 1

0
Gβ(s, τ)g(τ, Iγyn(τ), yn(τ))dτ)ds, n = 0, 1, 2 . . .

and zn(t) = Iγyn(t), n = 1, 2 . . . , we have yn(t) → y∗(t) and zn(t) → z∗(t) as n → ∞, where
Gβ(s, τ),H(t, s) are given as in (2.2), (2.4) respectively.
Proof. From Remark 2.1 and Theorem 3.1, the conclusion holds. �

Theorem 3.2. Let 0 ≤ A < 1 and GA(s) ≥ 0 for s ∈ [0, 1]. Assume f satisfies (H1) and
(H4) g : [0, 1] × [0,+∞) × [0,+∞) is continuous and decreasing with respect to second and third
arguments, g(t, 1

Γ(γ+1) , 1) . 0, t ∈ [0, 1];
(H5) for λ ∈ (0, 1), there exist φi(λ) ∈ (λ, 1)(i = 1, 2) such that

f (t, λx, λy) ≥ φ1
1

q−1 (λ) f (t, x, y), g(t, λx, λy) ≤
1

φ2(λ)
g(t, x, y)

for t ∈ [0, 1], x, y ∈ [0,+∞).
Then there is a unique y∗ ∈ Ph, where h(t) = tα−γ−1, t ∈ [0, 1], such that the problem (1.1) has a unique
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positive solution z∗(t) = Iγy∗(t) in set Ω = {Iγy(t)|y ∈ Ph}. And for any initial values x0, y0 ∈ Ph, putting
the sequences

xn+1(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγxn(τ), xn(τ))dτ

)
ds +

∫ 1

0
H(t, s)g(s, Iγyn(s), yn(s))ds

yn+1(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγyn(τ), yn(τ))dτ

)
ds +

∫ 1

0
H(t, s)g(s, Iγxn(s), xn(s))ds

and zn(t) = Iγxn(t), zn(t) = Iγyn(t), n = 0, 1, 2 . . ., we have xn(t) → y∗(t), yn(t) → y∗(t), zn(t) →
z∗(t), zn(t)→ z∗(t) as n→ ∞, where Gβ(s, τ),H(t, s) are given as in (2.2), (2.4) respectively.
Proof. Similar to the proof of Theorem 3.1, we still consider two operators A : P→ E and B : P→ E
given by

Ay(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγy(τ), y(τ))dτ

)
ds,

By(t) =

∫ 1

0
H(t, s)g(s, Iγy(s), y(s))ds.

It follows from Lemma 2.2, (H1) and (H4) that A : P→ P is increasing and B : P→ P is decreasing.
Further, from (H5), for λ ∈ (0, 1),

A(λy)(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγ(λy)(τ), λy(τ))dτ

)
ds

=

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, λIγ(y)(τ), λy(τ))dτ

)
ds

≥

∫ 1

0
H(t, s)

(∫ 1

0
Gβ(s, τ)φ1

1
q−1 (λ) f (τ, Iγy(τ), y(τ))dτ

)q−1

ds

=φ1(λ)
∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγy(τ), y(τ))dτ

)
ds = φ1(λ)Ay(t)

and

B(λy)(t) =

∫ 1

0
H(t, s)g(s, Iγ(λy(s)), λy(s))ds =

∫ 1

0
H(t, s)g(s, λIγ(y(s)), λy(s))ds

≤

∫ 1

0
H(t, s)

1
φ2(λ)

g(s, Iγy(s), y(s))ds

=
1

φ2(λ)

∫ 1

0
H(t, s)g(s, Iγy(s), y(s))ds =

1
φ2(λ)

By(t),

that is, A, B satisfy (2.6). Next, we prove Ah + Bh ∈ Ph. Let

n1 = d
∫ 1

0
GA(s)g(s,

1
Γ(γ + 1)

, 1)ds, n2 = e
∫ 1

0
g(s, 0, 0)ds.

By Lemma 2.2,

Ah(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγh(τ), h(τ))dτ

)
ds
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≤

∫ 1

0
etα−γ−1

(∫ 1

0

β − 1
Γ(β)

sβ−1(1 − s) f (τ, Iγh(τ), h(τ))dτ
)q−1

ds

≤e
(
β − 1
Γ(β)

)q−1 (∫ 1

0
f (τ, Iγh(τ), h(τ))dτ

)q−1

· tα−γ−1

≤e
(
β − 1
Γ(β)

)q−1 (∫ 1

0
f (τ, Iγ1, 1)dτ

)q−1

· h(t)

≤e
(
β − 1
Γ(β)

)q−1 (∫ 1

0
f (τ,

1
γ + 1

, 1)dτ
)q−1

· h(t) = l2 · h(t),

Ah(t) =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγh(τ), h(τ))dτ

)
ds

≥dtα−γ−1
∫ 1

0
GA(s)

(∫ 1

0

τβ−1(1 − τ)s(1 − s)β−1

Γ(β)
f (τ, Iγh(τ), h(τ))dτ

)q−1

ds

=
d

(Γ(β))q−1

∫ 1

0
GA(s)[sβ−1(1 − s)]q−1

ds ·
(∫ 1

0
τβ−1(1 − τ) f (τ, Iγh(τ), h(τ))dτ

)q−1

tα−γ−1

≥
d

(Γ(β))q−1

∫ 1

0
GA(s)[sβ−1(1 − s)]q−1

ds ·
(∫ 1

0
τβ−1(1 − τ) f (τ, Iγ0, 0)dτ

)q−1

· h(t)

=
d

(Γ(β))q−1

∫ 1

0
GA(s)[sβ−1(1 − s)]q−1

ds ·
(∫ 1

0
τβ−1(1 − τ) f (τ, 0, 0)dτ

)q−1

· h(t)

=l1 · h(t)

and

Bh(t) =

∫ 1

0
H(t, s)g(s, Iγh(s), h(s))ds ≥ dtα−γ−1

∫ 1

0
GA(s)g(s, Iγh(s), h(s))ds

≥dtα−γ−1
∫ 1

0
GA(s)g(s, Iγ1, 1)ds = dtα−γ−1

∫ 1

0
GA(s)g(s,

1
Γ(γ + 1)

, 1)ds

=n1 · h(t),

Bh(t) =

∫ 1

0
H(t, s)g(s, Iγh(s), h(s))ds ≤ etα−γ−1

∫ 1

0
g(s, Iγ0, 0)ds

=etα−γ−1
∫ 1

0
g(s, 0, 0)ds = n2 · h(t).

Hence, Ah(t) + Bh(t) ≤ l2 · h(t) + n2 · h(t) = (l2 + n2) · h(t) and

Ah(t) + Bh(t) ≥ l1 · h(t) + n1 · h(t) = (l1 + n1) · h(t).

In addition, it is easy to show l2 + n2 ≥ l1 + n1 > 0. Therefore, Ah + Bh ∈ Ph.
Consequently, by using Lemma 2.4, operator equation Ay + By = y has a unique solution y∗ in Ph;

for given initial values x0, y0 ∈ Ph, putting the sequences

xn = Axn−1 + Byn−1, yn = Ayn−1 + Bxn−1, n = 1, 2 . . . ,
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we have xn → y∗, yn → y∗ as n → ∞. Evidently, z∗(t) = Iγy∗(t) is the unique solution of the problem
(1.1) in Ω = {Iγy(t)|y ∈ Ph}. And for given initial values x0, y0 ∈ Ph, the following sequences

xn+1 =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγxn(τ), xn(τ))dτ

)
ds +

∫ 1

0
H(t, s)g(s, Iγyn(s), yn(s))ds,

yn+1 =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγyn(τ), yn(τ))dτ

)
ds +

∫ 1

0
H(t, s)g(s, Iγyn(s), yn(s))ds

and zn(t) = Iγxn(t), zn(t) = Iγyn(t), n = 0, 1, 2 . . ., satisfy
xn(t)→ y∗(t), yn(t)→ y∗(t), zn(t)→ z∗(t), zn(t)→ z∗(t) as n→ ∞. �

Corollary 3.2. Let 0 ≤ A < 1 and GA(s) ≥ 0 for s ∈ [0, 1]. Assume f satisfies (H1), (H5). Then there
is a unique y∗ ∈ Ph, where h(t) = tα−γ−1, t ∈ [0, 1], such that the following problem

−D
β
t (ϕp(−Dα

t z))(t) = f (t, z(t),Dγ
t z(t)), 0 < t < 1,

Dα
t z(0) = Dα+1

t z(0) = D
γ
t z(0) = 0,

Dα
t z(1) = 0,Dγ

t z(1) =
∫ 1

0
D

γ
t z(s)dA(s),

has a unique positive solution z∗ = Iγy∗ in Ω = {Iγy(t)|y ∈ Ph}, where h(t) = tα−γ−1, t ∈ [0, 1]. And for
any initial value y0 ∈ Ph, putting the sequences

yn+1 =

∫ 1

0
H(t, s)ϕq

(∫ 1

0
Gβ(s, τ) f (τ, Iγyn(τ), yn(τ))dτ

)
ds, n = 0, 1, 2 . . . ,

and zn(t) = Iγyn(t), n = 1, 2 . . . , we have yn(t) → y∗(t) and zn(t) → z∗(t) as n → ∞, where
Gβ(s, τ),H(t, s) are given as in (2.2), (2.4) respectively.
Proof. From Remark 2.1 and Theorem 3.2, the conclusions hold. �

4. Examples

In this section, two examples are given to illustrate our main results.

Example 4.1. Consider the following 3-Laplacian fractional differential equation with
Riemann-Stieltjes integral boundary conditions

−D
9
4
t

(
ϕ3

(
−D

7
4
t z(t) − t

1
4 (z

1
4 (t) + (D

1
2
t z(t))

1
3
) − 3

))
= cos2 t +

z
1
3 (t)

1+z
1
3 (t)

+
(D

1
2
t z(t))

1
4

1+(D
1
2
t z(t))

1
4

, 0 < t < 1,

D
7
4
t z(0) = D

11
4

t z(0) = D
1
2
t z(0) = 0,

D
7
4
t z(1) = 0,D

1
2
t z(1) =

∫ 1

0
D

1
2
t z(s)dA(s),

(4.1)

where α = 7
4 , β = 9

4 , γ = 1
2 , p = 3, q = 3

2 , A is a function of bounded variation by

A(t) =


0, 0 ≤ t < 1

4 ,
1
3 ,

1
4 ≤ t < 1

2 ,

2, 1
2 ≤ t ≤ 1.
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Further, f (t, x, y) = cos2 t + x
1
3

1+x
1
3

+
y

1
4

1+y
1
4
, g(t, x, y) = t

1
4 (x

1
4 + y

1
3 ) + 3, clearly, f , g ∈ C([0, 1]× [0,+∞)×

[0,+∞), [0,+∞)), g(t, 0, 0) . 0. For fixed t ∈ (0, 1), f (t, x, y), g(t, x, y) are increasing in x and y. So,
the condition (H1) is satisfied.

In addition, take δ = 1
2 , for t ∈ [0, 1], λ ∈ (0, 1), x, y ∈ [0,+∞), we have

g(t, λx, λy) = t
1
4 (λ

1
4 x

1
4 + λ

1
3 y

1
3 ) + 3 ≥ λ

1
2 [t

1
4 (x

1
4 + y

1
3 ) + 3] = λδg(t, x, y).

On the other hand, for t ∈ [0, 1], λ ∈ (0, 1), x, y ∈ [0,+∞),

f (t, λx, λy) = cos2 t +
(λx)

1
3

1 + (λx)
1
3

+
(λy)

1
4

1 + (λy)
1
4

≥ λ2 cos2 t + λ2 x
1
3

1 + x
1
3

+ λ2 y
1
4

1 + y
1
4

= λ
1

q−1 f (t, x, y).

Hence, the condition (H2) is satisfied.
Take δ0

′ = 3, then

f (t, x, y) = cos2 t +
x

1
3

1 + x
1
3

+
y

1
4

1 + y
1
4

≤ δ0
′ = 3g(t, 0, 0).

The condition (H3) is also satisfied. So Theorem 3.1 shows that the problem (4.1) has a unique
positive solution in Ω = {Iγy(t)|y ∈ Ph}, where h(t) = t

1
4 , t ∈ [0, 1].

Example 4.2. Consider the following 3-Laplacian fractional differential equation with
Riemann-Stieltjes integral boundary conditions:

−D
9
4
t (ϕ3(−D

7
4
t z(t) − [t

1
4 (z

1
4 (t) + (D

1
2
t z(t))

1
3
) + 1]

−1

= t
1
3 [z

1
3 (t) + (D

1
2
t z(t))

1
4
] + 2, t ∈ (0, 1),

D
7
4
t z(0) = D

11
4

t z(0) = D
1
2
t z(0) = 0,

D
7
4
t z(1) = 0,D

1
2
t z(1) =

∫ 1

0
D

1
2
t z(s)dA(s),

(4.2)

where α = 7
4 , β = 9

4 , γ = 1
2 , p = 3, q = 3

2 , A is a function of bounded variation by

A(t) =


0, 0 ≤ t < 1

4 ,
1
3 ,

1
4 ≤ t < 1

2 ,

2, 1
2 ≤ t ≤ 1.

Let f (t, x, y) = t
1
3 (x

1
3 + y

1
4 ) + 2, g(t, x, y) = [t

1
4 (x

1
4 + y

1
3 ) + 1]−1, clearly, f , g ∈ C([0, 1) × [0,+∞) ×

[0,+∞), [0,+∞)), f (t, 0, 0) . 0, g(t, 1
Γ(γ+1) , 1) . 0. For fixed t ∈ [0, 1), f (t, x, y) is increasing in x and

y, g(t, x, y) is decreasing in x and y. So, the conditions (H4) and (H5) are satisfied. Take φ1(λ) = λ
1
6 ,

φ2(λ) = λ
1
3 , then φ1(λ), φ2(λ) ∈ (λ, 1) for λ ∈ (0, 1). Thus,

f (t, λx, λy) = t
1
3 (λ

1
3 x

1
3 + λ

1
4 y

1
4 ) + 2 ≥ λ

1
3 [t

1
3 (x

1
3 + y

1
4 ) + 2] = (φ1(λ))

1
q−1 f (t, x, y),

g(t, λx, λy) = [t
1
4 (λ

1
4 x

1
4 + λ

1
3 y

1
3 ) + 1]

−1
≥ λ−

1
3 [t

1
4 (x

1
4 + y

1
3 ) + 1]

−1
=

1
φ2(λ)

g(t, x, y).

So Theorem 3.2 implies that the problem (4.2) has a unique positive solution in Ω = {Iγy(t)|y ∈ Ph},
where h(t) = t

1
4 , t ∈ [0, 1].
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5. Conclusions

Integral boundary value problems have many applications in applied fields such as blood flow
problems, chemical engineering, underground water flow and population dynamics. For nonlinear
fractional differential equations with p-Laplacian operator subject to different boundary conditions,
there are many works reported on the existence or multiplicity of positive solutions. But the unique
results are very rare. In this paper, we study a p-Laplacian fractional order differential equation
involving Riemann-Stieltjes integral boundary condition (1.1). By means of the properties of Green’s
function and two fixed point theorems of a sum operator in partial ordering Banach spaces, we
establish some new existence and uniqueness criteria for (1.1). Our result shows that the unique
positive solution exists in a special set Ph and can be approximated by constructing an iterative
sequence for any initial point in Ph. Finally, two interesting examples are given to illustrate the
application of our main results.
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