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Abstract: In this paper, the problem of reducing the effectiveness of drug resistance treatment due to 

mutation of hepatitis B virus is investigated, a model of hepatitis B virus with drug resistance 

treatment is established, and the existence conditions of four equilibrium points in the model are 

provided. The effect of drug resistance caused by virus mutation on drug treatment is simulated. It is 

found that drug efficacy decreases with the increase in mutation rate. Without considering the value 

of mutation rate, the continuous usage of drugs can meet the clinical treatment standard, while 

stopping treatment will cause the virus to rebound. 
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1. Introduction 

Viral hepatitis B is a kind of liver disease caused by a virus infection, which is called hepatitis B 

for short. According to the World Health Organization (WHO), about 350 million people in the world 

suffer from chronic hepatitis B and C, of which nearly 100 million are Chinese. Hepatitis B is one of 

the major infectious diseases under control in China. 

At present, the first choice for hepatitis B treatment is nucleotide drugs. Clinical statistics show 

that drug resistance develops after long-term use [1]. Boglione and Lucio et al. analyzed the blood 

drug concentration and HBV DNA clinical data of 40 patients taking entecavir (ETV), and found that 

with the increase of blood drug concentration, the decline rate of HBV DNA slowed down, and the 

two showed a negative correlation, which provided a scientific basis for the rational selection of 

treatment regimen for viral infection [2]. In [3], by studying the mechanism of HBV mutation and 

the resistance of several nucleotide drugs, only when the mutation degree was high, the mutant strain 
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would greatly reduce the sensitivity to drugs, which provided a new idea for the study of the 

treatment scheme of drug-resistant viruses. Mao Richeng et al. collected the clinical data from 

lamivudine-resistant hepatitis B patients during entecavir monotherapy, and detected the proportion 

and dynamic changes of HBV DNA resistant strains. They found that entecavir resistance was 

obtained in long-term entecavir monotherapy and drug-resistant strains could disappear when the 

treatment with entecavir was continued. This research work provided a theoretical basis for the 

mechanism study of treatment of drug-resistant hepatitis B virus [4]. It is of practical significance to 

further analyze the influence of drug resistance on virus control by using the dynamics model of the 

hepatitis B virus to study the law of hepatitis B transmission. Bonhoeffer et al. established a dynamic 

model of the drug-resistant virus according to the mechanism of antiviral treatment of HIV or HBV, 

and studied the dynamic change of virus population. They found that drug resistance would change 

the treatment effect, and concluded that the treatment had a certain impact on the control of hepatitis 

B in a certain period of time [5]. Zhang et al. established an HBV model with anti-drug resistance 

under intermittent treatment by studying the dynamic characteristics of HBV under the conventional 

hepatitis B treatment scheme, analyzed the change rule of HBV, and proved the effectiveness of 

intermittent antiviral treatment [6]. Wang et al. considered the antiviral treatment with the 

combination of reverse transcriptase inhibitors and protease inhibitors, and established a virus 

dynamics model with the general form of target cell density, drug resistance and intracellular delay 

incorporating antiretroviral therapy. They proved the global asymptotic stability of the disease-free 

and drug-resistant steady states, and simulated the impact of target cells and delayed replication of 

cells on HIV control. Their results provided a theoretical basis for the use of combination 

antiretroviral therapy [7]. In this paper, the drug's effectiveness is reduced due to the development of 

drug resistance, and a dynamic model of hepatitis B virus with drug resistance and drug treatment is 

established. The existence and stability of the equilibrium point are discussed. Numerical simulation 

proves the rationality of the model. We analyze the effect of drug efficacy and drug resistance on the 

control of hepatitis B, and give suggestions on the treatment plan of hepatitis B in theory. 

2. Dynamic model of hepatitis B virus with drug-resistant treatment 

Clinically, different doses of drugs are used to treat HBV for hepatitis B patients. The 

experimental data are shown in Table 1. 

Table 1. The dose of entecavir and mean log10 reduction in HBV DNA. 

The dose of entecavir (mg) 0.05 0.1 0.5 1 

Mean log10 reduction in HBV DNA(copies/ml) 2.21 2.29 2.81 2.55 

We find that with the increase of drug doses, the number of HBV DNA in the body of hepatitis B 

patients does not decrease rapidly, indicating that the efficacy does not play a role in inhibiting HBV with 

the increase of drug doses [8]. The plasma concentrations in patients are inversely related to HBV DNA 

decrease. It can be considered that the rate of drug clearance of HBV is related to the average steady-state 

plasma concentration NC  of nucleoside drugs, which is recorded as )( NCf  [2]. 

In [9], drug-resistant strains of hepatitis B patients with HBV DNA positive after lamivudine treatment 

were monitored. The statistical data are shown in Table 2, and the trend chart is shown in Figure 1. 
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Table 2. Mutation rate and duration of lamivudine treatment. 

Treatment 

time

（month） 

The total 

number 

of cases 

The number of 

cases where 

the mutation 

rate is less than 

10% 

The number of 

cases where the 

mutation rate is 

between 10% 

and 50% 

The number of 

cases where the 

mutation rate is 

greater than 50% 

The number of cases with 

viral mutations as a 

proportion of the total 

number of observed cases 

<6 15 0 0 

2 （Mutation rates 

are 80% and 

100%, 

respectively） 

0.13 

6–12 42 4 12 7 0.55 

12–24 56 3 8 24 0.63 

>24 57 0 5 

52（The mutation 

rates are all 

100%） 

1 

 

Figure 1. Relationship between mutation rate and treatment time of lamivudine. 

The results in Table 2 and Figure 1 show that the mutation rate increases with the extension of 

the duration of drug treatment and reaches 100%. The mutation rate is considered as an increasing 

function of treatment time. Therefore, with the increase of treatment time, the mutation rate gradually 

increases from 0 to 1. 

Patients who take nucleosides for a long time will produce mutant strains in the body. The 

mutant strains reduce the interaction space with the drug by changing their own molecular structure, 

so as to reduce the inhibition effect of the drug on them [3]. The results of the study indicate that the 

susceptibility to drugs will be greatly reduced when the drug-resistant mutations occur 

simultaneously in different locations of the HBV genome [3]. Moreover, drug-resistant mutations 

increase as a result of drug screening, which will lead to the decrease of drug inhibition. This means 

that the mutation rate increases and the inhibitory effect of the drug is weakened. Thus, the inhibition 
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rate of the drug to the resistant virus is related to the mutation rate u  of the virus, which is recorded 

as )(u . We can assume uu 1)( . 

Anti-HBV drugs are targeted at the virus in the infected cells, and they play the antiviral effect 

in a single target to different degrees, but they have a high ability to screen drug-resistant virus [10]. 

These drug-resistant viruses are present in drug-resistant infected hepatocytes and rapidly replicate to 

produce new drug-resistant HBV. The number of drug-resistant HBV produced from infectious 

hepatocyte with drug-sensitive HBV due to the lack of proofreading activity of reverse transcriptase 

is relatively small and can be ignored. Therefore, it is believed that drug-sensitive HBV and 

drug-resistant HBV are produced from drug-sensitive infected hepatocytes and drug-resistant 

infected hepatocytes respectively. 

According to the above analysis, the following dynamic model of HBV with drug resistance is 

established 


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Here T , sT , sV , rT and rV  respectively represent the number of uninfected hepatocytes at 

time t , the number of hepatocytes infected with drug-sensitive HBV, the number of drug-sensitive 

HBV, the number of hepatocytes infected with drug-resistant HBV, and the number of drug-resistant 

HBV;   is the growth rate of uninfected hepatocytes;  and   are the death rates of hepatocytes 

and viruses; 
sK  and rK  respectively denote the infection rate of drug-sensitive HBV and 

drug-resistant HBV on uninfected hepatocytes; 
sN  and rN  respectively denote the total number of 

viruses produced by drug-sensitive infected hepatocytes and drug-resistant infected hepatocytes 

during their life cycle; The mutation rate between drug-sensitive hepatocytes and drug-resistant 

hepatocytes is given by u ; )( NCf  is the rate at which drug therapy causes the decrease of HBV;

NC  denotes denotes the average steady-state plasma concentration of nucleoside drugs in a patient;

)(u  denotes the inhibition rate of drug therapy on drug-resistant HBV; All parameters are positive. 

Suppose that )( NCf  is a bounded function. The higher the mutation rate, the lower the inhibition 

rate of drug to the drug-resistant virus. Suppose uu 1)( . 
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Calculating the derivative of N , we get 
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of model (1) is 
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3. Existence of equilibrium point 

The equilibrium point of model (1) satisfies the following system of equations 
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From the first, the second and the fourth equations in formula (2), we get 

rs TTT 
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
          (3) 

From the third and the fifth equations in formula (2), we get 





s

sN
s

N

VCf
T

))(( 
 ，





r

rN
r

N

VCf
T

))(( 
       (4) 

Substituting the first equation in formula (4) into the second equation in formula (2), we get 
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The types of equilibrium points are as follows: 

(1) When 0 rs VV , from formula (3) and formula (4), we get the disease-free equilibrium 

point )0,0,0,0,( 00 TE  , where  /0 T . 

(2) When 0rV , from the first equation of formula (5) and formula (2), we get 
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(3) When 0sV , from the fourth equation in formula (3) and formula (2), we get 
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(4) When 0 rs VV , from formula (4) and formula (5), we get 
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According to the above analysis, we have established the following theorem: 

Theorem 1. (1) Model (1) has a disease-free equilibrium point )0,0,0,0,( 00 TE  . 

(2) If 1sR  and 1rR , there exists a drug-sensitive type virus equilibrium point

)0,0,,,( 111 sss VTTE   in model (1), where 111 ,, ss VTT  satisfy Eq 7. 

(3) If 1sR  and 1rR , there exists a drug-resistance type virus equilibrium point

),,0,0,( 222 rrr VTTE   in model (1), where 222 ,, rr VTT  satisfy Eq 8. 

(4) If rs RR   and 1sR , there exists a double virus equilibrium point 

),,,,( ******

rrss VTVTTE   in model (1), where 
***** ,,,, rrss VTVTT  satisfy Eq 9. 

Note: when 0u , 
*E  degenerates to the boundary equilibrium point sE . 

4. Stability analysis of equilibrium 

Theorem 2. If uRs 1  and 1rR , 0E  is globally asymptotically stable; If 1sR  and 

1rR , 0E
 
is unstable. 
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Calculating the derivative of 0L , we get 
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If uRs 1  and 1rR , then 00 L . In particular, 00 L  only if 0 rs TT . According 

to the LaSalle's invariant principle [11], 0E  is the global asymptotic stable point of model (1). 

The characteristic equation corresponding to model (1) is 
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)())(()( 2121

2 bbaaf    

where 
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If 1sR  or 1rR , then 02 a  or 02 b . Hence, )(f  has positive eigenvalue and 0E
 
is 

unstable. 

Theorem 3. If 1sR  and 1rR , sE  is globally asymptotically stable. 

Proof. From the first equation of model (1), it is easy to obtain 0TT  . If there is no drug 

resistance, then 0u . The comparison equations corresponding to the fourth and fifth equations of 

model (1) are 
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It can be obtained that )0,0(  is the equilibrium point of Eq 10, and its corresponding 

determinant and trace of the coefficient matrix are 
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Introducing a function 0ln1)(  xxxg ( 0x ), 0)( xg  only if 1x . 
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Calculating the derivative of sL , we get 
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According to Eq 7, when 0u , 
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Substituting Eq 13 into Eq 12, we get 
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principle, sE  is the global asymptotic stable point of model (1). 
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Calculating the derivative of rL , we get 
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From formula (8), there are equations at rE  
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Substituting formula (15) into formula (14), we get 
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According to the LaSalle's invariant principle, rE  is the global asymptotic stable point of the model (1). 
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Consider differential equation 

)(xfx             (16) 

where nRxf )(  is a 
1C  function and 

nRD  is a simply connected open set. Let ),( 0xtx  

denote the solution of Eq 16 with the initial condition 00),0( xxx  . We assume: 

(H1) There exists a compact absorbing set DK  ; 

(H2) The system (16) has a unique equilibrium point x  in D. 

Lemma 1. [13] Assume that (H1) and (H2) hold and there are a Lyapunov function )(xL , a 

bounded function )(xG , and positive constants 1a , g  and 2a  such that 

（1） xaLxa 21  ， 

（2） )())(()( xLgxGxL  ， 

then the equilibrium point x of model (16) is globally asymptotically stable. 

Theorem 5. If 1 rs RR , model (1) is uniformly persistent. 

Proof. When 1 rs RR , there are only two equilibrium points 0E  and *E  in model (1). 

According to Theorem 2, 0E  is unstable. Only the track with an initial value on the T axis 

approach 0E  along the T  axis, and the other tracks will move away from 0E . So  0E  is the 

largest compact invariant set on  . There is a constant a , and the solutions of model (1) starting 

from the interior of   satisfy the following conditions 

  aVTVTT rrss
t




,,,,maxsuplim
 

Therefore, the solutions of model (1) will not run out of  , This shows that   


)( 0EW s , 

where     00 ),,,,(,),,,,()( EVTVTTVTVTTEW rrssrrss

s   . 

Thus, when 1 rs RR , model (1) is uniformly persistent [14]. 

Adding the first, the second, and the fourth equations in model (1), we get 

)( rsrs TTTTTT  
 

From the limit theory, we get 



 rs TTT  approximately. Reducing the dimension of 

model (1), we get 





















rNrsrr

sNssss

ssss

rrss

VCftVtTtTNtV

VCftVtTNtV

tTtTtVKutT

tTtTtVKtTtVKtT

)()())()(()(

)()()()(

)()()()1()(

)()()()()()(
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










    (17)

 

Same as the method of formula (2), find the positive equilibrium point of model (17) as follows 
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Model (17) has a positive equilibrium point ),,,( reseseee VVTTE  , where resesee VVTT ,,,  

satisfy Eq 18. 

At this time, we get 

)1)(1(
s

r

se
seere

R

R
u

uT
TTT







       (19) 

By comparing formula (9), formula (18) and formula (19), we know that *E  and eE  are the 

same point. To prove that *E  is stable, we just have to prove that eE  is stable. 

Theorem 6. If 1 rs RR , eE  is globally asymptotically stable. 

Proof. Let ),,,( rss VVTTx  , the Jacobian matrix of model (17) is  































))((0

0))((0

0)1()1(

0

)(

Nrr

Ns

sss

rsrrss

CfNN

CfN

TKuVKu

TKTKVKVK

xJ









 

According to the method in [13], the third additive compound matrix can be calculated as follows: 
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where 

))((211 Nrrss CfVKVKA   , ))((222 Nrrss CfVKVKA    

))(())((33 NNrrss CfCfVKVKA    

))(())((44 NN CfCfA  
 

and the associated linear compound system is 
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

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      (20) 

Choose a Lyapunov function  

),,,max( 4321 VVVVV 
 

where 

WTVZTVYVVXVV ssr  4321 ,,,
 

It is known from Theorem 5 that model (17) is uniformly persistent. There exist two positive 

constants 1c  and 2c  such that  

)()( 21 WZYXcVWZYXc 
 

Next, we calculate the right derivative of V along the trajectory of the compound system (20). 

We will separate the discussion for the several cases below. 

Case Ⅰ: 1VV  , then 1432 ,, VVVV   and 
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where rVG ln1  , )(21 NCfCg    

Case Ⅱ: 2VV  , then 2431 ,, VVVV   and 
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where ss TVG lnln2  , )(2 NCfg  
 

Case Ⅲ: 3VV  , then 3421 ,, VVVV   and 
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From Eq 17, we get 
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Because of model (1) is uniformly persistent, the proper lower bound is chosen so that the 

polynomial function ),,,( rss VVTTf  take negative values. In other words, there exists a positive 

constant m  such that mVVTTf rss ),,,( . 

Substituting Eq 24 into Eq 23 yields 

)( 333 mGVVD          (25) 

where rss VVTG lnlnln3  . 

Case Ⅳ: 4VV  , then 4321 ,, VVVV   and 
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From Eq 17, we get 
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In a way similar to Case Ⅲ, we can obtain the estimates mVVTTf rss ),,,( . 

Substituting Eq 27 into Eq 26 yields 

)( 444 mGVVD          (28) 

where rs VTTG lnlnln4  . 

From Eqs 21, 22, 25 and 28, we get 

VgGVD )(   

where  4321 ,,,max GGGGG  ,  mggg ,,min 21  

From Lemma 1, the positive equilibrium point of model (1) is the global asymptotic stability point. 

5. Numerical simulation 

5.1. Numerical simulation of no drug resistance 

5.1.1. Parameter selection 

(1) Some fixed parameters in model (1) are derived from [15], as shown in Table 3: 

Table 3. Values of some parameters. 

symbol instructions Value Value 

  
the growth rate of uninfected 

hepatocytes 
510527.2   day-1(ml)-1 

  the death rate of hepatocytes 012.0  day-1 

  the death rate of viruses 67.0  day-1 

sK  
the infection rate of sensitive HBV 

on uninfected hepatocytes 
8-108.3   day-1(ml)-1 

rK  
the infection rate of drug-resistant 

HBV on uninfected hepatocytes 
8-102.1   day-1(ml)-1 

sN  

the total number of viruses produced 

by sensitive infected hepatocytes 

during their life cycle 

2  — 

rN  

the total number of viruses produced 

by drug-resistant hepatocytes during 

their life cycle 

2  — 
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(2) Estimate of )( NCf  

The parameter )( NCf  is related to the efficacy of the selected therapeutic agent. In this paper, 

)( NCf is estimated based on the data from hepatitis B patients treated with entecavir (ETV). In [2], 

the steady-state blood concentration and HBV DNA level of 40 hepatitis B patients receiving ETV 

treatment of 0.5mg/day were given. By using the numerical approximation algorithm, we get 

4000.0
)(




N

N
N

C

C
Cf         (29)

 

5.1.2. Numerical simulation of HBV under drug therapy 

In order to further verify the simulation effect of model (1), the data of actual clinical treatment 

cases are selected for comparative analysis. Zhou Hongping et al. reported the experimental 

monitoring data of 194 patients with chronic hepatitis B taking ETV 0.5mg/day for antiviral therapy, 

and provided the logarithm values of HBV DNA before and after treatment at 4, 12, 24, 48 and 72 

weeks, respectively [16], as shown in Table 4. According to the method in [17], the average 

steady-state blood drug concentration of ETV per unit time can be calculated as 42.0NC ng/ml. 

Assuming that there are no drug-resistant cells and viruses at the beginning and during the treatment, 

we know that 0u , which implies that 1 . Considering the limit Eq 11, we substitute the 

parameter values in Table 3 and Eq 29 into model (11) for numerical simulation. The initial value is 

selected as follows 

710675.1)0( T ， 81079.2)0( sT ， 710)0( sV      (30) 

The obtained simulation data and simulation curves are shown in Table 4 and Figure 2: 

Table 4. Logarithms of HBV DNA at 4, 12, 24, 48 and 72 weeks before and after 

treatment (log10 copies/ml). 

HBV
 

Before treatment 4 weeks 12 weeks 24 weeks 48 weeks 72 weeks 

Clinical data 6.99 4.71 4.25 3.96 3.84 3.39 

Simulation data 7.00 5.05 4.76 4.34 3.59 2.64 

Before treatment, the basic reproduction numbers can be calculated as 389.2sR  and 

754.0rR . After treatment, the basic reproduction numbers are 074.0sR  and 023.0rR . Then 

we know from Theorem 2 that 0E  is the global asymptotic stable point, which means the number 

of viruses will continue to decline after 72 weeks of treatment. The virus will be eliminated if the 

treatment lasts longer, which is consistent with Figure 2. 

Figure 2 shows that from the start of treatment to 4 weeks of treatment, the number of 

drug-sensitive HBV decreases rapidly and then slowly after the first week. Clinical data shows that 

the difference between the number of HBV DNA after 4 weeks of ETV treatment and that before 

treatment is 2.28log10 copies/ml. The difference of HBV DNA quantity between 12 weeks and 24 

weeks is 0.29log10 copies/ml, and there is small change of HBV DNA quantity between 12 weeks 

and 24 weeks. It can be seen that the simulated curve is consistent with the change of the actual HBV 
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DNA quantity. According to the data in Table 4, it can be calculated that the standard error is 0.4368, 

so the simulated value is close to the actual value. The parameters of model (11) are selected 

reasonably and the simulation results are feasible. 

 

Figure 2. Simulations of 72 weeks of continuous treatment. 

*Note: Solid line: the dynamic route of the model (11). Dots: the clinical data. 

5.2. Numerical simulation of occurrence of drug resistance 

The experiment in [3] shows that HBV mutations can change the effectiveness of HBV 

treatment. The effects of HBV mutation rate u on the time required for HBV to reach the expected 

standard after treatment and the possibility of HBV rebound after stopping treatment are analyzed by 

numerical simulation. 

5.2.1. Effect of time required for HBV clearance to reach 1 copies/ml 

Clinically, we call HBV DNA-negative when the number of HBV is lower than 
310 copies/ml. 

At this time, HBV DNA cannot be detected by PCR, which means that HBV DNA is lower than the 

detection limit [18]. However, in practical treatment, when the monitoring of HBV DNA is below 

the lower detection limit, the drug is not stopped immediately for most of the cases. Instead, the liver 

function is further checked and the HBV DNA is continuously monitored multiple times to check 

whether it is still lower than the lower detection limit. Since it is takes a long time to completely 

eliminate HBV through treatment [19], the treatment is stopped when the number of viruses reaches 

1 copies/ml, and the effects of different mutation rates on the course of virus clearance are compared 

through numerical simulation. 

It is assumed that the patient has drug-resistant cells and viruses in the body before treatment, 

and the initial values are set as: 

7109.1)0( T ， 81079.2)0( sT ， 71079.2)0( rT  

710)0( sV ， 610)0( rV  

The parameters in model (1) are the same as those in Table 3. At this point, let 8-109.1 rK . 

When the values of u  and   are different, sR  and rR  can be calculated according to 

formula (6), as shown in Table 5. 

It can be seen from Table 5 that the basic reproduction number is less than 1 under drug 

treatment and it is not affected by the value of mutation rate. From Theorem 2, the solutions of the 
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model in the above three cases tend to be the disease-free equilibrium point. The simulation results 

are shown in Figure 3(a)–(c): 

Table 5. u ,  , the corresponding basic reproduction number and HBV change image. 

Serial number u  
 sR  

rR  
Corresponding images of 

HBV changes 

Case 1 0.1 0.9 0.066 0.041 Figure 3(a) 

Case 2 0.5 0.5 0.037 0.072 Figure 3(b) 

Case 3 0.9 0.1 0.007 0.289 Figure 3(c) 

 

(a) 

 

(b) 

 

(c) 

Figure 3. Simulation of continuous treatment for 5 years. (a) 1.0u , (b) 5.0u , (c) 9.0u . 
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As can be seen in Figure 3(a), when 1.0u , the mutation rate is low. The decline rate of the 

number of drug-sensitive HBV and drug-resistant HBV is similar, and it will take 3.04 years and 

2.94 years respectively to reach 1copies/ml. In Figure 3(b), when 5.0u , the mutation rate is 

relatively high, the decline rate of drug-sensitive HBV is faster than that of drug-resistant HBV, and 

it will take 2.97 years and 3.18 years to reach 1 copies/ml respectively. In Figure 3(c), when 

9.0u , the mutation rate is high, the decline rate of drug-sensitive HBV is much faster than that of 

drug-resistant HBV, and it will take 2.90 years and 4.45 years to reach 1 copies/ml respectively. As 

can be seen from Figure 3(b),(c), with the increase of mutation rate, the time to clear drug-sensitive 

HBV is shortened. Although the time to clear drug-resistant HBV will be prolonged, HBV will be 

cleared in general. The simulation results prove the research results of Mao Richeng et al. [4], and 

Theorem 2 is verified. After the emergence of entecavir resistance, continued entecavir treatment can 

clear the drug-resistant virus, although the treatment time is longer. 

5.2.2. Effect of mutation rate on HBV rebound after drug withdrawal 

Model (1) is employed to numerically simulate the changes of drug-sensitive HBV and 

drug-resistant HBV after drug withdrawal. It is also used to analyze the possibility of HBV rebound. 

The model parameters and initial values are the same as those in section 5.2.1, and model (1) is 

simulated. After the treatment is stopped, model (1) is converted to the model as follows 
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The simulation results are shown in Figure 4(a)–(c). 
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(b) 

 

(c) 

Figure 4. Virus decline in response to drug treatment and relapse after stopping the treatment 

Red line: the dynamic route of the number of drug-sensitive viruses. Blue line: the dynamic 

route of the number of drug-resistant viruses. (a) 1.0u , (b) 5.0u , (c) 9.0u . 

As can be seen in Figure 4(a), if the mutation rate is low and the drug is stopped when the 

number of HBV DNA drops to the normal range, the drug-sensitive HBV and the drug-resistant 

HBV will rebound rapidly at the same rate, and finally, exceed the detection limit (
310 copies/ml). 

The results of Figure 4(b) show that when the mutation rate is relatively high, the rebound speed of 

drug-resistant HBV is faster than that of drug-sensitive HBV, and finally it will exceed the 

detection limit. Figure 4(c) shows that when the mutation rate is high, the drug-sensitive HBV will 

rebound rapidly and then decrease. Although the rebound rate of drug-resistant HBV is slow, the 

number of drug-resistant HBV will eventually exceed the detection limit. According to the 

comparison in Figure 4(a)–4(c), the virus will rebound after drug withdrawal. Meanwhile, different 

mutation rates lead to different time period for the virus to exceed the threshold. 
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6. Conclusions 

In this paper, an HBV model with drug resistance and drug treatment was established. The 

threshold values of disease-free equilibrium, drug-sensitive type virus equilibrium, drug-resistance 

type virus equilibrium and double virus equilibrium stability were given. The number of 

drug-sensitive viruses in patients treated for 72 weeks was simulated, and the simulation results were 

consistent with clinical data, which verifies the rationality of model (1). According to the degree of 

drug resistance, the dynamic characteristics of the virus after stopping treatment when the number of 

HBV DNA is below the lower limit of detection (
310 copies/ml) were simulated. The research results 

had the following recommendations for the treatment of hepatitis B patients: 

1. When the degree of virus resistance in the patient's body is high, a combined drug regimen 

can be appropriately adopted. At present, adefovir dipivoxil combined with entecavir in the treatment 

of lamivudine resistance has been studied in China [20,21]. Combined medicine can not only reduce 

the mutation rate of lamivudine resistance, but also increase the inhibition rate of the drug to the 

virus, so as to shorten the time of clearing resistant HBV. 

2. Even if the number of HBV DNA in patients is lower than the detection limit, no matter 

whether the level of drug resistance, stopping treatment immediately will cause virus rebound. In 

order to clear more virus and prevent the virus from rebounding, 1–3 years of consolidation therapy 

is recommended. 
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