

AIMS Mathematics, 5(5): 4681–4701. DOI:10.3934/[math.2020300](http://dx.doi.org/10.3934/math.2020300) Received: 27 November 2019 Accepted: 21 May 2020 Published: 27 May 2020

http://[www.aimspress.com](http://www.aimspress.com/journal/Math)/journal/Math

Research article

On Fejer type inequalities for co-ordinated hyperbolic ρ -convex functions

Hasan Kara 1,* , Hüseyin Budak 1 and Mehmet Eyüp Kiriş 2

- 1 Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
- ² Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon, **Turkey**
- * Correspondence: Email: hasan64kara@gmail.com.

Abstract: In this study, we first establish some Hermite-Hadamard-Fejer type inequalities for coordinated hyperbolic ρ -convex functions. Then, by utilizing these inequalities, we also give some fractional Fejer type inequalities for co-ordinated hyperbolic ρ -convex functions. The inequalities obtained in this study provide generalizations of some result given in earlier works.

Keywords: convex function; hyperbolic ρ -convex functions; Fejer inequality; fractional integrals Mathematics Subject Classification: 26D07, 26D10, 26D15, 26A33

1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable significant in the literature (see, e.g., [\[9\]](#page-19-0), [\[18\]](#page-19-1), [\[27,](#page-20-0) p.137]). These inequalities state that if $f: I \to \mathbb{R}$ is a convex function on the interval *I* of real numbers and $a, b \in I$ with $a < b$, then

$$
f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int\limits_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{2}.\tag{1.1}
$$

Both inequalities hold in the reversed direction if *f* is concave.

The Hermite-Hadamard inequality,which is the first fundamental result for convex mappings with a natural geometrical interpretation and many applications, has drawn attention much interest in elementary mathematics. A number of mathematicians have devoted their efforts.

The most well-known inequalities related to the integral mean of a convex function are the Hermite Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-Fejér inequalities. In [\[17\]](#page-19-2), Fejer gave a weighted generalization of the inequalities [\(1.1\)](#page-0-0) as the following:

$$
f\left(\frac{a+b}{2}\right)\int_{a}^{b}g(x)dx \le \int_{a}^{b}f(x)g(x)dx \le \frac{f(a)+f(b)}{2}\int_{a}^{b}g(x)dx
$$
 (1.2)

holds, where $g : [a, b] \rightarrow \mathbb{R}$ *is nonnegative, integrable, and symmetric about* $x = \frac{a+b}{2}$ $\frac{1}{2}$ (*i.e.* $g(x)$ = $g(a + b - x)$).

In this paper we will establish some new Fejer type inequalities for the new concept of co-ordinated hyperbolic ρ -convex functions.

The overall structure of the paper takes the form of four sections including introduction. The paper is organized as follows: we first give the definition of co-ordinated convex functions, the definition of fractional integrals and related Hermite-Hadamard inequality in Section 1. We also recall the concept of hyperbolic ρ -convex functions and co-ordinated hyperbolic ρ -convex functions introduced by Ozcelik et. al in $[23]$ $[23]$. Moreover, we give a lemma and a theorem which will be frequently used in the next section. Some Hermite-Hadamard-Fejer type inequalities for co-ordinated hyperbolic $ρ$ -convex functions are obtained and some special cases of the results are also given in Section 2. Then, we also apply the inequalities obtained in Section 2 to establish some fractional Fejer type inequalities in Section 3. Finally, in Section 4, some conclusions and further directions of research are discussed.

A formal definition for co-ordinated convex function may be stated as follows:

Definition 1. *A function* $f : \Delta := [a, b] \times [c, d] \rightarrow \mathbb{R}$ *is called co-ordinated convex on* Δ , *for all* $(x, u), (y, v) \in \Delta$ *and t*, $s \in [0, 1]$ *, if it satisfies the following inequality:*

$$
f(tx + (1-t) y, su + (1-s) v)
$$

\n
$$
\leq ts f(x, u) + t(1-s)f(x, v) + s(1-t)f(y, u) + (1-t)(1-s)f(y, v).
$$
\n(1.3)

The mapping *f* is a co-ordinated concave on Δ if the inequality [\(1.3\)](#page-1-0) holds in reversed direction for all *t*, *s* \in [0, 1] and (x, u) , $(y, v) \in \Delta$.

In [\[11\]](#page-19-3), Dragomir proved the following inequalities which is Hermite-Hadamard type inequalities for co-ordinated convex functions on the rectangle from the plane \mathbb{R}^2

Theorem 2. Suppose that $f : \Delta := [a, b] \times [c, d] \rightarrow \mathbb{R}$ is co-ordinated convex, then we have the *following inequalities:*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy \right]
$$

$$
\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx
$$
 (1.4)

$$
\leq \frac{1}{4} \left[\frac{1}{b-a} \int_{a}^{b} f(x, c) dx + \frac{1}{b-a} \int_{a}^{b} f(x, d) dx \right]
$$

+
$$
\frac{1}{d-c} \int_{c}^{d} f(a, y) dy + \frac{1}{d-c} \int_{c}^{d} f(b, y) dy
$$

\n $\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4}$.

The above inequalities are sharp. The inequalities in [\(1.4\)](#page-1-1) hold in reverse direction if the mapping f is a co-ordinated concave mapping.

Over the years, the numerous studies have focused on to establish generalization of the inequality [\(1.1\)](#page-0-0) and [\(1.4\)](#page-1-1). For some of them, please see ([\[1](#page-19-4)[–8\]](#page-19-5), [\[19–](#page-20-2)[26\]](#page-20-3), [\[28–](#page-20-4)[36\]](#page-20-5)).

Definition 2. [\[29\]](#page-20-6) Let $f \in L_1(\Delta)$. The Riemann-Lioville integrals $J_{a+,c+}^{\alpha\beta}, J_{a+,d-}^{\alpha\beta}, +J_{b-,c+}^{\alpha\beta}$ and $J_{b-,d-}^{\alpha\beta}$ of order $\alpha, \beta > 0$ with $a, c > 0$ are defined by *order* $\alpha, \beta > 0$ *with* $a, c \ge 0$ *are defined by*

$$
J_{a+,c+}^{\alpha\beta}f(x,y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{a}^{x} \int_{c}^{y} (x-t)^{\alpha-1} (y-s)^{\beta-1} f(t,s) ds dt, \quad x > a, \quad y > c,
$$

$$
J_{a+,d-}^{\alpha\beta}f(x,y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{a}^{x} \int_{y}^{d} (x-t)^{\alpha-1} (s-y)^{\beta-1} f(t,s) ds dt, \quad x > a, \quad y > d,
$$

$$
J_{b-,c+}^{\alpha\beta}f(x,y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{x}^{b} \int_{c}^{y} (t-x)^{\alpha-1} (y-s)^{\beta-1} f(t,s) ds dt, \quad x < b, \quad y > c,
$$

$$
J_{b-,d-}^{\alpha\beta}f(x,y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{x}^{b} \int_{y}^{d} (t-x)^{\alpha-1} (s-y)^{\beta-1} f(t,s) ds dt, \quad x < b, \quad y < d,
$$

respectively. Here, Γ is the Gamma funtion,

$$
J_{a+,c+}^{0,0}f(x,y) = J_{a+,d-}^{0,0}f(x,y) = J_{b-,c+}^{0,0}f(x,y) = J_{b-,d-}^{0,0}f(x,y)
$$

and

$$
J_{a+,c+}^{1,1}f(x,y) = \int_{a}^{x} \int_{c}^{y} f(t,s) \, ds \, dt.
$$

First, we give the definition of hyperbolic ρ -convex functions and some related inequalities. Then we define the co-ordinated hyperbolic ρ -convex functions.

Definition 3. *[\[10\]](#page-19-6)* A function $f: I \to \mathbb{R}$ *is said to be hyperbolic* ρ *-convex, if for any arbitrary closed subinterval* [*a*, *^b*] *of I such that we have*

$$
f(x) \le \frac{\sinh\left[\rho\left(b-x\right)\right]}{\sinh\left[\rho\left(b-a\right)\right]}f(a) + \frac{\sinh\left[\rho\left(x-a\right)\right]}{\sinh\left[\rho\left(b-a\right)\right]}f(b)
$$
\n(1.5)

for all x ∈ $[a, b]$. *If we take x* = $(1 - t)a + tb$, t ∈ $[0, 1]$ *in* (1.5) *, then the condition* (1.5) *becomes*

$$
f((1-t)a + tb) \le \frac{\sinh[\rho(1-t)(b-a)]}{\sinh[\rho(b-a)]} f(a) + \frac{\sinh[\rho(t)(b-a)]}{\sinh[\rho(b-a)]} f(b).
$$
 (1.6)

If the inequality [\(1.5\)](#page-2-0) holds with " \geq ", then the function will be called hyperbolic ρ -concave on *I*.

The following Hermite-Hadamard inequality for hyperbolic ρ -convex function is proved by Dragomir in [\[10\]](#page-19-6).

Theorem 3. *Suppose that* $f: I \to \mathbb{R}$ *is hyperbolic* ρ *-convex on I. Then for any* $a, b \in I$ *, we have*

$$
\frac{2}{\rho} f\left(\frac{a+b}{2}\right) \sinh\left[\frac{\rho\left(b-a\right)}{2}\right] \le \int_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{\rho} \tanh\left[\frac{\rho\left(b-a\right)}{2}\right].\tag{1.7}
$$

Moreover in [\[12\]](#page-19-7), Dragomir prove the following Hermite Hadamard-Fejer type inequalities for hyperbolic ρ -convex functions.

Theorem 4. Assume that the function $f: I \to \mathbb{R}$ is hyperbolic ρ -convex on I and $a, b \in I$. Assume also *that* $p : [a, b] \longrightarrow \mathbb{R}$ *is a positive, symmetric and integrable function on* [a, b], *then we have*

$$
f\left(\frac{a+b}{2}\right) \int_{a}^{b} \cosh\left[\rho\left(x-\frac{a+b}{2}\right)\right] p(x) dx
$$

\n
$$
\leq \int_{a}^{b} f(x)p(x) dx
$$

\n
$$
\leq \frac{f(a)+f(b)}{2} \sec h\left[\frac{\rho(b-a)}{2}\right] \int_{a}^{b} \cosh\left[\rho\left(x-\frac{a+b}{2}\right)\right] p(x) dx.
$$
\n(1.8)

For the other inequalities for hyperbolic ρ -convex functions, please refer to ([\[12](#page-19-7)[–15\]](#page-19-8)). Now we give the definition of co-ordinated hyperbolic ρ -convex functions.

Definition 4. *[\[23\]](#page-20-1) A* function $f : ∆ → ℝ$ *is said to co-ordinated hyperbolic* $ρ$ *-convex on* $Δ$ *, if the inequality*

$$
f(x,y) \leq \frac{\sinh [\rho_1 (b-x)] \sinh [\rho_2 (d-y)]}{\sinh [\rho_1 (b-a)] \sinh [\rho_2 (d-c)]} f(a,c) + \frac{\sinh [\rho_1 (b-x)] \sinh [\rho_2 (y-c)]}{\sinh [\rho_1 (b-a)] \sinh [\rho_2 (d-c)]} f(a,d)
$$

+
$$
\frac{\sinh [\rho_1 (x-a)] \sinh [\rho_2 (d-y)]}{\sinh [\rho_1 (b-a)] \sinh [\rho_2 (d-c)]} f(b,c) + \frac{\sinh [\rho_1 (x-a)] \sinh [\rho_2 (y-c)]}{\sinh [\rho_1 (b-a)] \sinh [\rho_2 (d-c)]} f(b,d).
$$
 (1.9)

holds.

If the inequality [\(1.9\)](#page-3-0) holds with "≥*", then the function will be called co-ordinated hyperbolic* ρ*-concave on* [∆].

If we take $x = (1 - t)a + tb$ and $y = (1 - s)c + sd$ for $t, s \in [0, 1]$, then the inequality [\(1.9\)](#page-3-0) can be written as

$$
f((1-t)a+tb,(1-s)c+sd)
$$

4685

$$
\leq \frac{\sinh [\rho_1 (1-t) (b-a)] \sinh [\rho_2 (1-s) (d-y)]}{\sinh [\rho_1 (b-a)]} f(a,c)
$$
\n
$$
+ \frac{\sinh [\rho_1 (1-t) (b-a)] \sinh [\rho_2 (d-c)]}{\sinh [\rho_1 (b-a)]} f(a,d)
$$
\n
$$
+ \frac{\sinh [\rho_1 (b-a)] \sinh [\rho_2 (d-c)]}{\sinh [\rho_2 (d-c)]} f(a,d)
$$
\n
$$
+ \frac{\sinh [\rho_1 (b-a)] \sinh [\rho_2 (1-s) (d-y)]}{\sinh [\rho_2 (d-c)]} f(b,c)
$$
\n
$$
+ \frac{\sinh [\rho_1 (b-a)] \sinh [\rho_2 s (d-y)]}{\sinh [\rho_2 (d-c)]} f(b,d).
$$
\n(1.10)

Now we give the following useful lemma:

Lemma 1. *[\[23\]](#page-20-1) If f* : Δ = [*a*, *b*] × [*c*, *d*] → ℝ *is co-ordinated ρ*-*convex function on* Δ, *then we have the following inequality*

$$
\cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right]\cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right]f\left(\frac{a+b}{2},\frac{c+d}{2}\right)
$$
\n
$$
\leq \frac{1}{4}\left[f(x,y)+f(x,c+d-y)+f(a+b-x,y)+f(a+b-x,c+d-y)\right] \tag{1.11}
$$
\n
$$
\leq \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4}\frac{\cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right]}{\cosh\left[\frac{\rho_{1}(b-a)}{2}\right]}\frac{\cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right]}{\cosh\left[\frac{\rho_{2}(d-c)}{2}\right]} \tag{1.12}
$$

for all $(x, y) \in \Delta$.

2. Fejer type inequalities for co-ordinated hyperbolic ρ -convex functions

Theorem 5. *Let* $p : \Delta \to \mathbb{R}$ *be a positive, integrable and symmetric about* $\frac{a+b}{2}$ *and* $\frac{c+d}{2}$ *. Let,* $f : \Delta \to \mathbb{R}$
be a co-ordinated hyperbolic o convex functions on Δ . We have the following Hermite, *be a co-ordinated hyperbolic* ρ*-convex functions on* [∆]*. We have the following Hermite-Hadamard-Fejer type inequalities:*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{a}^{b} \int_{c}^{d} \cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right] \cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right] p(x, y) dy dx
$$

\n
$$
\leq \int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) dy dx
$$

\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4 \cosh\left[\frac{\rho_{1}(b-a)}{2}\right] \cosh\left[\frac{\rho_{2}(d-c)}{2}\right]}
$$

\n
$$
\times \int_{a}^{b} \int_{c}^{d} \cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right] \cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right] p(x, y) dy dx.
$$
\n(2.1)

Proof. Multiplying the inequality [\(1.11\)](#page-4-0) by $p(x, y) > 0$ and then integrating with respect to (x, y) on Δ , we obtain

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{a}^{b} \int_{c}^{d} \cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right] \cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right] p(x, y) dy dx
$$

\n
$$
\leq \frac{1}{4} \int_{a}^{b} \int_{c}^{d} \left[f(x, y) + f(x, c+d-y) + f(a+b-x, y) + f(a+b-x, c+d-y)\right] p(x, y) dy dx
$$

\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4 \cosh\left[\frac{p_{1}(b-a)}{2}\right] \cosh\left[\frac{p_{2}(d-c)}{2}\right]}
$$
\n
$$
\times \int_{c}^{b} \int_{c}^{d} \cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right] \cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right] p(x, y) dy dx
$$
\n(2.2)

Since *p* is symmetric about $\frac{a+b}{2}$ and $\frac{c+d}{2}$, one can show that

$$
\int_{a}^{b} \int_{c}^{d} f(x, c+d-y)p(x, y)dydx = \int_{a}^{b} \int_{c}^{d} f(a+b-x, y)p(x, y)dydx
$$

$$
= \int_{a}^{b} \int_{c}^{d} f(a+b-x, c+d-y)p(x, y)dydx
$$

$$
= \int_{a}^{b} \int_{c}^{d} f(x, y)p(x, y)dydx.
$$

This completes the proof. \Box

a

c

Remark 1. *If we choose* $p(x, y) = 1$ *in Theorem* [5](#page-4-1), *then we have the following the inequality*

$$
\frac{4}{\rho_1 \rho_2} \sinh\left[\frac{\rho_1 (b-a)}{2}\right] \sinh\left[\frac{\rho_2 (d-c)}{2}\right] f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
$$
\n
$$
\leq \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx
$$
\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{\rho_1 \rho_2} \tanh\left[\frac{\rho_1 (b-a)}{2}\right] \tanh\left[\frac{\rho_2 (d-c)}{2}\right]
$$

which is proved by Özçelik et. al in [[23\]](#page-20-1).

Corollary 1. *Suppose that all assumptions of Theorem [5](#page-4-1) are satisfied. Then we have the following inequality,*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{a}^{b} \int_{c}^{d} w(x, y) dy dx
$$

\n
$$
\leq \int_{a}^{b} \int_{c}^{d} f(x, y)w(x, y) \sec h \left[\rho_1 \left(x - \frac{a+b}{2}\right)\right] \sec h \left[\rho_2 \left(y - \frac{c+d}{2}\right)\right] dy dx \qquad (2.3)
$$

\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4} \sec h \left[\frac{\rho_1 (b-a)}{2}\right] \sec h \left[\frac{\rho_2 (d-c)}{2}\right] \int_{a}^{b} \int_{c}^{d} w(x, y) dy dx.
$$

Proof. Let us define the function $p(x, y)$ by

$$
w(x, y) = \frac{p(x, y)}{\cosh\left[\rho_1\left(x - \frac{a+b}{2}\right)\right]\cosh\left[\rho_2\left(y - \frac{c+d}{2}\right)\right]}.
$$

Clearly, $w(x,y)$ is a a positive, integrable and symmetric about $\frac{a+b}{2}$ and $\frac{c+d}{2}$. If we apply Theorem [5](#page-4-1) for the function $w(x, y)$ then we establish the desired inequality [\(2.3\)](#page-6-0).

Remark 2. *If we choose* $w(x, y) = 1$ *for all* $(x, y) \in \Delta$ *in Corollary [1,](#page-6-1) then we have the following the inequality*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
$$

\n
$$
\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) \sec h\left[\rho_1\left(x - \frac{a+b}{2}\right)\right] \sec h\left[\rho_2\left(y - \frac{c+d}{2}\right)\right] dy dx
$$
 (2.4)
\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4} \sec h\left[\frac{\rho_1(b-a)}{2}\right] \sec h\left[\frac{\rho_2(d-c)}{2}\right].
$$

which is proved by Özçelik et. al in [[23\]](#page-20-1).

Theorem 6. *Let p* : ∆ → R *be a positive, integrable and symmetric about* $\frac{a+b}{2}$ *and* $\frac{c+d}{2}$ *. Let f* : ∆ → R *be a co-ordinated hyperbolic o-convex on* Λ , then we have the following Hermite. Hadamard Feie *be a co-ordinated hyperbolic* ρ*-convex on* [∆]*, then we have the following Hermite-Hadamard-Fejer type inequalities*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{a}^{b} \int_{c}^{d} \cosh\left[\rho_1\left(x-\frac{a+b}{2}\right)\right] \cosh\left[\rho_2\left(y-\frac{c+d}{2}\right)\right] p(x, y) dy dx
$$

$$
\leq \frac{1}{2} \left[\int_{a}^{b} \int_{c}^{d} f\left(x, \frac{c+d}{2}\right) \cosh\left[\rho_2\left(y-\frac{c+d}{2}\right)\right] p(x, y) dy dx \right]
$$

$$
+\int_{a}^{b} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) \cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right] p(x, y) dy dx
$$
\n
$$
\leq \int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) dy dx \qquad (2.5)
$$
\n
$$
\leq \frac{1}{4} \left[\sec h \left[\frac{\rho_{2}(d-c)}{2}\right] \int_{a}^{b} \int_{c}^{d} \left[f(x, c) + f(x, d) \right] \cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right] p(x, y) dy dx \right]
$$
\n
$$
+ \sec h \left[\frac{\rho_{1}(b-a)}{2}\right] \int_{a}^{b} \int_{c}^{d} \left[f(a, y) + f(b, y) \right] \cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right] p(x, y) dy dx
$$
\n
$$
\leq \frac{f(a, c) + f(b, c) + f(a, d) + f(b, d)}{4} \sec h \left[\frac{\rho_{1}(b-a)}{2}\right] \sec h \left[\frac{\rho_{2}(d-c)}{2}\right]
$$
\n
$$
\times \int_{a}^{b} \int_{c}^{d} \cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right] \cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right] p(x, y) dy dx.
$$

Proof. Since *f* is co-ordinated hyperbolic *ρ*-convex on Δ , if we define the mappings $f_x : [c, d] \to \mathbb{R}$, $f(y) = f(x, y)$ and $p : [c, d] \to \mathbb{R}$, $p(y) = p(x, y)$ then $f(y)$ is hyperbolic a convex on $[c, d]$ and $f_x(y) = f(x, y)$ and $p_x : [c, d] \to \mathbb{R}$, $p_x(y) = p(x, y)$, then $f_x(y)$ is hyperbolic ρ -convex on $[c, d]$ and p_y (v) is positive integrable and symmetric about $\frac{c+d}{d}$ for all $x \in [a, b]$. If we apply the inequality (1.8) *p*_{*x*}(*y*) is positive, integrable and symmetric about $\frac{c+d}{2}$ for all $x \in [a, b]$. If we apply the inequality [\(1.8\)](#page-3-1) for the hyperbolic c -convex function $f(x)$ then we have for the hyperbolic ρ -convex function $f_x(y)$, then we have

$$
f_x\left(\frac{c+d}{2}\right) \int_c^d \cosh\left[\rho_2\left(y - \frac{c+d}{2}\right)\right] p_x(y) dy
$$

\n
$$
\leq \int_c^d f_x(y) p_x(y) dy
$$

\n
$$
\leq \frac{f_x(c) + f_x(d)}{2} \sec h\left[\frac{\rho_2(d-c)}{2}\right] \int_c^d \cosh\left[\rho_2\left(y - \frac{c+d}{2}\right)\right] p_x(y) dy.
$$
\n(2.6)

That is,

$$
f\left(x, \frac{c+d}{2}\right) \int_{c}^{d} \cosh\left[\rho_2\left(y - \frac{c+d}{2}\right)\right] p(x, y) dy
$$

\n
$$
\leq \int_{c}^{d} f(x, y) p(x, y) dy
$$

\n
$$
\leq \frac{f(x, c) + f(x, d)}{2} \sec h\left[\frac{\rho_2(d-c)}{2}\right] \int_{c}^{d} \cosh\left[\rho_2\left(y - \frac{c+d}{2}\right)\right] p(x, y) dy.
$$
\n(2.7)

Integrating the inequality (2.7) with respect to *x* from *a* to *b*, we obtain

$$
\int_{a}^{b} \int_{c}^{d} f\left(x, \frac{c+d}{2}\right) \cosh\left[\rho_{2}\left(y - \frac{c+d}{2}\right)\right] p(x, y) dy dx
$$
\n
$$
\leq \int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) dy dx
$$
\n
$$
\leq \frac{1}{2} \int_{a}^{b} \int_{c}^{d} \left[f(x, c) + f(x, d)\right] \sec h\left[\frac{\rho_{2}(d-c)}{2}\right] \cosh\left[\rho_{2}\left(y - \frac{c+d}{2}\right)\right] p(x, y) dy dx.
$$
\n(2.8)

Similarly, as *f* is co-ordinated hyperbolic *ρ*-convex on Δ , if we define the mappings $f_y : [a, b] \to \mathbb{R}$,
 $f(x) = f(x, y)$ and $p : [a, b] \to \mathbb{R}$, $p(x) = p(x, y)$, then $f(x)$ is hyperbolic *o-convex* on $[a, b]$ and $f_y(x) = f(x, y)$ and $p_y : [a, b] \to \mathbb{R}$, $p_y(x) = p(x, y)$, then $f_y(x)$ is hyperbolic ρ -convex on [a, b] and $p_y(x)$ is positive integrable and symmetric about $\frac{a+b}{b}$ for all $y \in [c, d]$. Utilizing the inequality (1.8) for $p_y(x)$ is positive, integrable and symmetric about $\frac{a+b}{2}$ for all $y \in [c, d]$. Utilizing the inequality [\(1.8\)](#page-3-1) for the hyperbolic ρ -convex function $f_y(x)$, then we obtain the inequality

$$
f_y\left(\frac{a+b}{2}\right) \int_a^b \cosh\left[\rho_1\left(x-\frac{a+b}{2}\right)\right] p_y(x) dx
$$

\n
$$
\leq \int_a^b f_y(x) p_y(x) dx
$$

\n
$$
\leq \frac{f_y(a)+f_y(b)}{2} \sec h\left[\frac{\rho_1(b-a)}{2}\right] \int_a^b \cosh\left[\rho_1\left(x-\frac{a+b}{2}\right)\right] p_y(x) dx
$$
\n(2.9)

i.e.

$$
f\left(\frac{a+b}{2},y\right)\int_{a}^{b}\cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right]p(x,y)dx
$$

\n
$$
\leq \int_{a}^{b} f(x,y)p(x,y)dx
$$
\n
$$
\leq \frac{f(a,y)+f(b,y)}{2}\sec h\left[\frac{\rho_{1}(b-a)}{2}\right]\int_{a}^{b}\cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right]p(x,y)dx.
$$
\n(2.10)

Integrating the inequality [\(2.10\)](#page-8-0) with respect to *y* on $[c, d]$, we get

$$
\int_{a}^{b} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) \cosh\left[\rho_1\left(x - \frac{a+b}{2}\right)\right] p(x, y) dy dx
$$

$$
\leq \int_{a}^{b} \int_{c}^{d} f(x, y)p(x, y)dydx
$$
\n
$$
\leq \frac{1}{2} \int_{a}^{b} \int_{c}^{d} [f(a, y) + f(b, y)] \sec h \left[\frac{\rho_1 (b-a)}{2} \right] \cosh \left[\rho_1 \left(x - \frac{a+b}{2} \right) \right] p(x, y) dydx.
$$
\n(2.11)

Summing the inequalities [\(2.8\)](#page-8-1) and [\(2.11\)](#page-8-2), we obtain the second and third inequalities in [\(2.5\)](#page-6-2).

Since $f\left(\frac{a+b}{2}\right)$ $\left(\frac{1}{2}, y\right)$ is hyperbolic ρ -convex on [*c*, *d*] and $p_x(y)$ is positive, integrable and symmetric about $\frac{c+d}{2}$, using the first inequality in [\(1.8\)](#page-3-1), we have

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{c}^{d} \cosh\left[\rho_2\left(y - \frac{c+d}{2}\right)\right] p(x, y) dy
$$

$$
\leq \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) p(x, y) dy.
$$
 (2.12)

Multiplying the inequality [\(2.12\)](#page-9-0) by \cosh μ_1 $\left(x-\frac{a+b}{2}\right)$ $\left(\frac{1+b}{2}\right)$ and integrating resulting inequality with respect to *x* on [a , b], we get

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{a}^{b} \int_{c}^{d} \cosh\left[\rho_2\left(y - \frac{c+d}{2}\right)\right] \cosh\left[\rho_1\left(x - \frac{a+b}{2}\right)\right] p(x, y) dy dx
$$

$$
\leq \int_{a}^{b} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) \cosh\left[\rho_1\left(x - \frac{a+b}{2}\right)\right] p(x, y) dy dx.
$$
 (2.13)

Since $f\left(x, \frac{c+d}{2}\right)$ Since $f\left(x, \frac{c+d}{2}\right)$ is hyperbolic ρ -convex on [*a*, *b*] and $p_y(x)$ is positive, integrable and symmetric about $\frac{a+b}{2}$ utilizing the first inequality in (1.8), we have the following inequality $\frac{1}{2}$, utilizing the first inequality in [\(1.8\)](#page-3-1), we have the following inequality

$$
f\left(\frac{a+b}{2},\frac{c+d}{2}\right)\int_{a}^{b}\cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right]p(x,y)dx
$$
\n
$$
\leq \int_{a}^{b} f\left(x,\frac{c+d}{2}\right)p(x,y)dx.
$$
\n(2.14)

Multiplying the inequality [\(2.14\)](#page-9-1) by \cosh μ_2 $\left(y - \frac{c+d}{2}\right)$ $\left(\frac{+d}{2}\right)$ and integrating resulting inequality with respect to y on $[c, d]$, we get

$$
f\left(\frac{a+b}{2},\frac{c+d}{2}\right)\int\limits_{a}^{b}\int\limits_{c}^{d}\cosh\left[\rho_{1}\left(x-\frac{a+b}{2}\right)\right]\cosh\left[\rho_{2}\left(y-\frac{c+d}{2}\right)\right]p(x,y)dydx\qquad(2.15)
$$

From the inequalities [\(2.13\)](#page-9-2) and [\(2.15\)](#page-9-3), we obtain the first inequality in [\(2.5\)](#page-6-2).

For the proof of last inequality in [\(2.5\)](#page-6-2), using the second inequality in [\(1.8\)](#page-3-1) for the hyperbolic ρ -convex functions $f(x, c)$ and $f(x, d)$ on [a, b] and for the symmetric function $p_y(x)$, we obtain the inequalities

$$
\int_{a}^{b} f(x, c)p(x, y)dx
$$
\n
$$
\leq \frac{f(a, c) + f(b, c)}{2} \sec h \left[\frac{\rho_1 (b - a)}{2} \right] \int_{a}^{b} \cosh \left[\rho_1 \left(x - \frac{a + b}{2} \right) \right] p(x, y) dx
$$
\n(2.16)

and

≤ Z *b*

a

b

d

$$
\int_{a}^{b} f(x, d)p(x, y)dx
$$
\n
$$
\leq \frac{f(a, d) + f(b, d)}{2} \sec h \left[\frac{\rho_1(b-a)}{2} \right] \int_{a}^{b} \cosh \left[\rho_1 \left(x - \frac{a+b}{2} \right) \right] p(x, y) dx.
$$
\n(2.17)

If we multiply the inequalities [\(2.16\)](#page-10-0) and [\(2.17\)](#page-10-1) by sec $h\left[\frac{\rho_2(d-c)}{2}\right] \cosh\left[\frac{d^2(d-c)}{2}\right]$ $\frac{\rho_2}{\sigma_1}$ $\left(y - \frac{c+d}{2}\right)$ $\left(\frac{+d}{2}\right)$ and integrating the resulting inequalities on $[c, d]$, then we have

$$
\int_{a}^{b} \int_{c}^{d} f(x, c) \sec h \left[\frac{\rho_2(d-c)}{2} \right] \cosh \left[\rho_2 \left(y - \frac{c+d}{2} \right) \right] p(x, y) dy dx
$$
\n
$$
\leq \frac{f(a, c) + f(b, c)}{2} \sec h \left[\frac{\rho_1(b-a)}{2} \right] \sec h \left[\frac{\rho_2(d-c)}{2} \right]
$$
\n
$$
\times \int_{a}^{b} \int_{c}^{d} \cosh \left[\rho_1 \left(x - \frac{a+b}{2} \right) \right] \cosh \left[\rho_2 \left(y - \frac{c+d}{2} \right) \right] p(x, y) dy dx
$$
\n(2.18)

and

$$
\int_{a}^{b} \int_{c}^{d} f(x, d) \sec h \left[\frac{\rho_2 (d - c)}{2} \right] \cosh \left[\rho_2 \left(y - \frac{c + d}{2} \right) \right] p(x, y) dy dx
$$
\n
$$
\leq \frac{f(a, d) + f(b, d)}{2} \sec h \left[\frac{\rho_1 (b - a)}{2} \right] \sec h \left[\frac{\rho_2 (d - c)}{2} \right]
$$
\n
$$
\times \int_{a}^{b} \int_{c}^{d} \cosh \left[\rho_1 \left(x - \frac{a + b}{2} \right) \right] \cosh \left[\rho_2 \left(y - \frac{c + d}{2} \right) \right] p(x, y) dy dx.
$$
\n(2.19)

Similarly, applying the second inequality in [\(1.8\)](#page-3-1) for the hyperbolic ρ -convex functions $f(a, y)$ and $f(b, y)$ on [*c*, *d*] and for the symmetric function $p_x(y)$, we have

$$
\int_{c}^{d} f(a, y)p(x, y)dy
$$
\n
$$
\leq \frac{f(a, c) + f(a, d)}{2} \sec h \left[\frac{\rho_2(d - c)}{2} \right] \int_{c}^{d} \cosh \left[\rho_2 \left(y - \frac{c + d}{2} \right) \right] p(x, y) dy
$$
\n(2.20)

and

$$
\int_{c}^{d} f(b, y)p(x, y)dy
$$
\n
$$
\leq \frac{f(b, c) + f(b, d)}{2} \sec h \left[\frac{\rho_2(d - c)}{2} \right] \int_{c}^{d} \cosh \left[\rho_2 \left(y - \frac{c + d}{2} \right) \right] p(x, y) dy.
$$
\n(2.21)

Multiplying the inequalities [\(2.20\)](#page-11-0) and [\(2.21\)](#page-11-1) by sec $h\left[\frac{\rho_1(b-a)}{2}\right] \cosh\left[\frac{b-a}{2}\right]$ $\frac{\rho_1}{\sigma_2}$ $\left(x-\frac{a+b}{2}\right)$ $\left(\frac{+b}{2}\right)$ and integrating the resulting inequalities on $[a, b]$, then we have

$$
\int_{a}^{b} \int_{c}^{d} f(a, y) \sec h \left[\frac{\rho_1 (b-a)}{2} \right] \cosh \left[\rho_1 \left(x - \frac{a+b}{2} \right) \right] p(x, y) dy dx
$$
\n
$$
\leq \frac{f(a, c) + f(a, d)}{2} \sec h \left[\frac{\rho_2 (d-c)}{2} \right] \sec h \left[\frac{\rho_1 (b-a)}{2} \right]
$$
\n
$$
\times \int_{a}^{b} \int_{c}^{d} \cosh \left[\rho_2 \left(y - \frac{c+d}{2} \right) \right] \cosh \left[\rho_1 \left(x - \frac{a+b}{2} \right) \right] p(x, y) dy dx \tag{2.22}
$$

and

$$
\int_{a}^{b} \int_{c}^{d} f(b, y) \sec h \left[\frac{\rho_1 (b - a)}{2} \right] \cosh \left[\rho_1 \left(x - \frac{a + b}{2} \right) \right] p(x, y) dy dx
$$
\n
$$
\leq \frac{f(b, c) + f(b, d)}{2} \sec h \left[\frac{\rho_2 (d - c)}{2} \right] \sec h \left[\frac{\rho_1 (b - a)}{2} \right]
$$
\n
$$
\times \int_{a}^{b} \int_{c}^{d} \cosh \left[\rho_2 \left(y - \frac{c + d}{2} \right) \right] \cosh \left[\rho_1 \left(x - \frac{a + b}{2} \right) \right] p(x, y) dy dx.
$$
\n(2.23)

Summing the inequalities [\(2.18\)](#page-10-2), [\(2.19\)](#page-10-3), [\(2.22\)](#page-11-2) and [\(2.23\)](#page-11-3), we establish the last inequality in [\(2.5\)](#page-6-2). This completes the proof. \Box

Remark 3. *If we choose* $p(x, y) = 1$ *in Theorem [6,](#page-6-3) then we have*

$$
\frac{4}{\rho_{1}\rho_{2}}\sinh\left[\frac{\rho_{1}(b-a)}{2}\right]\sinh\left[\frac{\rho_{2}(d-c)}{2}\right]f\left(\frac{a+b}{2},\frac{c+d}{2}\right)
$$
\n
$$
\leq \frac{1}{\rho_{1}}\sinh\left[\frac{\rho_{1}(b-a)}{2}\right] \int_{c}^{d} f\left(\frac{a+b}{2},y\right)dy + \frac{1}{\rho_{2}}\sinh\left[\frac{\rho_{2}(d-c)}{2}\right] \int_{a}^{b} f\left(x,\frac{c+d}{2}\right)dx
$$
\n
$$
\leq \int_{a}^{b} \int_{c}^{d} f(x,y) dydx
$$
\n
$$
\leq \frac{1}{2}\left[\frac{1}{\rho_{2}}\tanh\left[\frac{\rho_{2}(d-c)}{2}\right] \int_{a}^{b} [f(x,c) + f(x,d)] dx + \frac{1}{\rho_{1}}\tanh\left[\frac{\rho_{1}(b-a)}{2}\right] \int_{c}^{d} [f(a,y) + f(b,y)] dy\right]
$$
\n
$$
\leq \tanh\left[\frac{\rho_{1}(b-a)}{2}\right] \tanh\left[\frac{\rho_{2}(d-c)}{2}\right] \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{\rho_{1}\rho_{2}}
$$
\n(2.24)

which is proved by Özçelik et. al in [[23\]](#page-20-1).

Remark 4. *Choosing* $\rho_1 = \rho_2 = 0$ *in Theorem [6,](#page-6-3) we obtain*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{a}^{b} \int_{c}^{d} p(x, y) dy dx
$$

\n
$$
\leq \frac{1}{2} \int_{a}^{b} \int_{c}^{d} \left[f\left(x, \frac{c+d}{2}\right) + f\left(\frac{a+b}{2}, y\right) \right] p(x, y) dy dx
$$

\n
$$
\leq \int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) dy dx
$$

\n
$$
\leq \frac{1}{4} \int_{a}^{b} \int_{c}^{d} \left[f(x, c) + f(x, d) + f(a, y) + f(b, y) \right] p(x, y) dy dx
$$

\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4} \int_{a}^{b} \int_{c}^{d} p(x, y) dy dx.
$$

which is proved by Budak and Sarikaya in [\[5\]](#page-19-9).

Corollary 2. Let $g_1 : [a, b] \to \mathbb{R}$ and $g_1 : [c, d] \to \mathbb{R}$ be two positive, integrable and symmetric about $\frac{a+b}{b}$ and $\frac{c+d}{d}$ respectively. If we choose $p(x, y) = \frac{g_1(x)g_2(y)}{d}$ for all $(x, y) \in \Lambda$ in Theorem 6, $\frac{2}{2}$ and $\frac{c+d}{2}$, *respectively. If we choose* $p(x, y) = \frac{g_1(x)g_2(y)}{G_1G_2}$ $\frac{(x)g_2(y)}{G_1G_2}$ *for all* (x, y) ∈ Δ *in Theorem [6,](#page-6-3) then we have*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
$$
\n
$$
\leq \frac{1}{2} \left[\frac{1}{G_1} \int_a^b f\left(x, \frac{c+d}{2}\right) g_1(x) dx + \frac{1}{G_2} \int_c^d f\left(\frac{a+b}{2}, y\right) g_2(y) dy \right]
$$
\n
$$
\leq \frac{1}{G_1 G_2} \int_a^b \int_c^d f(x, y) g_1(x) g_2(y) dy dx \qquad (2.25)
$$
\n
$$
\leq \frac{1}{4} \left[\sec h \left[\frac{\rho_2(d-c)}{2} \right] \frac{1}{G_1} \int_a^b [f(x, c) + f(x, d)] g_1(x) dx \right]
$$
\n
$$
+ \sec h \left[\frac{\rho_1(b-a)}{2} \right] \frac{1}{G_2} \int_c^d [f(a, y) + f(b, y)] g_2(y) dy \right]
$$
\n
$$
\leq \frac{f(a, c) + f(b, c) + f(a, d) + f(b, d)}{4} \sec h \left[\frac{\rho_1(b-a)}{2} \right] \sec h \left[\frac{\rho_2(d-c)}{2} \right]
$$
\n(2.26)

where

$$
G_1 = \int_a^b \cosh\left[\rho_1\left(x - \frac{a+b}{2}\right)\right] g_1(x) dx \text{ and } G_2 = \int_c^d \cosh\left[\rho_2\left(y - \frac{c+d}{2}\right)\right] g_2(y) dy.
$$

Remark 5. *If we choose* $\rho_1 = \rho_2 = 0$ *in Corollary [2,](#page-13-0) then we have*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
$$

\n
$$
\leq \frac{1}{2} \left[\frac{1}{G_1} \int_a^b f\left(x, \frac{c+d}{2}\right) g_1(x) dx + \frac{1}{G_2} \int_c^d f\left(\frac{a+b}{2}, y\right) g_2(y) dy \right]
$$

\n
$$
\leq \frac{1}{G_1 G_2} \int_a^b \int_c^d f(x, y) g_1(x) g_2(y) dy dx
$$

\n
$$
\leq \frac{1}{4} \left[\frac{1}{G_1} \int_a^b [f(x, c) + f(x, d)] g_1(x) dx + \frac{1}{G_2} \int_c^d [f(a, y) + f(b, y)] g_2(y) dy \right]
$$

\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4}
$$

which is proved by Farid et al. in [\[16\]](#page-19-10).

3. Fractional inequalities for co-ordinated hyperbolic ρ -convex functions

In this section we obtain some fractional Hermite-Hadamard an Fejer type inequalities for co-ordinated hyperbolic ρ -convex functions.

Theorem 7. *If f* : $\Delta \rightarrow \mathbb{R}$ *is a co-ordinated hyperbolic ρ-convex functions on* Δ *, then we have the following Hermite-Hadamard and Fejer type inequalities,*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)H(\alpha, \beta)
$$

\n
$$
\leq \left[J_{a+,c+}^{\alpha,\beta}f(b,d) + J_{a+,d-}^{\alpha,\beta}f(b,c) + J_{b-,c+}^{\alpha,\beta}f(a,d) + J_{b-,d-}^{\alpha,\beta}f(a,c)\right]
$$

\n
$$
\leq \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} \sec h\left[\frac{\rho_1(b-a)}{2}\right] \sec h\left[\frac{\rho_2(d-c)}{2}\right]H(\alpha,\beta)
$$

where

$$
H(\alpha, \beta) = \frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d} \cosh \left[\rho_{1}\left(x - \frac{a+b}{2}\right)\right] \cosh \left[\rho_{2}\left(y - \frac{c+d}{2}\right)\right] \times \left[(b-x)^{\alpha-1}(d-y)^{\beta-1} + (b-x)^{\alpha-1}(y-c)^{\beta-1} + (x-a)^{\alpha-1}(d-y)^{\beta-1} + (x-a)^{\alpha-1}(y-c)^{\beta-1}\right] dy dx.
$$

Proof. If we apply Theorem [5](#page-4-1) for the symmetric function

$$
p(x, y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \Big[(b - x)^{\alpha - 1} (d - y)^{\beta - 1} + (b - x)^{\alpha - 1} (y - c)^{\beta - 1} + (x - a)^{\alpha - 1} (d - y)^{\beta - 1} + (x - a)^{\alpha - 1} (y - c)^{\beta - 1} \Big],
$$

then we get the following inequality

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)H(\alpha, \beta)
$$

\n
$$
\leq \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{a}^{b} \int_{c}^{d} f(x, y) \left[(b-x)^{\alpha-1} (d-y)^{\beta-1} + (b-x)^{\alpha-1} (y-c)^{\beta-1} \right. \\ \left. + (x-a)^{\alpha-1} (d-y)^{\beta-1} + (x-a)^{\alpha-1} (y-c)^{\beta-1} \right] dy dx
$$

\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4} \sec h \left[\frac{\rho_1 (b-a)}{2} \right] \sec h \left[\frac{\rho_2 (d-c)}{2} \right] H(\alpha, \beta).
$$

From the definition of the double fractional integrals we have

$$
\frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int\limits_a^b\int\limits_c^d f(x,y)\Big[(b-x)^{\alpha-1}(d-y)^{\beta-1}+(b-x)^{\alpha-1}(y-c)^{\beta-1}
$$

+
$$
(x - a)^{\alpha-1} (d - y)^{\beta-1}
$$
 + $(x - a)^{\alpha-1} (y - c)^{\beta-1}$ $\Big| dy dx$
\n= $\Big[J_{a+,c+}^{\alpha\beta} f(b,d) + J_{a+,d-}^{\alpha\beta} f(b,c) + J_{b-,c+}^{\alpha\beta} f(a,d) + J_{b-,d-}^{\alpha\beta} f(a,c) \Big]$

which completes the proof. \Box

Remark 6. *If we choose* $\rho_1 = \rho_2 = 0$ *in Theorem [7,](#page-14-0) then we have the following fractional Hermite-Hadamard inequality,*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
$$

\n
$$
\leq \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{4(b-a)^{\alpha}(d-c)^{\beta}} \left[J_{a+,c+}^{\alpha\beta} f(b,d) + J_{a+,d-}^{\alpha\beta} f(b,c) + J_{b-,c+}^{\alpha\beta} f(a,d) + J_{b-,d-}^{\alpha\beta} f(a,c) \right]
$$

\n
$$
\leq \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4}
$$

which was proved by Sarikaya in [\[29,](#page-20-6) Theorem 4].

Remark 7. *If we choose* $\alpha = \beta = 1$ *in Theorem [7,](#page-14-0) then we have*

$$
H(1, 1) = \frac{16}{\rho_1 \rho_2} \sinh\left(\frac{\rho_1(b-a)}{2}\right) \sinh\left(\frac{\rho_2(d-c)}{2}\right).
$$

Thus, we get the following Hermite-Hadamard inequality,

$$
\frac{4}{\rho_1 \rho_2} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \sinh\left(\frac{\rho_1(b-a)}{2}\right) \sinh\left(\frac{\rho_2(d-c)}{2}\right)
$$
\n
$$
\leq \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx
$$
\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{\rho_1 \rho_2} \tanh\left[\frac{\rho_1(b-a)}{2}\right] \tanh\left[\frac{\rho_2(d-c)}{2}\right]
$$

which is proved by Özçelik et al. in [[23\]](#page-20-1).

Theorem 8. *Let* $p : \Delta \to \mathbb{R}$ *be a positive, integrable and symmetric about* $\frac{a+b}{2}$ *and* $\frac{c+d}{2}$ *. If* $f : \Delta \to \mathbb{R}$
is a co ordinated hyperbolic o convex functions on Δ *then we have the following Herm is a co-ordinated hyperbolic* ρ*-convex functions on* [∆]*, then we have the following Hermite-Hadamard-Fejer type inequalities,*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)H_p(\alpha, \beta)
$$

\n
$$
\leq \left[J_{a+,c+}^{\alpha,\beta}(fp)(b,d) + J_{a+,d-}^{\alpha,\beta}(fp)(b,c) + J_{b-,c+}^{\alpha,\beta}(fp)(a,d) + J_{b-,d-}^{\alpha,\beta}(fp)(a,c)\right]
$$

\n
$$
\leq \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} \sec h\left[\frac{\rho_1(b-a)}{2}\right] \sec h\left[\frac{\rho_2(d-c)}{2}\right]H_p(\alpha, \beta)
$$

$$
H_p(\alpha, \beta) = \frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_a^b \int_0^d \cosh \left[\rho_1 \left(x - \frac{a+b}{2} \right) \right] \cosh \left[\rho_2 \left(y - \frac{c+d}{2} \right) \right]
$$

$$
\times \left[(b-x)^{\alpha-1} (d-y)^{\beta-1} + (b-x)^{\alpha-1} (y-c)^{\beta-1} + (x-a)^{\alpha-1} (d-y)^{\beta-1} + (x-a)^{\alpha-1} (y-c)^{\beta-1} \right] p(x, y) dy dx.
$$

Proof. Let us define the function $k(x, y)$ by

$$
k(x,y) = \frac{p(x,y)}{\Gamma(\alpha)\Gamma(\beta)} \Big[(b-x)^{\alpha-1} (d-y)^{\beta-1} + (b-x)^{\alpha-1} (y-c)^{\beta-1} + (x-a)^{\alpha-1} (d-y)^{\beta-1} + (x-a)^{\alpha-1} (y-c)^{\beta-1} \Big],
$$

Clearly, $k(x, y)$ is a a positive, integrable and symmetric about $\frac{a+b}{2}$ and $\frac{c+d}{2}$. If we apply Theorem [5](#page-4-1) for the function $k(x, y)$ then we obtain,

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)H_p(\alpha, \beta)
$$

\n
$$
\leq \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{a}^{b} \int_{c}^{d} f(x, y)p(x, y) \left[(b-x)^{\alpha-1} (d-y)^{\beta-1} + (b-x)^{\alpha-1} (y-c)^{\beta-1} \right] dx
$$

\n
$$
+ (x-a)^{\alpha-1} (d-y)^{\beta-1} + (x-a)^{\alpha-1} (y-c)^{\beta-1} \Big] dy dx
$$

\n
$$
\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4 \cosh \left[\frac{\rho_1(b-a)}{2}\right] \cosh \left[\frac{\rho_2(d-c)}{2}\right]} H_p(\alpha, \beta).
$$

From the definition of the double fractional integrals we have

$$
\frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{a}^{b} \int_{c}^{d} f(x, y) \left[(b - x)^{\alpha - 1} (d - y)^{\beta - 1} + (b - x)^{\alpha - 1} (y - c)^{\beta - 1} \right. \n+ (x - a)^{\alpha - 1} (d - y)^{\beta - 1} + (x - a)^{\alpha - 1} (y - c)^{\beta - 1} \left[p(x, y) dy dx \right. \n= \left[J_{a+,c+}^{\alpha\beta} (fp)(b, d) + J_{a+,d-}^{\alpha\beta} (fp)(b, c) + J_{b-,c+}^{\alpha\beta} (fp)(a, d) + J_{b-,d-}^{\alpha\beta} (fp)(a, c) \right].
$$

This completes the proof.

Remark 8. *If we choose* $\rho_1 = \rho_2 = 0$ *in Theorem [8,](#page-15-0) then we have the following fractional Hermite-Hadamard inequality,*

$$
f\left(\frac{a+b}{2},\frac{c+d}{2}\right)\left[J_{a+,c+}^{\alpha\beta}p(b,d)+J_{a+,d-}^{\alpha\beta}p(b,c)+J_{b-,c+}^{\alpha\beta}p(a,d)+J_{b-,d-}^{\alpha\beta}p(a,c)\right]
$$

$$
\leq \left[J_{a+,c+}^{\alpha,\beta}(fp)(b,d) + J_{a+,d-}^{\alpha,\beta}(fp)(b,c) + J_{b-,c+}^{\alpha,\beta}(fp)(a,d) + J_{b-,d-}^{\alpha,\beta}(fp)(a,c) \right]
$$

$$
\leq \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4} \left[J_{a+,c+}^{\alpha,\beta} p(b,d) + J_{a+,d-}^{\alpha,\beta} p(b,c) + J_{b-,c+}^{\alpha,\beta} p(a,d) + J_{b-,d-}^{\alpha,\beta} p(a,c) \right]
$$

which is proved by Yaldız et all in [\[34\]](#page-20-7).

Remark 9. *If we choose* $\alpha = \beta = 1$ *in Theorem [8,](#page-15-0) then we have Theorem [8](#page-15-0) reduces to Theorem [5.](#page-4-1)*

Theorem 9. *If f* : [∆] [→] ^R *is a co-ordinated hyperbolic* ρ*-convex functions on* [∆]*. Then we have the following Hermite-Hadamard type inequalities for fractional integrals,*

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)H_{1}(\alpha, \beta)
$$
\n
$$
\leq \frac{1}{2}\left[\left(J_{a+}^{\alpha}f\left(b, \frac{c+d}{2}\right)+J_{b-}^{\alpha}f\left(a, \frac{c+d}{2}\right)\right)H_{2}(\beta)\right]
$$
\n
$$
+J_{c+}^{\beta}f\left(d, \frac{a+b}{2}\right)+J_{d-}^{\beta}f\left(c, \frac{a+b}{2}\right)H_{3}(\alpha)\right]
$$
\n
$$
\leq \left[J_{a+c+}^{\alpha\beta}f(b,d)+J_{a+d-}^{\alpha\beta}f(b,c)+J_{b-c+}^{\alpha\beta}f(a,d)+J_{b-d-}^{\alpha\beta}f(a,c)\right]
$$
\n
$$
\leq \frac{1}{4}\left[\sec h\left[\frac{\rho_{2}(d-c)}{2}\right](J_{a+}^{\alpha}f(b,c)+J_{a+}^{\alpha}f(b,d)+J_{b-}^{\alpha}f(a,c)+J_{b-}^{\alpha}f(a,d))H_{2}(\beta)\right]
$$
\n
$$
+ \sec h\left[\frac{\rho_{1}(b-a)}{2}\right](J_{c+}^{\beta}f(a,d)+J_{c+}^{\beta}f(b,d)+J_{d-}^{\beta}f(a,c)+J_{d-}^{\beta}f(b,c))H_{3}(\alpha)\right]
$$
\n
$$
\leq \frac{f(a,c)+f(b,c)+f(a,d)+f(b,d)}{4}\sec h\left[\frac{\rho_{1}(b-a)}{2}\right]\sec h\left[\frac{\rho_{2}(d-c)}{2}\right]H_{1}(\alpha,\beta)
$$

where

$$
H_1(\alpha, \beta) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_a^b \int_c^d \cosh \left[\rho_1 \left(x - \frac{a+b}{2}\right)\right] \cosh \left[\rho_2 \left(y - \frac{c+d}{2}\right)\right]
$$

$$
\times \left[(b-x)^{\alpha-1}(d-y)^{\beta-1} + (b-x)^{\alpha-1}(y-c)^{\beta-1} + (x-a)^{\alpha-1}(d-y)^{\beta-1} + (x-a)^{\alpha-1}(y-c)^{\beta-1}\right] dy dx,
$$

$$
H_2(\beta) = \frac{1}{\Gamma(\beta)} \int_c^d \cosh \left[\rho_2 \left(y - \frac{c+d}{2}\right)\right] \left[(d-y)^{\beta-1} + (y-c)^{\beta-1}\right] dy
$$

and

$$
H_3(\alpha,\beta) = \frac{1}{\Gamma(\alpha)} \int_a^b \cosh\left[\rho_1\left(x - \frac{a+b}{2}\right)\right] \left[(b-x)^{\alpha-1} + (x-a)^{\alpha-1}\right] dx.
$$

Proof. If we apply Theorem [6](#page-6-3) for the symmetric function

$$
p(x, y) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \Big[(b - x)^{\alpha - 1} (d - y)^{\beta - 1} + (b - x)^{\alpha - 1} (y - c)^{\beta - 1} + (x - a)^{\alpha - 1} (d - y)^{\beta - 1} + (x - a)^{\alpha - 1} (y - c)^{\beta - 1} \Big],
$$

then we get the following inequality

$$
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)H_{1}(\alpha, \beta)
$$
\n
$$
\leq \frac{1}{2}\left[\left(\frac{1}{\Gamma(\alpha)}\int_{a}^{b} f\left(x, \frac{c+d}{2}\right)\left[(b-x)^{\alpha-1} + (x-a)^{\alpha-1}\right]dx\right]H_{2}(\beta)
$$
\n
$$
+ \left(\frac{1}{\Gamma(\beta)}\int_{c}^{d} f\left(\frac{a+b}{2}, y\right)\left[(d-y)^{\beta-1} + (y-c)^{\beta-1}\right]dy\right)H_{3}(\alpha)\right]
$$
\n
$$
\leq \frac{1}{\Gamma(\alpha)\Gamma(\beta)}\int_{a}^{b} \int_{c}^{d} f(x, y)\left[(b-x)^{\alpha-1}(d-y)^{\beta-1} + (b-x)^{\alpha-1}(y-c)^{\beta-1}\right]dx
$$
\n
$$
+ (x-a)^{\alpha-1}(d-y)^{\beta-1} + (x-a)^{\alpha-1}(y-c)^{\beta-1}\right]dydx
$$
\n
$$
\leq \frac{1}{4}\left[\sec h\left[\frac{\rho_{2}(d-c)}{2}\right]\left(\frac{1}{\Gamma(\alpha)}\int_{a}^{b} [f(x, c) + f(x, d)]\left[(b-x)^{\alpha-1} + (x-a)^{\alpha-1}\right]dx\right)H_{2}(\beta)
$$
\n
$$
+ \sec h\left[\frac{\rho_{1}(b-a)}{2}\right]\left(\frac{1}{\Gamma(\beta)}\int_{a}^{b} [f(a, y) + f(b, y)]\left[(d-y)^{\beta-1} + (y-c)^{\beta-1}\right]dx\right)H_{3}(\alpha)\right]
$$
\n
$$
\leq \frac{f(a, c) + f(b, c) + f(a, d) + f(b, d)}{4} \sec h\left[\frac{\rho_{1}(b-a)}{2}\right] \sec h\left[\frac{\rho_{2}(d-c)}{2}\right]H_{1}(\alpha, \beta).
$$

This completes the proof. \Box

Remark 10. *Under assumptions of Theorem [9](#page-17-0) with* $\alpha = \beta = 1$, *the inequalities [\(3.1\)](#page-17-1) reduce to inequalities [\(2.24\)](#page-12-0) proved by Oz¸celik et. al in [¨ [23\]](#page-20-1).*

Remark 11. *Under assumptions of Theorem [9](#page-17-0) with* $\rho_1 = \rho_2 = 0$, *the inequalities [\(3.1\)](#page-17-1) reduce to inequalities proved by Sarikaya in [\[29,](#page-20-6) Theorem 4]*

4. Conclusions

In this paper, we establish some Fejer type inequalities for co-ordinated hyperbolic ρ -convex functions. By using these inequalities we present some inequalities for Riemann-Liouville fractional integrals. In the future works, authors can prove similar inequalities for other fractional integrals.

Conflict of interest

All authors declare no conflicts of interest.

References

- 1. A. Akkurt, M. Z. Sarikaya, H. Budak, et al. *On the Hadamard's type inequalities for co-ordinated convex functions via fractional integrals*, Journal of King Saud University - Science, 29 (2017), 380–387.
- 2. T. Ali, M. A. Khan, A. Kilicman, et al. *On the refined Hermite-Hadamard inequalities*, Mathematical Sciences & Applications E-Notes, 6 (2018), 85–92.
- 3. A. G. Azpeitia, *Convex functions and the Hadamard inequality*, Rev. Colombiana Math., 28 (1994), $7-12.$
- 4. M. K. Bakula, *An improvement of the Hermite-Hadamard inequality for functions convex on the coordinates*, Australian journal of mathematical analysis and applications, 11 (2014), 1–7.
- 5. H. Budak and M. Z. Sarikaya, *Hermite-Hadamard-Fejer inequalities for double integrals*, submitted, 2018.
- 6. F. Chen, *A note on the Hermite-Hadamard inequality for convex functions on the co-ordinates*, J. Math. Inequal., 8 (2014), 915–923.
- 7. F. Chen, *A note on Hermite-Hadamard inequalities for products of convex functions*, J. Appl. Math., 2013 (2013), 935020.
- 8. F. Chen, S. Wu, *Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions*, J. Nonlinear Sci. Appl., 9 (2016), 705–716.
- 9. S. S. Dragomir and C. E. M. Pearce, *Selected topics on Hermite-Hadamard inequalities and applications*, RGMIA Monographs, Victoria University, 2000.
- 10. S. S. Dragomir, *Some inequalities of Hermite-Hadamard type for hyperbolic* ρ*-convex functions*, Preprint, 2018.
- 11. S. S. Dragomir, *On Hadamards inequality for convex functions on the co-ordinates in a rectangle from the plane*, Taiwan J. Math., 4 (2001), 775–788.
- 12. S. S. Dragomir, *Some inequalities of Fejer type for hyperbolic* ρ*-convex functions*, Preprint, 2018.
- 13. S. S. Dragomir, *Some inequalities of Ostrowski and trapezoid type for hyperbolic* ρ*-convex functions*, Preprint, 2018.
- 14. S. S. Dragomir, *Some inequalities of Jensen type for hyperbolic* ρ*-convex functions*, Preprint, 2018.
- 15. S. S. Dragomir and B. T. Torebek, *Some Hermite-Hadamard type inequalities in the class of hyperbolic* ρ*-convex functions*, arXiv preprint, arXiv:1901.06634, 2019.
- 16. G. Farid, M. Marwan and A. U. Rehman, *Fejer-Hadamard inequlality for convex functions on the co-ordinates in a rectangle from the plane*, International Journal of Analysis and Applications, 10 (2016), 40–47.
- 17. L. Fejer, Über die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369-390. (Hungarian)
- 18. J. Hadamard, *Etude sur les proprietes des fonctions entieres en particulier d'une fonction consideree par Riemann*, J. Math. Pures Appl., 58 (1893), 171–215.
- 19. U. S. Kırmacı, M. K. Bakula, M. E. Özdemir, et al. *Hadamard-tpye inequalities for s-convex functions*, Appl. Math. Comput., 193 (2007), 26–35.
- 20. M. A. Latif and M. Alomari, *Hadamard-type inequalities for product two convex functions on the co-ordinetes*, Int. Math. Forum, 4 (2009), 2327–2338.
- 21. M. A. Latif, S. S. Dragomir, E. Momoniat, *Generalization of some Inequalities for di*ff*erentiable co-ordinated convex functions with applications*, Moroccan J. Pure Appl. Anal., 2 (2016), 12–32.
- 22. M. A. Latif and S. S. Dragomir, *On some new inequalities for di*ff*erentiable co-ordinated convex functions*, J. Inequal. Appl., 2012 (2012), 28.
- 23. K. Ozcelik, H. Budak, S. S. Dragomir, *On Hermite-Hadamard type inequalities for co-ordinated hyperbolic* ρ*-convex functions*, Submitted, 2019.
- 24. M. E. Ozdemir, C. Yildiz and A. O. Akdemir, *On the co-ordinated convex functions*, Appl. Math. Inf. Sci., 8 (2014), 1085–1091.
- 25. B. G. Pachpatte, *On some inequalities for convex functions*, RGMIA Res. Rep. Coll, 6 (2003), 1–9.
- 26. Z. Pavic, *Improvements of the Hermite-Hadamard inequality*, J. Inequal. Appl., 2015 (2015), 1–11.
- 27. J. E. Pečarić, F. Proschan and Y. L. Tong, *Convex Functions, Partial Orderings and Statistical Applications*, Academic Press, Boston, 1992.
- 28. M. Z. Sarikaya, E. Set, M. E. Ozdemir, et al.*New some Hadamard's type inequalities for coordinated convex functions*, Tamsui Oxford Journal of Information and Mathematical Sciences, 28 (2012), 137–152.
- 29. M. Z. Sarikaya, *On the Hermite-Hadamard-type inequalities for co-ordinated convex functions via fractional integrals*, Integ. Transf. Spec. F., 25 (2014), 134–147.
- 30. E. Set, M. E. Özdemir, S. S. Dragomir, *On the Hermite-Hadamard inequality and other integral inequalities involving two functions*, J. Inequal. Appl., 2010 (2010), 148102.
- 31. K. L. Tseng and S. R. Hwang, *New Hermite-Hadamard inequalities and their applications*, Filomat, 30 (2016), 3667–3680.
- 32. D. Y. Wang, K. L. Tseng and G. S. Yang, *Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane*, Taiwan. J. Math., 11 (2007), 63–73.
- 33. R. Xiang and F. Chen, *On some integral inequalities related to Hermite-Hadamard-Fejér inequalities for coordinated convex functions*, Chinese Journal of Mathematics, 2014 (2014), 796132.
- 34. H. Yaldız, M. Z. Sarikaya, Z. Dahmani, *On the Hermite-Hadamard-Fejer-type inequalities for coordinated convex functions via fractional integrals*, An International Journal of Optimization and Control: Theories & Applications, 7 (2017), 205–215.
- 35. G. S. Yang and K. L. Tseng, *On certain integral inequalities related to Hermite-Hadamard inequalities*, J. Math. Anal. Appl., 239 (1999), 180–187.
- 36. G. S. Yang and M. C. Hong, *A note on Hadamard's inequality*, Tamkang J. Math., 28 (1997), 33–37.

 c 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://[creativecommons.org](http://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)