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1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable
significant in the literature (see, e.g., [9], [18], [27, p.137]). These inequalities state that if f : I → R
is a convex function on the interval I of real numbers and a, b ∈ I with a < b, then

f
(
a + b

2

)
≤

1
b − a

b∫
a

f (x)dx ≤
f (a) + f (b)

2
. (1.1)

Both inequalities hold in the reversed direction if f is concave.
The Hermite-Hadamard inequality,which is the first fundamental result for convex mappings with

a natural geometrical interpretation and many applications, has drawn attention much interest in
elementary mathematics. A number of mathematicians have devoted their efforts.

The most well-known inequalities related to the integral mean of a convex function are the Hermite
Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-Fejér inequalities.
In [17], Fejer gave a weighted generalization of the inequalities (1.1) as the following:
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Theorem 1. f : [a, b]→ R, be a convex function, then the inequality

f
(
a + b

2

) b∫
a

g(x)dx ≤

b∫
a

f (x)g(x)dx ≤
f (a) + f (b)

2

b∫
a

g(x)dx (1.2)

holds, where g : [a, b] → R is nonnegative, integrable, and symmetric about x = a+b
2 (i.e. g(x) =

g(a + b − x)).

In this paper we will establish some new Fejér type inequalities for the new concept of co-ordinated
hyperbolic ρ-convex functions.

The overall structure of the paper takes the form of four sections including introduction. The paper
is organized as follows: we first give the definition of co-ordinated convex functions, the definition of
fractional integrals and related Hermite-Hadamard inequality in Section 1. We also recall the concept
of hyperbolic ρ-convex functions and co-ordinated hyperbolic ρ-convex functions introduced by
Özçelik et. al in [23]. Moreover, we give a lemma and a theorem which will be frequently used in the
next section. Some Hermite-Hadamard-Fejer type inequalities for co-ordinated hyperbolic ρ-convex
functions are obtained and some special cases of the results are also given in Section 2. Then, we also
apply the inequalities obtained in Section 2 to establish some fractional Fejer type inequalities in
Section 3. Finally, in Section 4, some conclusions and further directions of research are discussed.

A formal definition for co-ordinated convex function may be stated as follows:

Definition 1. A function f : ∆ := [a, b] × [c, d] → R is called co-ordinated convex on ∆, for all
(x, u), (y, v) ∈ ∆ and t, s ∈ [0, 1], if it satisfies the following inequality:

f (tx + (1 − t) y, su + (1 − s) v)
(1.3)

≤ ts f (x, u) + t(1 − s) f (x, v) + s(1 − t) f (y, u) + (1 − t)(1 − s) f (y, v).

The mapping f is a co-ordinated concave on ∆ if the inequality (1.3) holds in reversed direction for
all t, s ∈ [0, 1] and (x, u), (y, v) ∈ ∆.

In [11], Dragomir proved the following inequalities which is Hermite-Hadamard type inequalities
for co-ordinated convex functions on the rectangle from the plane R2.

Theorem 2. Suppose that f : ∆ := [a, b] × [c, d] → R is co-ordinated convex, then we have the
following inequalities:

f
(
a + b

2
,

c + d
2

)
≤

1
2

 1
b − a

b∫
a

f
(
x,

c + d
2

)
dx +

1
d − c

d∫
c

f
(
a + b

2
, y

)
dy


≤

1
(b − a)(d − c)

b∫
a

d∫
c

f (x, y)dydx (1.4)

≤
1
4

 1
b − a

b∫
a

f (x, c)dx +
1

b − a

b∫
a

f (x, d)dx
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+
1

d − c

d∫
c

f (a, y)dy +
1

d − c

d∫
c

f (b, y)dy


≤

f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

.

The above inequalities are sharp. The inequalities in (1.4) hold in reverse direction if the mapping f
is a co-ordinated concave mapping.

Over the years, the numerous studies have focused on to establish generalization of the inequality
(1.1) and (1.4). For some of them, please see ( [1–8], [19–26], [28–36]).

Definition 2. [29] Let f ∈ L1 (∆) .The Riemann-Lioville integrals Jα,βa+,c+, J
α,β
a+,d−,+Jα,βb−,c+

and Jα,βb−,d−of
order α, β > 0 with a, c ≥ 0 are defined by

Jα,βa+,c+ f (x, y) =
1

Γ (α) Γ (β)

x∫
a

y∫
c

(x − t)α−1 (y − s)β−1 f (t, s) dsdt, x > a, y > c,

Jα,βa+,d− f (x, y) =
1

Γ (α) Γ (β)

x∫
a

d∫
y

(x − t)α−1 (s − y)β−1 f (t, s) dsdt, x > a, y > d,

Jα,βb−,c+
f (x, y) =

1
Γ (α) Γ (β)

b∫
x

y∫
c

(t − x)α−1 (y − s)β−1 f (t, s) dsdt, x < b, y > c,

Jα,βb−,d− f (x, y) =
1

Γ (α) Γ (β)

b∫
x

d∫
y

(t − x)α−1 (s − y)β−1 f (t, s) dsdt, x < b, y < d,

respectively. Here, Γ is the Gamma funtion,

J0,0
a+,c+ f (x, y) = J0,0

a+,d− f (x, y) = J0,0
b−,c+

f (x, y) = J0,0
b−,d− f (x, y)

and

J1,1
a+,c+ f (x, y) =

x∫
a

y∫
c

f (t, s) dsdt.

First, we give the definition of hyperbolic ρ-convex functions and some related inequalities. Then
we define the co-ordinated hyperbolic ρ-convex functions.

Definition 3. [10] A function f : I → R is said to be hyperbolic ρ-convex, if for any arbitrary closed
subinterval [a, b] of I such that we have

f (x) ≤
sinh

[
ρ (b − x)

]
sinh

[
ρ (b − a)

] f (a) +
sinh

[
ρ (x − a)

]
sinh

[
ρ (b − a)

] f (b) (1.5)

for all x ∈ [a, b] . If we take x = (1 − t)a + tb, t ∈ [0, 1] in (1.5), then the condition (1.5) becomes

f ((1 − t) a + tb) ≤
sinh

[
ρ (1 − t) (b − a)

]
sinh

[
ρ (b − a)

] f (a) +
sinh

[
ρt (b − a)

]
sinh

[
ρ (b − a)

] f (b). (1.6)
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If the inequality (1.5) holds with ”≥”, then the function will be called hyperbolic ρ-concave on I.
The following Hermite-Hadamard inequality for hyperbolic ρ-convex function is proved by

Dragomir in [10].

Theorem 3. Suppose that f : I → R is hyperbolic ρ-convex on I. Then for any a, b ∈ I , we have

2
ρ

f
(
a + b

2

)
sinh

[
ρ (b − a)

2

]
≤

b∫
a

f (x)dx ≤
f (a) + f (b)

ρ
tanh

[
ρ (b − a)

2

]
. (1.7)

Moreover in [12], Dragomir prove the following Hermite Hadamard-Fejer type inequalities for
hyperbolic ρ-convex functions.

Theorem 4. Assume that the function f : I → R is hyperbolic ρ-convex on I and a, b ∈ I. Assume also
that p : [a, b] −→ R is a positive, symmetric and integrable function on [a, b], then we have

f
(
a + b

2

) b∫
a

cosh
[
ρ

(
x −

a + b
2

)]
p(x)dx

≤

b∫
a

f (x)p(x)dx (1.8)

≤
f (a) + f (b)

2
sec h

[
ρ (b − a)

2

] b∫
a

cosh
[
ρ

(
x −

a + b
2

)]
p(x)dx.

For the other inequalities for hyperbolic ρ-convex functions, please refer to ( [12–15]).
Now we give the definition of co-ordinated hyperbolic ρ-convex functions.

Definition 4. [23] A function f : ∆ → R is said to co-ordinated hyperbolic ρ-convex on ∆, if the
inequality

f (x, y) ≤
sinh

[
ρ1 (b − x)

]
sinh

[
ρ1 (b − a)

] sinh
[
ρ2 (d − y)

]
sinh

[
ρ2 (d − c)

] f (a, c) +
sinh

[
ρ1 (b − x)

]
sinh

[
ρ1 (b − a)

] sinh
[
ρ2 (y − c)

]
sinh

[
ρ2 (d − c)

] f (a, d)

(1.9)

+
sinh

[
ρ1 (x − a)

]
sinh

[
ρ1 (b − a)

] sinh
[
ρ2 (d − y)

]
sinh

[
ρ2 (d − c)

] f (b, c) +
sinh

[
ρ1 (x − a)

]
sinh

[
ρ1 (b − a)

] sinh
[
ρ2 (y − c)

]
sinh

[
ρ2 (d − c)

] f (b, d).

holds.
If the inequality (1.9) holds with ”≥”, then the function will be called co-ordinated hyperbolic

ρ-concave on ∆.

If we take x = (1 − t)a + tb and y = (1 − s)c + sd for t, s, ∈ [0, 1] , then the inequality (1.9) can be
written as

f ((1 − t) a + tb, (1 − s) c + sd)
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≤
sinh

[
ρ1 (1 − t) (b − a)

]
sinh

[
ρ1 (b − a)

] sinh
[
ρ2 (1 − s) (d − y)

]
sinh

[
ρ2 (d − c)

] f (a, c) (1.10)

+
sinh

[
ρ1 (1 − t) (b − a)

]
sinh

[
ρ1 (b − a)

] sinh
[
ρ2s (d − y)

]
sinh

[
ρ2 (d − c)

] f (a, d)

+
sinh

[
ρ1t (b − a)

]
sinh

[
ρ1 (b − a)

] sinh
[
ρ2 (1 − s) (d − y)

]
sinh

[
ρ2 (d − c)

] f (b, c)

+
sinh

[
ρ1 (b − a)

]
sinh

[
ρ1 (b − a)

] sinh
[
ρ2s (d − y)

]
sinh

[
ρ2 (d − c)

] f (b, d).

Now we give the following useful lemma:

Lemma 1. [23] If f : ∆ = [a, b] × [c, d] → R is co-ordinated ρ-convex function on ∆, then we have
the following inequality

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
f
(
a + b

2
,

c + d
2

)
≤

1
4

[
f (x, y) + f (x, c + d − y) + f (a + b − x, y) + f (a + b − x, c + d − y)

]
(1.11)

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

cosh
[
ρ1

(
x − a+b

2

)]
cosh

[
ρ1(b−a)

2

] cosh
[
ρ2

(
y − c+d

2

)]
cosh

[
ρ2(d−c)

2

]
for all (x, y) ∈ ∆.

2. Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions

Theorem 5. Let p : ∆→ R be a positive, integrable and symmetric about a+b
2 and c+d

2 . Let, f : ∆→ R

be a co-ordinated hyperbolic ρ-convex functions on ∆. We have the following Hermite-Hadamard-Fejer
type inequalities:

f
(
a + b

2
,

c + d
2

) b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p (x, y) dydx

≤

b∫
a

d∫
c

f (x, y)p(x, y)dydx (2.1)

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4 cosh
[
ρ1(b−a)

2

]
cosh

[
ρ2(d−c)

2

]
×

b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p (x, y) dydx.

AIMS Mathematics Volume 5, Issue 5, 4681–4701.



4686

Proof. Multiplying the inequality (1.11) by p(x, y) > 0 and then integrating with respect to (x, y) on ∆,

we obtain

f
(
a + b

2
,

c + d
2

) b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p (x, y) dydx

≤
1
4

b∫
a

d∫
c

[
f (x, y) + f (x, c + d − y) + f (a + b − x, y) + f (a + b − x, c + d − y)

]
p(x, y)dydx

(2.2)

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4 cosh
[
ρ1(b−a)

2

]
cosh

[
ρ2(d−c)

2

]
×

b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx

Since p is symmetric about a+b
2 and c+d

2 , one can show that

b∫
a

d∫
c

f (x, c + d − y)p(x, y)dydx =

b∫
a

d∫
c

f (a + b − x, y)p(x, y)dydx

=

b∫
a

d∫
c

f (a + b − x, c + d − y)p(x, y)dydx

=

b∫
a

d∫
c

f (x, y)p(x, y)dydx.

This completes the proof. �

Remark 1. If we choose p(x, y) = 1 in Theorem 5 , then we have the following the inequality

4
ρ1ρ2

sinh
[
ρ1 (b − a)

2

]
sinh

[
ρ2 (d − c)

2

]
f
(
a + b

2
,

c + d
2

)

≤

b∫
a

d∫
c

f (x, y)dydx

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

ρ1ρ2
tanh

[
ρ1 (b − a)

2

]
tanh

[
ρ2 (d − c)

2

]
which is proved by Özçelik et. al in [23].
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Corollary 1. Suppose that all assumptions of Theorem 5 are satisfied. Then we have the following
inequality,

f
(
a + b

2
,

c + d
2

) b∫
a

d∫
c

w (x, y) dydx

≤

b∫
a

d∫
c

f (x, y)w(x, y) sec h
[
ρ1

(
x −

a + b
2

)]
sec h

[
ρ2

(
y −

c + d
2

)]
dydx (2.3)

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
sec h

[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

] b∫
a

d∫
c

w (x, y) dydx.

Proof. Let us define the function p(x, y) by

w(x, y) =
p(x, y)

cosh
[
ρ1

(
x − a+b

2

)]
cosh

[
ρ2

(
y − c+d

2

)] .
Clearly, w(x.y) is a a positive, integrable and symmetric about a+b

2 and c+d
2 . If we apply Theorem 5 for

the function w(x, y) then we establish the desired inequality (2.3). �

Remark 2. If we choose w(x, y) = 1 for all (x, y) ε∆ in Corollary 1, then we have the following the
inequality

f
(
a + b

2
,

c + d
2

)

≤
1

(b − a)(d − c)

b∫
a

d∫
c

f (x, y) sec h
[
ρ1

(
x −

a + b
2

)]
sec h

[
ρ2

(
y −

c + d
2

)]
dydx (2.4)

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
sec h

[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
.

which is proved by Özçelik et. al in [23].

Theorem 6. Let p : ∆→ R be a positive, integrable and symmetric about a+b
2 and c+d

2 . Let f : ∆→ R

be a co-ordinated hyperbolic ρ-convex on ∆, then we have the following Hermite-Hadamard-Fejer type
inequalities

f
(
a + b

2
,

c + d
2

) b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx

≤
1
2


b∫

a

d∫
c

f
(
x,

c + d
2

)
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx

AIMS Mathematics Volume 5, Issue 5, 4681–4701.



4688

+

b∫
a

d∫
c

f
(
a + b

2
, y

)
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx


≤

b∫
a

d∫
c

f (x, y)p(x, y)dydx (2.5)

≤
1
4

sec h
[
ρ2 (d − c)

2

] b∫
a

d∫
c

[
f (x, c) + f (x, d)

]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx

+ sec h
[
ρ1 (b − a)

2

] b∫
a

d∫
c

[
f (a, y) + f (b, y)

]
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx


≤

f (a, c) + f (b, c) + f (a, d) + f (b, d)
4

sec h
[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]

×

b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx.

Proof. Since f is co-ordinated hyperbolic ρ-convex on ∆, if we define the mappings fx : [c, d] → R,
fx(y) = f (x, y) and px : [c, d] → R, px(y) = p(x, y), then fx(y) is hyperbolic ρ-convex on [c, d] and
px(y) is positive, integrable and symmetric about c+d

2 for all x ∈ [a, b] . If we apply the inequality (1.8)
for the hyperbolic ρ-convex function fx(y), then we have

fx

(
c + d

2

) d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
px(y)dy

≤

d∫
c

fx(y)px(y)dy (2.6)

≤
fx(c) + fx(d)

2
sec h

[
ρ2 (d − c)

2

] d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
px(y)dy.

That is,

f
(
x,

c + d
2

) d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
p(x, y)dy

≤

d∫
c

f (x, y)p(x, y)dy (2.7)

≤
f (x, c) + f (x, d)

2
sec h

[
ρ2 (d − c)

2

] d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
p(x, y)dy.
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Integrating the inequality (2.7) with respect to x from a to b, we obtain

b∫
a

d∫
c

f
(
x,

c + d
2

)
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx

≤

b∫
a

d∫
c

f (x, y)p(x, y)dydx (2.8)

≤
1
2

b∫
a

d∫
c

[
f (x, c) + f (x, d)

]
sec h

[
ρ2 (d − c)

2

]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx.

Similarly, as f is co-ordinated hyperbolic ρ-convex on ∆, if we define the mappings fy : [a, b] → R,
fy(x) = f (x, y) and py : [a, b] → R, py(x) = p(x, y), then fy(x) is hyperbolic ρ-convex on [a, b] and
py(x) is positive, integrable and symmetric about a+b

2 for all y ∈ [c, d] . Utilizing the inequality (1.8) for
the hyperbolic ρ-convex function fy(x), then we obtain the inequality

fy

(
a + b

2

) b∫
a

cosh
[
ρ1

(
x −

a + b
2

)]
py(x)dx

≤

b∫
a

fy(x)py(x)dx (2.9)

≤
fy(a) + fy(b)

2
sec h

[
ρ1 (b − a)

2

] b∫
a

cosh
[
ρ1

(
x −

a + b
2

)]
py(x)dx

i.e.

f
(
a + b

2
, y

) b∫
a

cosh
[
ρ1

(
x −

a + b
2

)]
p(x, y)dx

≤

b∫
a

f (x, y)p(x, y)dx (2.10)

≤
f (a, y) + f (b, y)

2
sec h

[
ρ1 (b − a)

2

] b∫
a

cosh
[
ρ1

(
x −

a + b
2

)]
p(x, y)dx.

Integrating the inequality (2.10) with respect to y on [c, d] , we get

b∫
a

d∫
c

f
(
a + b

2
, y

)
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx
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≤

b∫
a

d∫
c

f (x, y)p(x, y)dydx (2.11)

≤
1
2

b∫
a

d∫
c

[
f (a, y) + f (b, y)

]
sec h

[
ρ1 (b − a)

2

]
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx.

Summing the inequalities (2.8) and (2.11), we obtain the second and third inequalities in (2.5).
Since f

(
a+b

2 , y
)

is hyperbolic ρ-convex on [c, d] and px(y) is positive, integrable and symmetric
about c+d

2 , using the first inequality in (1.8), we have

f
(
a + b

2
,

c + d
2

) d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
p(x, y)dy

≤

d∫
c

f
(
a + b

2
, y

)
p(x, y)dy. (2.12)

Multiplying the inequality (2.12) by cosh
[
ρ1

(
x − a+b

2

)]
and integrating resulting inequality with

respect to x on [a, b] , we get

f
(
a + b

2
,

c + d
2

) b∫
a

d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx

≤

b∫
a

d∫
c

f
(
a + b

2
, y

)
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx. (2.13)

Since f
(
x, c+d

2

)
is hyperbolic ρ-convex on [a, b] and py(x) is positive, integrable and symmetric about

a+b
2 , utilizing the first inequality in (1.8), we have the following inequality

f
(
a + b

2
,

c + d
2

) b∫
a

cosh
[
ρ1

(
x −

a + b
2

)]
p(x, y)dx (2.14)

≤

b∫
a

f
(
x,

c + d
2

)
p(x, y)dx.

Multiplying the inequality (2.14) by cosh
[
ρ2

(
y − c+d

2

)]
and integrating resulting inequality with

respect to y on [c, d] , we get

f
(
a + b

2
,

c + d
2

) b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx (2.15)
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≤

b∫
a

d∫
c

f
(
x,

c + d
2

)
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx.

From the inequalities (2.13) and (2.15), we obtain the first inequality in (2.5).
For the proof of last inequality in (2.5), using the second inequality in (1.8) for the hyperbolic

ρ-convex functions f (x, c) and f (x, d) on [a, b] and for the symmetric function py(x), we obtain the
inequalities

b∫
a

f (x, c)p(x, y)dx (2.16)

≤
f (a, c) + f (b, c)

2
sec h

[
ρ1 (b − a)

2

] b∫
a

cosh
[
ρ1

(
x −

a + b
2

)]
p(x, y)dx

and
b∫

a

f (x, d)p(x, y)dx (2.17)

≤
f (a, d) + f (b, d)

2
sec h

[
ρ1 (b − a)

2

] b∫
a

cosh
[
ρ1

(
x −

a + b
2

)]
p(x, y)dx.

If we multiply the inequalities (2.16) and (2.17) by sec h
[
ρ2(d−c)

2

]
cosh

[
ρ2

(
y − c+d

2

)]
and integrating the

resulting inequalities on [c, d] , then we have

b∫
a

d∫
c

f (x, c) sec h
[
ρ2 (d − c)

2

]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx

≤
f (a, c) + f (b, c)

2
sec h

[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
(2.18)

×

b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx

and
b∫

a

d∫
c

f (x, d) sec h
[
ρ2 (d − c)

2

]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx

≤
f (a, d) + f (b, d)

2
sec h

[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
(2.19)

×

b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
p(x, y)dydx.
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Similarly, applying the second inequality in (1.8) for the hyperbolic ρ-convex functions f (a, y) and
f (b, y) on [c, d] and for the symmetric function px(y), we have

d∫
c

f (a, y)p(x, y)dy (2.20)

≤
f (a, c) + f (a, d)

2
sec h

[
ρ2 (d − c)

2

] d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
p(x, y)dy

and

d∫
c

f (b, y)p(x, y)dy (2.21)

≤
f (b, c) + f (b, d)

2
sec h

[
ρ2 (d − c)

2

] d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
p(x, y)dy.

Multiplying the inequalities (2.20) and (2.21) by sec h
[
ρ1(b−a)

2

]
cosh

[
ρ1

(
x − a+b

2

)]
and integrating the

resulting inequalities on [a, b] , then we have

b∫
a

d∫
c

f (a, y) sec h
[
ρ1 (b − a)

2

]
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx

≤
f (a, c) + f (a, d)

2
sec h

[
ρ2 (d − c)

2

]
sec h

[
ρ1 (b − a)

2

]
(2.22)

×

b∫
a

d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx

and

b∫
a

d∫
c

f (b, y) sec h
[
ρ1 (b − a)

2

]
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx

≤
f (b, c) + f (b, d)

2
sec h

[
ρ2 (d − c)

2

]
sec h

[
ρ1 (b − a)

2

]
(2.23)

×

b∫
a

d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
cosh

[
ρ1

(
x −

a + b
2

)]
p(x, y)dydx.

Summing the inequalities (2.18), (2.19), (2.22) and (2.23), we establish the last inequality in (2.5).
This completes the proof. �

AIMS Mathematics Volume 5, Issue 5, 4681–4701.



4693

Remark 3. If we choose p(x, y) = 1 in Theorem 6, then we have

4
ρ1ρ2

sinh
[
ρ1 (b − a)

2

]
sinh

[
ρ2 (d − c)

2

]
f
(
a + b

2
,

c + d
2

)

≤
1
ρ1

sinh
[
ρ1 (b − a)

2

] d∫
c

f
(
a + b

2
, y

)
dy +

1
ρ2

sinh
[
ρ2 (d − c)

2

] b∫
a

f
(
x,

c + d
2

)
dx

≤

b∫
a

d∫
c

f (x, y) dydx

(2.24)

≤
1
2

 1
ρ2

tanh
[
ρ2 (d − c)

2

] b∫
a

[
f (x, c) + f (x, d)

]
dx

+
1
ρ1

tanh
[
ρ1 (b − a)

2

] d∫
c

[
f (a, y) + f (b, y)

]
dy


≤ tanh

[
ρ1 (b − a)

2

]
tanh

[
ρ2 (d − c)

2

]
f (a, c) + f (a, d) + f (b, c) + f (b, d)

ρ1ρ2

which is proved by Özçelik et. al in [23].

Remark 4. Choosing ρ1 = ρ2 = 0 in Theorem 6, we obtain

f
(
a + b

2
,

c + d
2

) b∫
a

d∫
c

p(x, y)dydx

≤
1
2

b∫
a

d∫
c

[
f
(
x,

c + d
2

)
+ f

(
a + b

2
, y

)]
p(x, y)dydx

≤

b∫
a

d∫
c

f (x, y)p(x, y)dydx

≤
1
4

b∫
a

d∫
c

[
f (x, c) + f (x, d) + f (a, y) + f (b, y)

]
p(x, y)dydx

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

b∫
a

d∫
c

p(x, y)dydx.

which is proved by Budak and Sarikaya in [5].
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Corollary 2. Let g1 : [a, b] → R and g1 : [c, d] → R be two positive, integrable and symmetric about
a+b

2 and c+d
2 , respectively. If we choose p(x, y) =

g1(x)g2(y)
G1G2

for all (x, y) ∈ ∆ in Theorem 6, then we have

f
(
a + b

2
,

c + d
2

)

≤
1
2

 1
G1

b∫
a

f
(
x,

c + d
2

)
g1(x)dx +

1
G2

d∫
c

f
(
a + b

2
, y

)
g2(y)dy


≤

1
G1G2

b∫
a

d∫
c

f (x, y)g1(x)g2(y)dydx (2.25)

≤
1
4

sec h
[
ρ2 (d − c)

2

]
1

G1

b∫
a

[
f (x, c) + f (x, d)

]
g1(x)dx

+ sec h
[
ρ1 (b − a)

2

]
1

G2

d∫
c

[
f (a, y) + f (b, y)

]
g2(y)dy


≤

f (a, c) + f (b, c) + f (a, d) + f (b, d)
4

sec h
[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
where

G1 =

b∫
a

cosh
[
ρ1

(
x −

a + b
2

)]
g1(x)dx and G2 =

d∫
c

cosh
[
ρ2

(
y −

c + d
2

)]
g2(y)dy.

Remark 5. If we choose ρ1 = ρ2 = 0 in Corollary 2, then we have

f
(
a + b

2
,

c + d
2

)

≤
1
2

 1
G1

b∫
a

f
(
x,

c + d
2

)
g1(x)dx +

1
G2

d∫
c

f
(
a + b

2
, y

)
g2(y)dy


≤

1
G1G2

b∫
a

d∫
c

f (x, y)g1(x)g2(y)dydx

≤
1
4

 1
G1

b∫
a

[
f (x, c) + f (x, d)

]
g1(x)dx +

1
G2

d∫
c

[
f (a, y) + f (b, y)

]
g2(y)dy


≤

f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

which is proved by Farid et al. in [16].
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3. Fractional inequalities for co-ordinated hyperbolic ρ-convex functions

In this section we obtain some fractional Hermite-Hadamard an Fejer type inequalities for
co-ordinated hyperbolic ρ-convex functions.

Theorem 7. If f : ∆ → R is a co-ordinated hyperbolic ρ-convex functions on ∆, then we have the
following Hermite-Hadamard and Fejer type inequalities,

f
(
a + b

2
,

c + d
2

)
H(α, β)

≤
[
Jα,βa+,c+ f (b, d) + Jα,βa+,d− f (b, c) + Jα,βb−,c+

f (a, d) + Jα,βb−,d− f (a, c)
]

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
sec h

[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
H(α, β)

where

H(α, β) =
1

Γ (α) Γ (β)

b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
×

[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]

dydx.

Proof. If we apply Theorem 5 for the symmetric function

p(x, y) =
1

Γ (α) Γ (β)

[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]
,

then we get the following inequality

f
(
a + b

2
,

c + d
2

)
H(α, β)

≤
1

Γ (α) Γ (β)

b∫
a

d∫
c

f (x, y)
[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]

dydx

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
sec h

[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
H(α, β).

From the definition of the double fractional integrals we have

1
Γ (α) Γ (β)

b∫
a

d∫
c

f (x, y)
[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1
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+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]

dydx

=
[
Jα,βa+,c+ f (b, d) + Jα,βa+,d− f (b, c) + Jα,βb−,c+

f (a, d) + Jα,βb−,d− f (a, c)
]

which completes the proof. �

Remark 6. If we choose ρ1 = ρ2 = 0 in Theorem 7, then we have the following fractional Hermite-
Hadamard inequality,

f
(
a + b

2
,

c + d
2

)
≤

Γ (α + 1) Γ (β + 1)
4(b − a)α(d − c)β

[
Jα,βa+,c+ f (b, d) + Jα,βa+,d− f (b, c) + Jα,βb−,c+

f (a, d) + Jα,βb−,d− f (a, c)
]

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

which was proved by Sarikaya in [29, Theorem 4].

Remark 7. If we choose α = β = 1 in Theorem 7, then we have

H(1, 1) =
16
ρ1ρ2

sinh
(
ρ1(b − a)

2

)
sinh

(
ρ2(d − c)

2

)
.

Thus, we get the following Hermite-Hadamard inequality,

4
ρ1ρ2

f
(
a + b

2
,

c + d
2

)
sinh

(
ρ1(b − a)

2

)
sinh

(
ρ2(d − c)

2

)

≤

b∫
a

d∫
c

f (x, y)dydx

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

ρ1ρ2
tanh

[
ρ1 (b − a)

2

]
tanh

[
ρ2 (d − c)

2

]
which is proved by Özçelik et al. in [23].

Theorem 8. Let p : ∆ → R be a positive, integrable and symmetric about a+b
2 and c+d

2 . If f : ∆ → R

is a co-ordinated hyperbolic ρ-convex functions on ∆, then we have the following Hermite-Hadamard-
Fejer type inequalities,

f
(
a + b

2
,

c + d
2

)
Hp(α, β)

≤
[
Jα,βa+,c+ ( f p) (b, d) + Jα,βa+,d− ( f p) (b, c) + Jα,βb−,c+

( f p) (a, d) + Jα,βb−,d− ( f p) (a, c)
]

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
sec h

[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
Hp(α, β)
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where

Hp(α, β) =
1

Γ (α) Γ (β)

b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
×

[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]

p(x, y)dydx.

Proof. Let us define the function k(x, y) by

k(x, y) =
p(x, y)

Γ (α) Γ (β)

[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]
,

Clearly, k(x.y) is a a positive, integrable and symmetric about a+b
2 and c+d

2 . If we apply Theorem 5 for
the function k(x, y) then we obtain,

f
(
a + b

2
,

c + d
2

)
Hp(α, β)

≤
1

Γ (α) Γ (β)

b∫
a

d∫
c

f (x, y)p(x, y)
[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]

dydx

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4 cosh
[
ρ1(b−a)

2

]
cosh

[
ρ2(d−c)

2

] Hp(α, β).

From the definition of the double fractional integrals we have

1
Γ (α) Γ (β)

b∫
a

d∫
c

f (x, y)
[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]

p(x, y)dydx

=
[
Jα,βa+,c+ ( f p) (b, d) + Jα,βa+,d− ( f p) (b, c) + Jα,βb−,c+

( f p) (a, d) + Jα,βb−,d− ( f p) (a, c)
]
.

This completes the proof. �

Remark 8. If we choose ρ1 = ρ2 = 0 in Theorem 8, then we have the following fractional Hermite-
Hadamard inequality,

f
(
a + b

2
,

c + d
2

) [
Jα,βa+,c+ p(b, d) + Jα,βa+,d−p(b, c) + Jα,βb−,c+

p(a, d) + Jα,βb−,d−p(a, c)
]
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≤
[
Jα,βa+,c+ ( f p) (b, d) + Jα,βa+,d− ( f p) (b, c) + Jα,βb−,c+

( f p) (a, d) + Jα,βb−,d− ( f p) (a, c)
]

≤
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

[
Jα,βa+,c+ p(b, d) + Jα,βa+,d−p(b, c) + Jα,βb−,c+

p(a, d) + Jα,βb−,d−p(a, c)
]

which is proved by Yaldız et all in [34].

Remark 9. If we choose α = β = 1 in Theorem 8, then we have Theorem 8 reduces to Theorem 5.

Theorem 9. If f : ∆ → R is a co-ordinated hyperbolic ρ-convex functions on ∆. Then we have the
following Hermite-Hadamard type inequalities for fractional integrals,

f
(
a + b

2
,

c + d
2

)
H1(α, β)

≤
1
2

[(
Jαa+ f

(
b,

c + d
2

)
+ Jαb− f

(
a,

c + d
2

))
H2(β)

+ Jβc+ f
(
d,

a + b
2

)
+ Jβd− f

(
c,

a + b
2

)
H3(α)

]
≤

[
Jα,βa+,c+ f (b, d) + Jα,βa+,d− f (b, c) + Jα,βb−,c+

f (a, d) + Jα,βb−,d− f (a, c)
]

(3.1)

≤
1
4

[
sec h

[
ρ2 (d − c)

2

] (
Jαa+ f (b, c) + Jαa+ f (b, d) + Jαb− f (a, c) + Jαb− f (a, d)

)
H2(β)

+ sec h
[
ρ1 (b − a)

2

] (
Jβc+ f (a, d) + Jβc+ f (b, d) + Jβd− f (a, c) + Jβd− f (b, c)

)
H3(α)

]

≤
f (a, c) + f (b, c) + f (a, d) + f (b, d)

4
sec h

[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
H1(α, β)

where

H1(α, β) =
1

Γ (α) Γ (β)

b∫
a

d∫
c

cosh
[
ρ1

(
x −

a + b
2

)]
cosh

[
ρ2

(
y −

c + d
2

)]
×

[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]

dydx,

H2(β) =
1

Γ (β)

d∫
c

cosh
[
ρ2

(
y −

c + d
2

)] [
(d − y)β−1 + (y − c)β−1

]
dy

and

H3(α, β) =
1

Γ (α)

b∫
a

cosh
[
ρ1

(
x −

a + b
2

)] [
(b − x)α−1 + (x − a)α−1

]
dx.
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Proof. If we apply Theorem 6 for the symmetric function

p(x, y) =
1

Γ (α) Γ (β)

[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]
,

then we get the following inequality

f
(
a + b

2
,

c + d
2

)
H1(α, β)

≤
1
2


 1
Γ (α)

b∫
a

f
(
x,

c + d
2

) [
(b − x)α−1 + (x − a)α−1

]
dx

 H2(β)

+

 1
Γ (β)

d∫
c

f
(
a + b

2
, y

) [
(d − y)β−1 + (y − c)β−1

]
dy

 H3(α)


≤

1
Γ (α) Γ (β)

b∫
a

d∫
c

f (x, y)
[
(b − x)α−1(d − y)β−1 + (b − x)α−1(y − c)β−1

+ (x − a)α−1(d − y)β−1 + (x − a)α−1(y − c)β−1
]

dydx

≤
1
4

sec h
[
ρ2 (d − c)

2

]  1
Γ (α)

b∫
a

[
f (x, c) + f (x, d)

] [
(b − x)α−1 + (x − a)α−1

]
dx

 H2(β)

+ sec h
[
ρ1 (b − a)

2

]  1
Γ (β)

b∫
a

[
f (a, y) + f (b, y)

] [
(d − y)β−1 + (y − c)β−1

]
dx

 H3(α)


≤

f (a, c) + f (b, c) + f (a, d) + f (b, d)
4

sec h
[
ρ1 (b − a)

2

]
sec h

[
ρ2 (d − c)

2

]
H1(α, β).

This completes the proof. �

Remark 10. Under assumptions of Theorem 9 with α = β = 1, the inequalities (3.1) reduce to
inequalities (2.24) proved by Özçelik et. al in [23].

Remark 11. Under assumptions of Theorem 9 with ρ1 = ρ2 = 0, the inequalities (3.1) reduce to
inequalities proved by Sarikaya in [29, Theorem 4]

4. Conclusions

In this paper, we establish some Fejer type inequalities for co-ordinated hyperbolic ρ-convex
functions. By using these inequalities we present some inequalities for Riemann-Liouville fractional
integrals. In the future works, authors can prove similar inequalities for other fractional integrals.
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