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Abstract: In this paper, we consider the instability of standing waves for an inhomogeneous Gross-
Pitaevskii equation

iψt + ∆ψ − a2|x|2ψ + |x|−b|ψ|pψ = 0.

This equation arises in the description of nonlinear waves such as propagation of a laser beam in the
optical fiber. We firstly proved that there exists ω∗ > 0 such that for all ω > ω∗, the standing wave
ψ(t, x) = eiωtuω(x) is unstable. Then, we deduce that if ∂2

λS ω(uλω)|λ=1 ≤ 0, the ground state standing
wave eiωtuω(x) is strongly unstable by blow-up, where uλω(x) = λ

N
2 uω(λx) and S ω is the action. This

result is a complement to the partial result of Ardila and Dinh (Z. Angew. Math. Phys. 2020), where
the strong instability of standing waves has been studied under a different assumption.
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1. Introduction

In this paper, we consider the following inhomogeneous Gross-Pitaevskii equation{
iψt + ∆ψ − a2|x|2ψ + |x|−b|ψ|pψ = 0, (t, x) ∈ [0,T ∗) × RN ,

ψ(0, x) = ψ0(x),
(1.1)

where ψ : [0,T ∗) × RN → C is a complex valued function, ψ0 ∈ Σ, T ∗ ∈ (0,∞], b ∈ (0,min{2,N}),
p ∈ (0, 4−2b

N−2 ). Thus, the Cauchy problem (1.1) is local well-posedness in the energy space Σ, where Σ

is defined by

Σ :=
{

u ∈ L2, ∇u ∈ L2 and
∫
RN
|x|2|u(x)|2dx < ∞

}
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with the norm
‖u‖2Σ = ‖∇u‖2L2 + ‖u‖2L2 +

∫
RN
|x|2|u(x)|2dx.

When ω ∈ (−N,∞), we notice that

N
∫
RN
|u(x)|2dx = −

j=N∑
j=1

∫
RN

x j∂x j |u(x)|2dx ≤ 2
j=N∑
j=1

‖x ju‖L2‖∂x ju‖L2 ,

there exist positive constants C1(ω) and C2(ω) such that

C1(ω)‖u‖2Σ ≤ ‖∇u‖2L2 + ω‖u‖2L2 + a2
∫
RN
|x|2|u(x)|2dx ≤ C2(ω)‖u‖2Σ (1.2)

for all u ∈ Σ.
The inhomogeneous Gross-Pitaevskii equation (1.1) arises naturally in nonlinear optics for the

propagation of laser beams. (1.1) also appears in Bose-Einstein condensation, where the harmonic
potential |x|2 may model a confining magnetic potential. The nonlinearity |x|−b|ψ|pψ describes the
propagation of waves in the inhomogeneous medium, see [1–3] for the related physical backgrounds.

Recently, this type of equations has been studied extensively in [4–14]. Eq (1.1) enjoys a class
of special solutions, which are called standing waves, namely solutions of the form eiωtuω(x), where
ω ∈ R is a frequency and uω ∈ Σ is a nontrivial solution to the elliptic equation

− ∆uω + ωuω + a2|x|2uω − |x|−b|uω|puω = 0. (1.3)

Note that (1.3) can be written as S ′ω(uω) = 0, where

S ω(u) :=
1
2
‖∇u‖2L2 +

ω

2
‖u‖2L2 +

a2

2

∫
RN
|x|2|u(x)|2dx −

1
p + 2

∫
RN
|x|−b|u(x)|p+2dx, (1.4)

is the action functional. We also define the following functionals

Kω(u) := ∂λS ω(λu)|λ=1 = ‖∇u‖2L2 + ω‖u‖2L2 + a2
∫
RN
|x|2|u(x)|2dx −

∫
RN
|x|−b|u(x)|p+2dx, (1.5)

Q(u) := ∂λS ω(uλ)|λ=1 = ‖∇u‖2L2 − a2
∫
RN
|x|2|u(x)|2dx −

α

p + 2

∫
RN
|x|−b|u(x)|p+2dx, (1.6)

where α =
N p
2 + b and uλ(x) := λ

N
2 u(λx). The ground state for (1.3) is defined by

Gω = {uω ∈ Aω : S ω(uω) ≤ S ω(vω) f or all vω ∈ Aω} (1.7)

where
Aω = {vω ∈ Σ \ {0} : S ′ω(vω) = 0}

is the set of all nontrivial solutions for (1.3).
We firstly recall the definitions of stability and instability of standing waves, see [15].

Definition 1.1. Let ψ(t, x) = eiωtuω(x) be a standing wave solution of (1.1).
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1. The solution ψ(t, x) = eiωtuω(x) is said to be orbitally stable if, for any ε > 0, there exists δ > 0
such that for any initial data ψ0 satisfying ‖ψ0 − uω‖Σ < δ, then the corresponding solution ψ(t) of
(1.1) exists globally in time and satisfies

sup
t≥0

inf
θ∈R
‖ψ(t) − eiθuω‖Σ < ε.

2. The solution ψ(t, x) = eiωtuω(x) is said to be unstable if ψ(t, x) = eiωtuω(x) is not stable.
3. The solution ψ(t, x) = eiωtuω(x) is said to strongly unstable if for any ε > 0, there exists ψ0 ∈ Σ

such that ‖ψ0 − uω‖Σ < ε, and the corresponding solution ψ(t) of (1.1) blows up in finite time.

Next, we recall some known instability results for nonlinear Schrödinger equations. The strong
instability was first studied by Berestycki and Cazenave, see [15]. Later, Le Coz in [16] gave an
alternative, simple proof of the classical result of Berestycki and Cazenave. The key point is to establish
the finite time blow-up by using the variational characterization of ground states as minimizers of the
action functional and the virial identity. More precisely, based on the variational characterization of
ground states on the Pohozaev manifold N := {v ∈ H1, Q(v) = 0} or the Nehari manifold, ones can
obtain the key estimate Q(ψ(t)) ≤ 2(S ω(ψ0) − S ω(uω)), where uω is the ground state solution. Then, it
follows from the virial identity and the choice of initial data ψ0 that

d2

dt2

∫
RN
|x|2|ψ(t, x)|2dx = 8Q(ψ(t)) ≤ 16(S ω(ψ0) − S ω(uω)) < 0.

This implies that the solution ψ(t) blows up in a finite time. Thus, ones can prove the strong
instability of ground state standing waves, see, e.g., [15–33].

For the nonlinear Schrödinger equation with a harmonic potential, i.e., b = 0 in (1.1), by
constructing the cross-invariant manifolds of the evolution flow and defining the cross-invariant
variational problems, Zhang in [32] studied the sharp threshold of global existence and blow-up, and
proved the strong instability of standing waves. Recently, by using the idea of Zhang in [32], Ardila
and Dinh in [34] studied the strong instability of standing waves of (1.1). More precisely, when
4−2b

N < p < 4−2b
N−2 , defining the following variational problems

d(ω) = in f {S ω(v) : v ∈ Σ\{0}, Kω(v) = 0}. (1.8)

and
m(ω) := inf{S ω(u) : uω ∈ Σ\{0}, Q(u) = 0 and Kω(u) < 0},

Ardila and Dinh in [34] obtained some sharp thresholds of global existence and blow-up. Under the
assumption d(ω) ≤ m(ω), they proved that the standing wave eiωtuω(x) is strongly unstable. However,
this assumption is still vague. It is hard to determine for which ω, d(ω) ≤ m(ω) is true, see also Remark
5.1 in [32].

Motivated by this work, we will further study the strong instability of standing waves of (1.1) from
a different perspective. Let u ∈ Σ, we define

f (λ) :=S ω(uλ) =
λ2

2
‖∇u‖2L2 +

ω

2
‖u‖2L2

+
a2λ−2

2

∫
RN
|x|2|u(x)|2dx −

λα

p + 2

∫
RN
|x|−b|u(x)|p+2dx. (1.9)
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It is obvious that f (λ) → +∞, as λ → 0+. Thus, there is no maximum point of f (λ) on (0,∞). It is
hard to establish the variational characterization of ground states in the Pohozaev manifold N . On the
other hand, we define

f1(λ) :=S ω(λu) =
λ2

2
‖∇u‖2L2 +

ωλ2

2
‖u‖2L2

+
a2λ2

2

∫
RN
|x|2|u(x)|2dx −

λp+2

p + 2

∫
RN
|x|−b|u(x)|p+2dx.

It is obvious that equation f ′1(λ) = 0 has unique solution λ0 > 0, and f1(λ) has the unique maximum
point on (0,∞). Based on this fact, ones can easily obtain the variational characterization of ground
states in the Nehari manifold by using the compact embedding Σ ↪→ Lq with q ∈ [2, 2∗). But it is
difficult to obtain the key estimate Q(ψ(t)) ≤ 2(S ω(ψ0) − S ω(uω)).

Since there is no any maximum of function f (λ) on (0,∞), we assume that λ = 1 is the local
maximum point of f (λ), i.e., ∂2

λS ω(uλω)|λ=1 ≤ 0. In this assumption, we will study the strong instability
of standing waves of (1.1). Moreover, we obtain that there exists ω∗ > 0 such that for all ω > ω∗, the
standing wave ψ(t, x) = eiωtuω(x) is unstable.

Firstly, we establish the variational characterization of the ground states of (1.3). To this aim, we
recall the existence of minimizing problem (1.8) established by Ardila and Dinh in [34].

Lemma 1.2. Let a > 0, N ≥ 1, 0 < b < min{2,N}, 0 < p < 4−2b
N−2 , ω > −aN. Then d(ω) > 0

and d(ω) is attained by a function which is a solution to the elliptic equation (1.3). Moreover, every
minimizer is the form eiθu, where u ∈ Σ is a real-valued, positive and spherically symmetric function.

Since the embedding Σ ↪→ Lq with q ∈ [2, 2∗) is compact, this result can be easily proved by (1.2).
Based on this existence result, we can easily obtain the following variational characterization of the
ground states to (1.3). So we omit the proof.

Theorem 1.3. Let N ≥ 1, 0 < b < min{2,N}, ω > −aN, 0 < p < 4−2b
N−2 . Then uω ∈ Gω if and only if

uω solves the minimizing problem (1.8).

Based on this variational characterization of the ground states, we can obtain the key estimate
Q(ψ(t)) ≤ 2(S ω(ψ0) − S ω(uω)) under the assumption ∂2

λS ω(uλω)|λ=1 ≤ 0. Therefore, we can obtain the
following instability and strong instability of standing waves of (1.1).

Theorem 1.4. Let N ≥ 1, 0 < b < min{2,N}, 4−2b
N < p < 4−2b

N−2 . Assume that uω is the ground state
related to (1.3). Then, there existsω∗ > 0 such that for allω > ω∗, the standing wave ψ(t, x) = eiωtuω(x)
is unstable.

Theorem 1.5. Let N ≥ 1, 0 < b < min{2,N}, ω > 0, 4−2b
N < p < 4−2b

N−2 . Assume that uω is the ground
state related to (1.3) and ∂2

λS ω(uλω)|λ=1 ≤ 0. Then the standing wave ψ(t, x) = eiωtuω(x) is strongly
unstable by blow-up.

Combining this theorem and Lemma 3.5, we can easily obtain the following corollary.

Corollary 1.6. Let N ≥ 1, 0 < b < min{2,N}, ω > 0, 4−2b
N < p < 4−2b

N−2 . Assume that uω is the
ground state related to (1.3). Then, there exists ω∗ > 0 such that for any ω > ω∗, the standing wave
ψ(t, x) = eiωtuω(x) is strongly unstable by blow-up.
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Remark. Ardila and Dinh in [34] proved the standing wave eiωtuω(x) is strongly unstable under
the assumption d(ω) ≤ m(ω). However, it is hard to determine for which ω, d(ω) ≤ m(ω) is true,
see also Remark 5.1 in [32]. In this corollary, when ω is large, we prove that the standing wave
ψ(t, x) = eiωtuω(x) is strongly unstable by blow-up.

This paper is organized as follows: in Section 2, we will collect some preliminaries such as the local
well-posedness of (1.1), the virial identity to (1.1), Pohozaev’s identities related to (1.3). In section
3, we will prove the instability of the standing wave eiωtuω(x). In section 4, we will prove the strong
instability of the standing wave eiωtuω(x).

2. Preliminaries

In this section, we recall some useful results. Firstly, we recall the following local well-posedness
result for (1.1). By a similar argument as that in [15, Theorem 9.2.6], we can estabilish the following
local well-posedness result for (1.1).

Lemma 2.1. Let N ≥ 1, 0 < b < min{2,N}, 0 < p < 4−2b
N−2 , and ψ0 ∈ Σ. Then, there exists

T = T (‖ψ0‖Σ) such that (1.1) admits a unique solution ψ ∈ C([0,T ),Σ). Assume that [0,T ∗) is the
maximal time interval of solution ψ(t). If T ∗ < ∞, then ‖ψ(t)‖Σ → ∞ as t ↑ T ∗. Moreover, the solution
ψ(t) depends continuously on initial data ψ0 and satisfies the following mass and energy conservation
laws

M(ψ(t)) =

∫
RN
|ψ(t, x)|2dx = M(ψ0), (2.1)

E(ψ(t)) = E(ψ0), (2.2)

for all t ∈ [0,T ∗), where

E(ψ(t)) =
1
2

∫
RN
|∇ψ(t, x)|2dx +

a2

2

∫
RN
|x|2|ψ(t, x)|2dx −

1
p + 2

∫
RN
|x|−b|ψ(t, x)|p+2dx. (2.3)

In order to study the strong instability of standing waves, we need to prove the existence of blow-up
solutions. In order to study the strong instability of standing waves, we need to prove the existence of
blow-up solutions. Following the classical convexity method of Glassey, by some formal computations
which are made rigorously in [15]), we can obtain the following lemma.

Lemma 2.2. Let N ≥ 1, 0 < b < min{2,N}, 0 < p < 4−2b
N−2 . Assume that ψ0 ∈ Σ := {v ∈ H1 and |x|v ∈

L2} and ψ ∈ C([0,T ∗),Σ) is the corresponding solution of (1.1). Then, ψ(t) ∈ Σ for all t ∈ [0,T ∗) and
the function J(t) belongs to C2[0,T ∗), where J(t) =

∫
RN |x|2|ψ(t, x)|2dx. Furthermore, we have

d2

dt2

∫
RN
|x|2|ψ(t, x)|2dx = 16E(ψ(t)) +

4(4 − N p − 2b)
p + 2

∫
RN
|∇ψ|2dx − 16a2J(t) = 8Q(ψ(t)), (2.4)

for all t ∈ [0,T ∗), where Q(u) is defined by (1.6).

Next, we recall the following Pohozaev’s identities related to (1.3), see [34, Lemma 5.1].

Lemma 2.3. [34, Lemma 5.1] If u ∈ Σ and satisfies equation (1.3), then the following properties
hold:

‖∇u‖2L2 + ω‖u‖2L2 +

∫
RN

W(x)|u(x)|2dx −
∫
RN
|x|−b|u(x)|p+2dx = 0, (2.5)
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and

(N − 2)
2
‖∇u‖2L2 +

Nω
2
‖u‖2L2 +

N + 2
2

∫
RN

W(x)|u(x)|2dx −
N − b
p + 2

∫
RN
|x|−b|u(x)|p+2dx = 0. (2.6)

Lemma 2.4. [35, Theorem 1.2] Let 0 < p < 4−2b
N−2 and 0 < b < min{2,N}. Then, for all u ∈ H1,∫

RN
|x|−b|u(x)|p+2dx ≤ Copt‖∇u‖

N p+b
2

L2 ‖u‖
p+2− N p+2b

2
L2 , (2.7)

where the best constant Copt is given by

Copt =

(
N p + 2b

2(p + 2) − (N p + 2b)

) 4−(N p+2b)
4 2(p + 2)

(N p + 2b)‖Q‖p
L2

,

where Q is the ground state of the elliptic eqation

−∆Q + Q − |x|−b|Q|pQ = 0.

Moreover, the following Pohozaev’s identities hold true:

‖∇Q‖2L2 =
N p + 2b
2(p + 2)

∫
RN
|x|−b|Q|p+2dx =

N p + 2b
2(p + 2) − (N p + 2b)

‖Q‖2L2 . (2.8)

3. Non-linear instability

In this section, we will prove Theorem 1.4. Based on the variational characterization of the ground
states, we can obtain the following result.

Lemma 3.1. Let N ≥ 1, 0 < b < min{2,N}, ω > −aN, 4−2b
N < p < 4−2b

N−2 , uω be the ground state
related to (1.3). Assume that v ∈ Σ, and

∫
RN |x|−b|v(x)|p+2dx =

∫
RN |x|−b|uω(x)|p+2dx, then S ω(uω) ≤

S ω(v).

Proof. Firstly, we notice that S ω(v) can be written as

S ω(v) =
1
2

Kω(v) +
p

2(p + 2)

∫
RN
|x|−b|v(x)|p+2dx.

By the variational characterization of ground state uω, we have

d1 := inf
{

p
2(p + 2)

∫
RN
|x|−b|v(x)|p+2dx, v ∈ Σ\{0}, Kω(v) = 0

}
.

This implies that d1 = S (uω) =
p

2(p+2)

∫
RN |x|−b|uω(x)|p+2dx. We set

d2 := inf
{

p
2(p + 2)

∫
RN
|x|−b|v(x)|p+2dx, v ∈ Σ\{0}, Kω(v) ≤ 0

}
.
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Since it is clear that d2 ≤ d1, we show d1 ≤ d2. For any v ∈ Σ\{0} satisfying Kω(v) < 0, there exists
µ0 ∈ (0, 1) such that Kω(µ0v) = 0. Thus, we have

d1 ≤
p

2(p + 2)

∫
RN
|x|−b|µ0v(x)|p+2dx <

p
2(p + 2)

∫
RN
|x|−b|v(x)|p+2dx.

Hence, we have d1 ≤ d2.
Finally, we define

d3 := inf
{

S (v), v ∈ Σ\{0},
∫
RN
|x|−b|v(x)|p+2dx =

∫
RN
|x|−b|uω(x)|p+2dx

}
.

Since d3 ≤ S (uω), it suffices to prove d3 ≥ S (uω). By d1 = d2, for any v ∈ Σ\{0} satisfying∫
RN |x|−b|v(x)|p+2dx =

∫
RN |x|−b|uω(x)|p+2dx, we have Kω(v) ≥ 0. Thus, we have

S (v) ≥
p

2(p + 2)

∫
RN
|x|−b|v(x)|p+2dx =

p
2(p + 2)

∫
RN
|x|−b|uω(x)|p+2dx = S (uω).

Therefore, we obtain d3 ≥ S (uω). This complete the proof. �

In order to study the instability, for any uω ∈ Σ and ε > 0, we define

Uε(uω) := {v ∈ Σ : inf
θ∈R
‖v − eiθuω‖Σ < ε}.

Lemma 3.2. Let N ≥ 1, 0 < b < min{2,N}, ω > −aN, 4−2b
N < p < 4−2b

N−2 . Assume that uω ∈ Gω and
∂2
λS ω(uλω)|λ=1 < 0. Then there exist ε, δ > 0, and a mapping

λ : Uε(uω)→ (1 − ε, 1 + ε)

such that Kω(vλ(v)) = 0 for any v ∈ Uε(uω).

Proof. Let
F(v, λ) = Kω(vλ).

Since uω is a minimizer of S ω(v) constrained on the manifold N := {v ∈ Σ\{0}, Kω(v) = 0}, then

〈S ′′ω(uω)w,w〉 ≥ 0, f or 〈uω,w〉 = 0. (3.1)

Next, since
〈S ′ω(uω), η〉 = 0, f or all η ∈ Σ,

then
〈S ′′ω(uω)∂λuλω|λ=1, ∂λuλω|λ=1〉 = ∂2

λS ω(uλω)|λ=1 < 0. (3.2)

Combining (3.1) and (3.2), we have 〈∂λuλω|λ=1, uω〉 , 0 and so

∂λF(uω, 1) = ∂λKω(uλω)|λ=1 = 〈K′ω(uω), ∂λuλω|λ=1〉 , 0.

Thanks to ∂λF(uω, 1) = Kω(uω) = 0, applying the implicit function theorem, there exist ε, δ > 0, and a
mapping

λ : Uε(uω)→ (1 − ε, 1 + ε)

such that Kω(vλ(v)) = 0 for all v ∈ Uε(uω). This completes the proof. �
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Lemma 3.3. Let N ≥ 1, 0 < b < min{2,N}, ω > 0, 4−2b
N < p < 4−2b

N−2 . Assume that uω ∈ Gω and
∂2
λS ω(uλω)|λ=1 < 0. Then there exist ε0, δ0 > 0 such that, for any v ∈ Uε0(uω)

S ω(uω) ≤ S ω(v) + (λ(v) − 1)Q(v),

for some λ(v) ∈ (1 − δ0, 1 + δ0).

Proof. Since ∂2
λS ω(uλω)|λ=1 < 0 and ∂2

λS ω(vλ) is continuous in λ and v, we know that there exists ε0, δ0 >

0 such that ∂2
λS ω(vλ) < 0 for any λ ∈ (1−δ0, 1+δ0) and v ∈ Uε0(uω). Noticing that ∂λS ω(vλ)|λ=1 = Q(v),

applying the Taylor expansion for the function S ω(vλ) at λ = 1, we have

S ω(vλ) ≤ S ω(v) + (λ − 1)Q(v), λ ∈ (1 − δ0, 1 + δ0), v ∈ Uε0(uω). (3.3)

By Lemma 3.2, we choose ε0 < ε and δ0 < δ, then there exists λ(v) ∈ (1 − δ0, 1 + δ0) such that
Kω(vλ(v)) = 0 for all v ∈ Uε0(uω). Therefore, we have S ω(vλ(v)) ≥ S ω(uω). This, together with (3.3)
implies that

S ω(uω) ≤ S ω(v) + (λ(v) − 1)Q(v),

for some λ(v) ∈ (1 − δ0, 1 + δ0). �

Let uω ∈ Gω, we define

Cω := {v ∈ Uε0(uω); S ω(v) < S ω(uω), Q(v) < 0},

and
T (ψ0) = sup{T ; ψ(t) ∈ Uε0(uω), t ∈ [0,T )},

where ψ(t) is a solution of (1.1) with initial data ψ0. Then, we have the following lemma.

Lemma 3.4. Let N ≥ 1, 0 < b < min{2,N}, ω > −aN, 4−2b
N < p < 4−2b

N−2 . Assume that uω ∈ Gω and
∂2
λS ω(uλω)|λ=1 < 0. Then, for any ψ0 ∈ Cω, there exists δ2 = δ2(ψ0) > 0 such that Q(ψ(t)) ≤ −δ2 for all

t ∈ [0,T (ψ0)).

Proof. Let ψ0 ∈ Cω, and δ1 = S ω(uω) − S ω(ψ0) > 0. We deduce from Lemma 3.3 that

S ω(uω) ≤ S ω(ψ(t)) + (λ(ψ(t)) − 1)Q(ψ(t)) = S ω(ψ0) + (λ(ψ(t)) − 1)Q(ψ(t)),

which implies
0 < δ1 ≤ (λ(ψ(t)) − 1)Q(ψ(t)), 0 ≤ t < T (ψ0). (3.4)

Thus, Q(ψ(t)) , 0. Due to ψ0 ∈ Cω, then Q(ψ0) < 0. It follows from the continuity of Q(ψ(t)) that

Q(ψ(t)) < 0, f or 0 ≤ t < T (ψ0).

Thus, λ(ψ(t)) ∈ (1 − δ0, 1). Combining (3.4), we have

Q(ψ(t)) ≤
δ1

λ(ψ(t)) − 1
≤ −

δ1

δ0
, f or 0 ≤ t < T (ψ0).

Thus, Q(ψ(t)) ≤ δ2 with δ2 = − δ1
δ0

, for 0 ≤ t < T (ψ0). �
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Lemma 3.5. Let N ≥ 1, 0 < b < min{2,N}, ω > −aN, 4−2b
N < p < 4−2b

N−2 . Assume that uω ∈ Gω.
Then, there exists ω∗ > 0 such that ∂2

λS ω(uλω)|λ=1 ≤ 0 for all ω > ω∗.

Proof. Let uω ∈ Gω, f (λ) be defined by (1.9), it follows from Lemma 2.3 that Q(uω) = 0, i.e., f ′(1) = 0.
We consequently obtain

f ′′(1) = 4a2
∫
RN
|x|2|uω(x)|2dx −

α(α − 2)
p + 2

∫
RN
|x|−b|uω(x)|p+2dx.

Thus, ∂2
λS ω(uλω)|λ=1 ≤ 0 if and only if

a2
∫
RN |x|2|uω(x)|2dx∫

RN |x|−b|uω(x)|p+2dx
≤
α(α − 2)
4(p + 2)

.

So it is sufficient to prove that

lim
ω→∞

a2
∫
RN |x|2|uω(x)|2dx∫

RN |x|−b|uω(x)|p+2dx
= 0.

Let uω(x) = ω
2−b
2p ũω(

√
ωx), then ũω satisfies

−∆ũω + ũω + a2ω−2|x|2ũω − |x|−b|ũω|pũω = 0.

Since
a2

∫
RN |x|2|uω(x)|2dx∫

RN |x|−b|uω(x)|p+2dx
= ω−2

a2
∫
RN |x|2|ũω(x)|2dx∫

RN |x|−b|ũω(x)|p+2dx
,

it is sufficient to prove that

lim
ω→∞

ω−2
a2

∫
RN |x|2|ũω(x)|2dx∫

RN |x|−b|ũω(x)|p+2dx
= 0.

Let V ∈ H1 \ {0} be a ground state solution to the elliptic problem

−∆V + V − |x|−b|V |pV = 0,

then
S 0(V) = inf{S 0(v), v ∈ H1 \ {0}, K̃0(v) = 0},

where
S 0(v) =

1
2
‖∇v‖2L2 +

1
2
‖v‖2L2 −

1
p + 2

∫
RN
|x|−b|v(x)|p+2dx,

and
K̃0(v) = ‖∇v‖2L2 + ‖v‖2L2 −

∫
RN
|x|−b|v(x)|p+2dx. (3.5)

Then, by a similar argument as that in Lemma 3.1, we have∫
RN
|x|−b|V(x)|p+2dx = inf

{∫
RN
|x|−b|v(x)|p+2dx, v ∈ H1 \ {0}, K̃0(v) ≤ 0

}
, (3.6)
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and ∫
RN
|x|−b|ũω(x)|p+2dx = inf

{∫
RN
|x|−b|v(x)|p+2dx, v ∈ Σ \ {0}, K̃ω(v) ≤ 0

}
, (3.7)

where
K̃ω(v) = ‖∇v‖2L2 + ‖v‖2L2 + ω−2‖xv‖2L2 −

∫
RN
|x|−b|v(x)|p+2dx.

In addition, we infer from K̃0(V) = 0 that for λ > 1

K̃ω(λV) = λ2
(
(1 − λp)

∫
RN
|x|−b|V(x)|p+2dx + ω−2‖V‖2L2

)
.

Then, for any λ > 1, there exists ω(λ) such that K̃ω(λV) < 0. This and (3.7) imply that∫
RN
|x|−b|ũω(x)|p+2dx ≤ λp+2

∫
RN
|x|−b|V(x)|p+2dx. (3.8)

On the other hand, we deduce from K̃ω(ũω) = 0 that

K̃0(λũω) = λ2
(
(1 − λp)

∫
RN
|x|−b|ũω(x)|p+2dx − ω−2‖xũω‖2L2

)
.

Then, for any λ > 1, K̃0(λũω) < 0. We consequently deduce from (3.6) and (3.8) that for any ω > ω(λ),

λ−(p+2)
∫
RN
|x|−b|ũω(x)|p+2dx ≤

∫
RN
|x|−b|V(x)|p+2dx ≤ λp+2

∫
RN
|x|−b|ũω(x)|p+2dx.

This implies

lim
ω→∞

∫
RN
|x|−b|ũω(x)|p+2dx =

∫
RN
|x|−b|V(x)|p+2dx. (3.9)

Notice that
K̃0(λũω) = λ2‖∇ũω‖2L2 + λ2‖ũω‖2L2 − λ

p+2
∫
RN
|x|−b|ũω(x)|p+2dx,

there exists λ(ω) > 0 such that K̃0(λ(ω)ũω) = 0. This and (3.6) yield that∫
RN
|x|−b|V(x)|p+2dx ≤ λ(ω)p+2

∫
RN
|x|−b|ũω(x)|p+2dx.

This implies that lim infω→∞ λ(ω) ≥ 1 and

lim inf
ω→∞

K̃0(ũω) = lim inf
ω→∞

(λ(ω)p − 1)
∫
RN
|x|−b|ũω(x)|p+2dx ≥ 0. (3.10)

On the other hand, we deduce from K̃ω(ũω) = 0 that K̃0(ũω) < 0. This implies that

lim sup
ω→∞

K̃0(ũω) ≤ 0.

Combining this and (3.10), it follows that

0 ≤ lim inf
ω→∞

K̃0(ũω) ≤ lim sup
ω→∞

K̃0(ũω) ≤ 0.
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This implies that limω→∞ K̃0(ũω) = 0. We consequently obtain that

ω−2‖xũω‖2L2 = −K̃0(ũω) + K̃ω(ũω) = −K̃0(ũω)→ 0,

as ω→ ∞. Thus, we see from (3.9) that

lim
ω→∞

ω−2
a2

∫
RN |x|2|ũω(x)|2dx∫

RN |x|−b|ũω(x)|p+2dx
= 0.

This completes the proof. �

Proof of Theorem 1.4. Let f (λ) be defined by (1.9), then

f ′′(λ) = ‖∇uω‖2L2 + 3λ−4a2
∫
RN
|x|2|uω(x)|2dx −

α(α − 1)λα−2

p + 2

∫
RN
|x|−b|uω(x)|p+2dx

≤ f ′′(1) = ∂2
λS ω(uλω)|λ=1 < 0,

for all λ ≥ 1. This, together with Lemma 2.3 implies that

Q(uλω) = λ f ′(λ) < f ′(1) = Q(uω) = 0,

and
S ω(uλω) < S ω(uω),

for all λ > 1. On the other hand, it follows from Brezis-Lieb’s lemma that uλω → uω as λ → 1. Thus,
for any ε > 0, there exists λ0 > 1 such that ‖uλ0

ω − uω‖Σ < ε.
Next, let ψ0 = uλ0

ω , then ψ0 ∈ Uε(uω), S ω(ψ0) < S ω(uω) and Q(ψ0) < 0. Thus, ψ0 ∈ Cω and there
exists δ2 = δ2(ψ0) > 0 such that Q(ψ(t)) ≤ −δ2 for all t ∈ [0,T (ψ0)). Then, we deduce from Lemma
2.2 that

J′′(t) = 8Q(ψ(t)) ≤ −8δ2 < 0,

for all t ∈ [0,T (ψ0)). If eiωtuω is orbitally stable, then T (ψ0) = +∞ and Q(ψ(t)) ≤ −δ2 for all t ∈ [0,∞).
This implies that J(t) becomes negative for long time. This is an contradiction. Moreover, applying
Lemma 3.5, there exists ω∗ > 0 such that ∂2

λS ω(uλω)|λ=1 < 0 for all ω > ω∗. Thus, when ω > ω∗, the
standing wave eiωtuω is unstable.

4. Strong instability

In this section, we will prove Theorem 1.5. To this end, we firstly establish the following key
estimate.

Lemma 4.1. Let N ≥ 1, 0 < b < min{2,N}, ω > 0, 4−2b
N < p < 4−2b

N−2 . Assume that uω ∈ Gω and
∂2
λS ω(uλω)|λ=1 ≤ 0. Suppose further that v ∈ Σ\{0} such that

‖v‖L2 = ‖uω‖L2 , Kω(v) ≤ 0, Q(v) ≤ 0.

Then it holds that
Q(v) ≤ 2(S ω(v) − S ω(u)). (4.1)
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Remark. It is easy to see from Lemma 4.1 that for uω ∈ Gω satisfying ∂2
λS ω(uλω)|λ=1 ≤ 0,

{v ∈ Σ\{0} : ‖v‖L2 = ‖uω‖L2 , S ω(v) < S ω(uω), Kω(v) < 0, Q(v) = 0} = ∅, (4.2)

Indeed, if there exists v ∈ Σ\{0} satisfying ‖v‖L2 = ‖uω‖L2 , S ω(v) < S ω(uω), Kω(v) < 0 and Q(v) = 0,
then by this lemma,

0 = Q(v) ≤ 2(S ω(v) − S ω(uω)) < 0

which is a contradiction.

Proof. If Kω(v) = 0, we infer from Theorem 1.3 and Q(v) < 0 that

S ω(uω) ≤ S ω(v) ≤ S ω(v) −
1
2

Q(v),

which is the desired estimate (4.1).
When Kω(v) < 0, we notice that

Kω(vλ) := λ2‖∇v‖2L2 + ω‖v‖2L2 + λ−2a2
∫
RN
|x|2|v(x)|2dx − λα

∫
RN
|x|−b|v(x)|p+2dx.

Since limλ→0 Kω(vλ) = ω‖v‖2L2 > 0 and Kω(v) < 0, there exists λ0 ∈ (0, 1) such that Kω(vλ0) = 0.
Applying Theorem 1.3, it follows that

p
2(p + 2)

∫
RN
|x|−b|uω(x)|p+2dx = S ω(uω) ≤ S ω(vλ0)

=
p

2(p + 2)

∫
RN
|x|−b|vλ0(x)|p+2dx =

pλα0
2(p + 2)

∫
RN
|x|−b|v(x)|p+2dx.

When
∫
RN |x|2|v(x)|2dx ≥

∫
RN |x|2|uω(x)|2dx, it follows from Q(uω) = 0 that

S ω(uω) = S ω(u) −
1
2

Q(uω)

=
ω

2
‖uω‖2L2 + a2

∫
RN
|x|2|uω(x)|2dx +

α − 2
2(p + 2)

∫
RN
|x|−b|uω(x)|p+2dx

≤
ω

2
‖v‖2L2 + a2

∫
RN
|x|2|v(x)|2dx +

α − 2
2(p + 2)

∫
RN
|x|−b|v(x)|p+2dx

= S ω(v) −
1
2

Q(v),

which is the desired estimate (4.1).
When

∫
RN |x|2|v(x)|2dx <

∫
RN |x|2|uω(x)|2dx, we define

f1(λ) : = S ω(vλ) −
λ2

2
Q(v)

=
ω

2
‖v‖2L2 +

a2(λ−2 + λ2)
2

∫
RN
|x|2|v(x)|2dx +

αλ2 − 2λα

2(p + 2)

∫
RN
|x|−b|v(x)|p+2dx.
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If f1(λ0) ≤ f1(1), then we deduce from Theorem 1.3 and Q(v) ≤ 0 that

S ω(uω) ≤ S ω(vλ0) ≤ S ω(vλ0) −
λ2

0

2
Q(v) ≤ S ω(v) −

1
2

Q(v),

which is the desired estimate (4.1).
In what follows, we will prove f1(λ0) ≤ f1(1), which is equivalent to

a2
∫
RN
|x|2|v(x)|2dx ≤

α − 2 − αλ2
0 + 2λα0

(p + 2)(λ−2
0 + λ2

0 − 2)

∫
RN
|x|−b|v(x)|p+2dx. (4.3)

In views of (1.9), the condition ∂2
λS ω(uλ)|λ=1 ≤ 0 is equivalent to

‖∇uω‖2L2 + 3a2
∫
RN
|x|2|uω(x)|2dx −

α(α − 1)
p + 2

∫
RN
|x|−b|uω(x)|p+2dx ≤ 0. (4.4)

Combining (4.4) and Q(uω) = 0, we can obtain that

4a2
∫
RN
|x|2|v(x)|2dx < 4a2

∫
RN
|x|2|uω(x)|2dx ≤

α2 − 2α
p + 2

∫
RN
|x|−b|uω(x)|p+2dx

≤
α2 − 2α

p + 2
λα0

∫
RN
|x|−b|v(x)|p+2dx.

This, together with (4.3), it suffices to show that

(α2 − 2α)λα0
4(p + 2)

≤
α − 2 − αλ2

0 + 2λα0
(p + 2)(λ−2

0 + λ2
0 − 2)

. (4.5)

Let α = 2β, then (4.5) is equivalent to

λ
2β
0 − βλ

2
0 + β − 1 ≥

(β2 − β)
2

(λ0 − λ
−1
0 )2λ

2β+2
0 .

Let
h(λ) := λβ − βλ + β − 1 −

1
2

(β2 − β)(λ − 1)2λβ−1, λ > 0.

From the Taylor expansion of λβ at λ = 1, there exists ξ ∈ (λ2
0, 1) such that

h(λ2
0) =

(β2 − β)
2

(λ2
0 − 1)2(ξβ−2 − λ

2β−2
0 ).

Due to β > 1 and ξ ∈ (λ2
0, 1), it follows that

λ
2β−2
0 < ξβ−1 < ξβ−2.

Thus, we have h(λ0) > 0. This implies that (4.5) holds. This completes the proof. �

Based on this lemma, we define an invariant set Bω under the flow of (1.1).

Bω := {v ∈ Σ\{0}; S ω(v) < S ω(uω), ‖v‖L2 = ‖uω‖L2 , Kω(v) < 0, Q(v) < 0}.
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Lemma 4.2. Let N ≥ 1, 0 < b < min{2,N}, ω > 0, 4−2b
N < p < 4−2b

N−2 . Assume that uω ∈ Gω and
∂2
λS ω(uλω)|λ=1 ≤ 0. Then, the set Bω is invariant under the flow of (1.1), that is, if ψ0 ∈ Bω, then the

solution ψ(t) to (1.1) with initial data ψ0 belongs to Bω.

Proof. Let ψ0 ∈ Bω, it follows from Lemma 2.1 that there exists a unique solution ψ ∈ C([0,T ∗),Σ). By
the conservations of mass and energy, we have S ω(ψ(t)) = S ω(ψ0) < S ω(uω) and ‖ψ(t)‖L2 = ‖ψ0‖L2 =

‖uω‖L2 for any t ∈ [0,T ∗). In addition, by the continuity of the function t 7→ Kω(ψ(t)) and Theorem
1.3, if there exists t0 ∈ [0,T ∗) such that Kω(ψ(t0)) = 0, then S ω(uω) ≤ S ω(ψ(t0)), which contradicts
with S ω(uω) > S ω(ψ(t)) for all t ∈ [0,T ∗). Therefore, the solution ψ(t) satisfies Kω(ψ(t)) < 0 for all
t ∈ [0,T ∗).

Finally, we prove that if Q(ψ0) < 0, then Q(ψ(t)) < 0 for all t ∈ [0,T ∗). Let us prove this by
contradiction. If not, there exists t0 ∈ [0,T ∗) such that Q(ψ(t0)) = 0. Applying Lemma 4.1, we have

S ω(uω) ≤ S ω(ψ(t0)) −
1
4

Q(ψ(t0)) = S ω(ψ(t0)), (4.6)

which is a contradiction with S ω(uω) > S ω(ψ(t)) for all t ∈ [0,T ∗). This ends the proof. �

Lemma 4.3. Let N ≥ 1, 0 < b < min{2,N}, ω > 0, 4−2b
N < p < 4−2b

N−2 . Assume that uω ∈ Gω and
∂2
λS ω(uλω)|λ=1 ≤ 0. Then, uλω ∈ Bω for any λ > 1.

Proof. Firstly, it easily follows that
‖uλω‖L2 = ‖uω‖L2 .

Next, we define

g(λ) := Kω(uλω) = λ2‖∇uω‖2L2 + ω‖uω‖2L2 + λ−2a2
∫
RN
|x|2|uω(x)|2dx − λα

∫
RN
|x|−b|uω(x)|p+2dx.

Thus, it follows from the assumption

∂2
λS ω(uλω)|λ=1 = 2‖∇u‖2L2 + 3a2

∫
RN
|x|2|uω(x)|2dx −

α(α − 1)
p + 2

∫
RN
|x|−b|uω(x)|p+2dx ≤ 0

that

g′′(λ) = 2‖∇uω‖2L2 + 6λ−4a2
∫
RN
|x|2|uω(x)|2dx − α(α − 1)λα−2

∫
RN
|x|−b|uω(x)|p+2dx < 0

for any λ ≥ 1. This, together with Pohozaev identity related to (1.3), implies that

g′(λ) < g′(1) = 2‖∇uω‖2L2 − 2a2
∫
RN
|x|2|uω(x)|2dx − α

∫
RN
|x|−b|uω(x)|p+2dx < 0.

We consequently obtain that Kω(uλω) < 0 for any λ ≥ 1.
Let f (λ) be defined by (1.9), then

f ′′(λ) = ‖∇uω‖2L2 + 3λ−4a2
∫
RN
|x|2|uω(x)|2dx −

α(α − 1)λα−2

p + 2

∫
RN
|x|−b|uω(x)|p+2dx

≤ f ′′(1) = ∂2
λS ω(uλω)|λ=1 ≤ 0,
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for all λ ≥ 1. This, together with Pohozaev identity related to (1.3), implies that

Q(uλω)
λ

= f ′(λ) < f ′(1) = Q(uω) = 0,

and
S ω(uλω) < S ω(uω),

for any λ > 1. Thus, uλ ∈ Bω for any λ > 1. This finishes the proof. �

Proof of Theorem 1.5. Let ω > 0 and uω be the ground state related to (1.3). By Lemma 4.3, we
have uλω ∈ Bω. Let ψλ ∈ C([0,T ∗),Σ) be the solution of (1.1) with the initial data uλω, then ψλ(t) ∈ Bω
for all t ∈ [0,T ∗). Thus, by a classical argument, it follows that ψλ ∈ Σ and

d2

dt2 ‖xψ
λ(t)‖2L2 = 8Q(ψλ(t)) ≤ 16(S (uλω) − S (uω)) < 0,

for all t ∈ [0,T ∗). This implies that the solution ψλ of (1.1) with the initial data uλω blows up in finite
time. Hence, the result follows, since uλω → uω as λ ↓ 1.

5. Conclusions

In this paper, we consider the instability of standing waves for an inhomogeneous Gross-Pitaevskii
equation (1.1). We firstly proved that there exists ω∗ > 0 such that for all ω > ω∗, the ground state
standing wave ψ(t, x) = eiωtuω(x) is unstable. Then, we deduce that if ∂2

λS ω(uλω)|λ=1 ≤ 0, the ground
state standing wave eiωtuω(x) is strongly unstable by blow-up. This result is a complement to the partial
result of Ardila and Dinh in [34].
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