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Abstract: Let G = (V, E) be a connected graph of order n. S ⊆ V is an edge metric generator of G if
any pair of edges in E can be distinguished by some element of S . The edge metric dimension edim(G)
of a graph G is the least size of an edge metric generator of G. In this paper, we give the characterization
of all connected bipartite graphs with edim = n − 2, which partially answers an open problem of
Zubrilina (2018). Furthermore, we also give a sufficient and necessary condition for edim(G) = n − 2,
where G is a graph with maximum degree n − 1. In addition, the relationship between the edge metric
dimension and the clique number of a graph G is investigated by construction.
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1. Introduction

Throughout this paper, all graphs considered are finite, simple and undirected. We follow the
notation and terminology of Bondy [1] and Diestel [2]. A generator of a metric space is a set S of
points in the space with the property that every point of the space is uniquely determined by its
distances from the elements of S . Nowadays there exist some different kinds of metric generators in
graphs (or networks), each one of them studied in theoretical and applied ways, according to its
popularity or to its applications. Nevertheless, there exist quite a lot of other points of view which are
still not completely taken into account while describing a graph throughout these metric generators.
Inspired by this, Kelenc et al. [4] proposed the concept of edge metric generator of a graph. Since
then, there are some results about it, the details refer to [3, 5, 7].

Let G = (V, E) be a graph. For every vertex v ∈ V , the open neighborhood of v is N(v) = {u ∈
V : uv ∈ E} and the closed neighborhood of v is N[v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is
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defined as dG(v) = |N(v)|. The minimum and maximum degree of a graph G are denoted by δ = δ(G)
and ∆ = ∆(G), respectively. The distance between the vertex w ∈ V and the subgraph H ⊆ G is defined
as dG(w, H) = min{dG(w, v)|v ∈ V(H)}. Particularly, when H is an edge e = uv ∈ E, then dG(w, e) =

min{dG(w, u), dG(w, v)}. A vertex w ∈ V distinguishes two edges e1, e2 ∈ E if dG(e1,w) , dG(e2,w). We
say S ⊆ V(G) an edge metric generator of G if every pair of edges in E can be distinguished by some
element of S . The edge metric dimension edim(G) of G is the smallest cardinality of an edge metric
generator in G. An edge metric basis for G is an edge metric generator of G with cardinality edim(G).
For any connected graph G of order n, 1 ≤ edim(G) ≤ n − 1 are natural bounds on the edge metric
dimension. In [4], Kelenc et al. proved that edim(G) = n − 2 when G is a wheel graph of order n ≥ 6
or a fan graph of order n ≥ 5. And further, they also gave the lower bound of edge metric dimension
edim(G) ≥ n − 2 for any connected graph G with ∆ = n − 1, where n is the order of G. And there is
no more results for the graph with edge metric dimension of a given other value. So it is interesting to
characterize graphs with large edge metric dimension such as edim = n−1 and edim = n−2. Recently,
Zubrilina [6] classified the graphs on n vertices for which edim(G) = n − 1. They also proposed an
open problem as follows.

Problem 1. For which graphs G of order n is edim(G) = n − 2?
In this paper, we consider the first step for this problem on connected bipartite graphs. And then we

classify the class of graphs of ∆ = n − 1 with edim = n − 2.
In [8], Zhu et al. constructed connected graphs G of order n such that edim(G) = n − 2 and

edim(G − e) = n − 1, where e ∈ E(G). This implies that for any subgraph H ⊆ G, the different of
the edge metric dimension between the subgraph H and G is not clear. Therefore, we first investigate
the relation between edim(H) and edim(G) for any induced subgraph H ⊆ G. And further, we also
consider the relation between edim(G) and clique number ω(G) of a graph G.

To end this section, we list some known results which will be used in the sequel.

Proposition 1.1. [4] For any complete bipartite graph Kr,t different from K1,1, edim(Kr,t) = dim(Kr,t) =

r + t − 2.

Proposition 1.2. [4] Let G be a connected graph of order n. If there is a vertex v ∈ V(G) of degree
n − 1, then either edim(G) = n − 1 or edim(G) = n − 2.

Proposition 1.3. [4] Let G be a connected graph of order n. If there are two vertices u, v ∈ V(G) of
degree n − 1, then edim(G) = n − 1.

2. Graphs with edim=n−2

Given two graphs G and H, the join, denoted by G ∨ H, is the graph obtained from G and H
by adding all the possible edges between a vertex of G and a vertex of H. The wheel graph W1,n is
isomorphic to Cn∨K1, the fan graph F1,n is isomorphic to Pn∨K1 and the star graph S 1,n is isomorphic
to Kn ∨ K1. The vertex of degree n in the star graph S 1,n is denoted as its center vertex.

Proposition 2.1. Let W1,n−1 = Cn−1 ∨ K1 be a wheel graph and G be a graph obtained from W1,n−1 by
deleting any edges on the cycle Cn−1, where n ≥ 6. Then edim(G) = n − 2.

Proof. Suppose n ≥ 6 and V(W1,n−1) = {x, v1, v2, . . . , vn−2, vn−1}, where the vertex x has degree n − 1
and the vertices v1, v2, . . . , vn−2, vn−1 induce the cycle Cn−1.
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Let S be an edge metric generator of G. If there exist vi, v j ∈ (V(Cn−1) \ S ), then the edges xvi and
xv j can not be distinguished by any vertex w ∈ V(G) \ {vi, v j} because dG(xvi,w) = dG(xv j,w) = 1 or
dG(xvi,w) = dG(xv j,w) = 0. So |V(Cn−1) \ S | ≤ 1 and then |S | ≥ n − 2. From the arbitrariness of S , we
have edim(G) ≥ n − 2.

Next, it suffices to show that edim(G) ≤ n − 2. Set S 0 = {v1, v2, . . . , vn−2}. We show that S 0

is an edge metric generator of G. Let e = uw and f = yz be two non-adjacent edges in G. Then
|S 0 ∩ {u,w, y, z}| ≥ 2. Without loss of generality, we assume that u ∈ S 0. Since dG(e, u) = 0, dG( f , u) ≥
1, then u distinguishes edges e and f . Let e′ = tu1 and f ′ = tu2 be two adjacent edges in G. If u1 ∈ S 0

(or u2 ∈ S 0), then e′ and f ′ can be distinguished by u1 (or u2). Otherwise, we have {u1, u2} = {x, vn−1}

and t ∈ {v1, vn−2}. First, we consider the case t = v1. Since n ≥ 6, then S 0 \ {x, vn−1, vn−2, v1, v2} , ∅.
It is easy to verify that {dG(e′, p), dG( f ′, p)} = {1, 2} for any vertex p ∈ (S 0 \ {x, vn−1, vn−2, v1, v2}),
which implies that p distinguishes edges e′ and f ′. Then we consider the case t = vn−2. Since n ≥ 5,
then S 0 \ {x, vn−1, vn−2, vn−3, v1} , ∅. Similarly, we have {dG(e′, q), dG( f ′, q)} = {1, 2} for any vertex
q ∈ (S 0 \ {x, vn−1, vn−2, vn−3, v1}) and then q distinguishes edges e′ and f ′. From the arbitrariness of e, f
and e′, f ′, we have that S 0 is an edge metric generator of G and edim(G) ≤ n − 2, as desired. �

In [4], Kelenc et al. compute the edge metric dimension for wheel graphs and fan graphs, which
implies that the wheel graphs of order n ≥ 6 and the fan graphs of order n ≥ 5 have edge metric
dimension edim = n − 2. Actually, Proposition 2.1 generalized these results.

As is known to us, complete bipartite graph with n vertices has edge metric dimension n − 2. In the
following theorem, we characterize all connected bipartite graphs with edge metric dimension n − 2,
which partially answers the open problem 1.

Theorem 2.1. Let G be a connected bipartite graph of order n ≥ 3. Then edim(G) = n − 2 if and only
if G = Kr,t, i.e., G is a complete bipartite graph.

Proof. Let G = G[U,V] be a connected bipartite graph with U = {u1, u2, . . . , ur} and
V = {v1, v2, . . . , vt}. If G = Kr,t is a complete bipartite graph, then edim(G) = n − 2 by Proposition 1.1.

Conversely, without loss of generality, we assume that r ≥ t. If t = 1, then G = K1,n−1 = S 1,n−1

is a star graph and edim(G) = n − 2. Now on we assume t ≥ 2. Denote by H a maximum complete
bipartite induced subgraph of G. Obviously, |E(H)| ≥ 2 since G is connected. Let HU = V(H) ∩ U =

{up+1, up+2, . . . , ur} and HV = V(H) ∩ V = {vq+1, vq+2, . . . , vt} where p, q are integers and 0 ≤ p ≤ r − 1,
0 ≤ q ≤ t − 1. Next it suffices to show that G has an edge metric generator of size n − 3 if G is not
complete bipartite, which implies that H , G and p + q ≥ 1.

If min{|HU |, |HV |} ≥ 2, then set S = V(G) \ {up+1, vq+1, x} such that there exists one vertex h ∈
HV \ {vq+1}, hx < E(G) and x ∈ V(G) \ (HU ∪HV). On one hand, V(G) \ (HU ∪HV) , ∅ since p + q ≥ 1.
Without loss of generality, set x = u1. On the other hand, there exists some vertex h ∈ HV such that
hx < E(G) because H is a maximum complete bipartite induced subgraph of G. So an appropriate vq+1

can be chosen after relabelling the vertices in HV if necessary. Next we will prove that S is an edge
metric generator of G. For any non-adjacent edges e1, e2 ∈ E(G), we have either e1 or e2 has one end
vertex y ∈ S and then dG(e1, y) = 0, dG(e2, y) ≥ 1 or dG(e2, y) = 0, dG(e1, y) ≥ 1. So y distinguishes
edges e1 and e2. For any adjacent edges e1 = zw, e2 = zg of G, if w ∈ S (or g ∈ S ), then e1, e2 can be
distinguished by w (or g). Otherwise, we have {w, g} = {u1, up+1} and z ∈ V \ {h}. Since hup+1 ∈ E(G)
and hx = hu1 < E(G), then {dG(e1, h), dG(e2, h)} = {1, 2} and h distinguishes edges e1 and e2. Therefore,
S is an edge metric generator of G and edim(G) ≤ n − 3.
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If min{|HU |, |HV |} = 1, then without loss of generality, we assume that HV = {vt}. Take S =

V(G) \ {up+1, vt, x} such that there exists one vertex h ∈ HU \ {up+1}, hx < E(G) and x ∈ V \ HV . On
one hand, V \ HV , ∅ since r ≥ t ≥ 2. On the other hand, there exists one vertex h ∈ HU such that
hx < E(G) because H is a maximum complete bipartite induced subgraph of G. So an appropriate
up+1 can be chosen after relabelling the vertices in HU if necessary. With a similar analysis as in
the case min{|HU |, |HV |} ≥ 2, we also have S is an edge metric generator of G, which implies that
edim(G) ≤ n − 3. �

On one hand, Theorem 2.1 characterizes all connected bipartite graphs with edge metric dimension
n − 2. On the other hand, Proposition 2.1 implies that there are connected non-bipartite graphs with
edge metric dimension n−2. So we will try to give a characterization of general connected graphs with
edge metric dimension n − 2.

Theorem 2.2. Let G be a connected graph of order n ≥ 3. If H = H[U,V] is a complete bipartite
spanning subgraph of G such that |U | = s, |V | = t, s, t ≥ 1, then edim(G) = n − 2 if and only if there is
a vertex u ∈ U such that for any x ∈ N(u) ∩ U, U \ (N(x) ∪ N(u)) , ∅ if N(u) ∩ U , ∅ and there is a
vertex v ∈ V such that for any y ∈ N(v) ∩ V, V \ (N(y) ∪ N(v)) , ∅ if N(v) ∩ V , ∅.

Proof. Let H = H[U,V] be a complete bipartite spanning subgraph of G such that |U | = s, |V | = t,
s, t ≥ 1. Obviously, s + t = n.

First, we show that edim(G) ≥ n − 2. Let S be an edge metric generator of G. Suppose that there
are two vertices u1, u2 ∈ U\S . For each vertex v ∈ V , we have dG(u1v,w) = dG(u2v,w) = 1 for any
vertex of w ∈ V(G)\{u1, u2, v}, which contradicts to that S is an edge metric generator of G. Therefore,
|U\S | ≤ 1 and |V\S | ≤ 1. Thus |S | ≥ n − 2 and then edim(G) ≥ n − 2.

Next, we show that edim(G) ≤ n − 2 if and only if there is a vertex u ∈ U such that for any
x ∈ N(u) ∩ U, U \ (N(x) ∪ N(u)) , ∅ if N(u) ∩ U , ∅ and there is a vertex v ∈ V such that for any
y ∈ N(v) ∩ V , V \ (N(y) ∪ N(v)) , ∅ if N(v) ∩ V , ∅.

Without loss of generality, we assume that s ≥ t. For the case t = 1, we have s = n − t ≥ 2.
Set V = {v0}. If there is a vertex u ∈ U such that for any x ∈ N(u) ∩ U, U \ (N(x) ∪ N(u)) , ∅
if N(u) ∩ U , ∅, then S = V(G) \ {u, v0} is an edge metric generator of G. On one hand, any pair
of non-adjacent edges can be distinguished by some element of S since |S | = n − 2. On the other
hand, we consider two adjacent edges e1 = zw1 and e2 = zw2. If S ∩ {w1,w2} , ∅, then e1, e2 can
be distinguished by any element of S ∩ {w1,w2}. If S ∩ {w1,w2} = ∅, then {w1,w2} = {u, v0} and
{e1, e2} = {zu, zv0}. Obviously, z ∈ N(u) ∩ U since V = {v0}. For any element p ∈ U \ (N(z) ∪ N(u)),
we have dG(zv0, p) = 1, dG(zu, p) = 2 and then each vertex in U \ (N(z) ∪ N(u)) can distinguish edges
e1, e2. Thus S = V(G) \ {u, v0} is an edge metric generator of G and then edim(G) ≤ n − 2. Conversely,
if edim(G) ≤ n − 2, then there is an edge metric generator S of G such that |S | = n − 2 and |U \ S | = 1,
|V \ S | = 1. Obviously, V \ S = {v0}. Now we suppose S = V(G) \ {u, v0} and there is a vertex
x ∈ N(u) ∩ U such that U \ (N(x) ∪ N(u)) = ∅. Consider the edges e1 = xu, e2 = xv0. For any element
z ∈ S , we have dG(xu, z) = dG(xv0, z) = 1 which contradicts to that S is an edge metric generator of G.
Therefore, there is a vertex u ∈ U such that for any x ∈ N(u)∩U, U \(N(x)∪N(u)) , ∅ if N(u)∩U , ∅.

Next we consider the case s ≥ t ≥ 2. If there is a vertex u ∈ U such that for any x ∈ N(u) ∩ U,
U \ (N(x) ∪ N(u)) , ∅ if N(u) ∩ U , ∅ and there is a vertex v ∈ V such that for any y ∈ N(v) ∩ V ,
V \ (N(y) ∪ N(v)) , ∅ if N(v) ∩ V , ∅, then S = V(G) \ {u, v} is an edge metric generator of G. Once
G[U] = Ks, then we choose any element of U as u, so as for v. For any pair of non-adjacent edges,

AIMS Mathematics Volume 5, Issue 5, 4459–4465.



4463

they can be distinguished by some element of S since |S | = n− 2. For two adjacent edges e1 = zw1 and
e2 = zw2, if S ∩ {w1,w2} , ∅, then e1, e2 can be distinguished by any element of S ∩ {w1,w2}, otherwise
{w1,w2} = {u, v} and {e1, e2} = {zu, zv}. If z ∈ U, then for any element p ∈ U \ (N(z) ∪ N(u)), we have
dG(zv, p) = 1, dG(zu, p) = 2 and then each vertex in U \ (N(z) ∪ N(u)) can distinguish edges e1, e2.
For the case z ∈ V , edges e1, e2 can be distinguished by similar analysis. Thus S = V(G) \ {u, v} is an
edge metric generator of G and then edim(G) ≤ n − 2. Conversely, if edim(G) ≤ n − 2, then there is
an edge metric generator S of G such that |S | = n − 2 and |U \ S | = 1, |V \ S | = 1. Now we suppose
S = V(G) \ {u, v}. Without loss of generality, we assume that there is a vertex x ∈ N(u) ∩ U such that
U \ (N(x)∪N(u)) = ∅. Consider the edges e1 = xu, e2 = xv. Each element of S has distance 1 to edges
both e1 and e2, which comes to a contradiction. Therefore, there is a vertex u ∈ U such that for any
x ∈ N(u) ∩ U, U \ (N(x) ∪ N(u)) , ∅ if N(u) ∩ U , ∅. Similarly, there is a vertex v ∈ V such that for
any y ∈ N(v) ∩ V , V \ (N(y) ∪ N(v)) , ∅ if N(v) ∩ V , ∅ and thus we complete the proof. �

One can check that Theorem 2.2 implies the results of Proposition 1.2 [4] and Proposition 1.3 [4].
Furthermore, the following corollary of Theorem 2.2 gives a sufficient and necessary condition to
determine the value of edim(G) for the graph G with n vertices and maximum degree ∆ = n − 1.

Corollary 2.1. Let G be a connected graph of order n. If there is a vertex v ∈ V(G) of degree n − 1,
then edim(G) = n − 2 if there is a vertex u ∈ V(G) \ {v} such that for any x ∈ N(u) \ {v}, (V(G) \ {v}) \
(N(x) ∪ N(u)) , ∅ if N(u) \ {v} , ∅ and otherwise edim(G) = n − 1.

3. The edge metric dimension and the clique number

Let n > k ≥ 1 be positive integers. Denote by G the graph class consists of graphs Gk
n which are

obtained by identifying one vertex of Kk and the center vertex of S 1,n−k, see Figure 1. Obviously, each
element of G is a connected graph of order n.

Kk

︷︸︸︷

︷
︸︸

︷

n− kw

u

Figure 1. The graph Gk
n of G.

Theorem 3.1. For any positive integer p ≥ 1, there exists a connected graph G such that edim(G) −
ω(G) = p.

Proof. Let n > k ≥ 1 be positive integers such that p = n−k−2. Now we prove that edim(Gk
n)−ω(Gk

n) =

p for any graph Gk
n ∈ G. Obviously, it suffices to show that edim(Gk

n) = n − 2.
Denote by w as the vertex with degree n − 1 in Gk

n and u as one of the pendent vertices in Gk
n. Then

edim(Gk
n) ≥ n − 2 by Proposition 1.2. Next we will prove edim(Gk

n) ≤ n − 2. Set S = V(Gk
n) \ {w, u}.

For any non-adjacent edges e1, e2 ∈ E(Gk
n), we have either e1 or e2 has one end vertex y ∈ S and then

dGk
n
(e1, y) = 0, dGk

n
(e2, y) ≥ 1 or dGk

n
(e2, y) = 0, dGk

n
(e1, y) ≥ 1. So y distinguishes edges e1 and e2. For

any adjacent edges e1 = zv, e2 = zg of Gk
n, if v ∈ S (or g ∈ S ), then e1, e2 can be distinguished by v (or
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g). Otherwise, we have {v, g} = {w, u}, which is impossible. Therefore, S is an edge metric generator
of Gk

n and then edim(G) ≤ n − 2. �

For the complete graph Kn, we have edim(Kn) = n − 1 = ω(Kn) − 1, i.e., ω(Kn) − edim(Kn) = 1.
Naturally, what about the value of ω(G) − edim(G) for any connected graph G , Kn?

Problem 2. Let G , Kn be a connected graph. Is it true that ω(G) − edim(G) ≤ 1, i.e., edim(G) ≥
ω(G) − 1?

Let k ≥ 2 be a positive integer. Denote by H the graph class consists of graphs H2k which are
obtained by attaching one end of K2 to each vertex of Kk. Obviously, each element ofH is a connected
graph of order 2k and clique number k.

H2k

v1

v2

v3

v5v6

v7

vk−1

vk u1

u2

u3

u4

u5u6

u7

uk−1

uk

v4

Figure 2. The graph H2k ofH .

We claim that edim(H2k) = k − 1 = ω(H2k) − 1, where H2k is depicted in Figure 2. It suffices
to show that S = {v1, v2, . . . , vk−1} is an edge metric generator of H2k. For any non-adjacent edges
e1 = w1w2, e2 = w3w4 of H2k, if S ∩ {w1,w2,w3,w4} , ∅, then any element of S ∩ {w1,w2,w3,w4} can
distinguish edges e1 and e2. Otherwise, we have e1 or e2 or both of them are adjacent to a pendent edge
uivi such that vi ∈ S and then d(e1, vi) = 1, d(e2, vi) = 2 or d(e1, vi) = 2, d(e2, vi) = 1. So vi distinguishes
edges e1 and e2. For any adjacent edges e1 = w5w6, e2 = w5w7 of H2k, if w6 ∈ S (or w7 ∈ S ), then e1, e2

can be distinguished by w6 (or w7). Otherwise, we have {w6,w7} ⊆ {u1, u2, . . . , uk, vk}. Hence, there
exists v j ∈ S such that d(e1, v j) = 1, d(e2, v j) = 2 or d(e1, v j) = 2, d(e2, v j) = 1. Therefore, S is an edge
metric generator of H2k and then edim(H2k) = k− 1 = ω(H2k)− 1. This implies that once the answer of
Problem 2 is true, then the lower bound edim(G) ≥ ω(G) − 1 is sharp.
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