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Abstract: Let k be a positive integer with k ≥ 2. Let Nk denote the number of k tuples of consecutive
integers with each of them in the form 2x + y2, where x, y are nonnegative integers. In this paper, we
investigate the formulas for Nk. Actually, by using some elementary methods, we show that

Nk =


+∞, if 2 ≤ k ≤ 4,
6, if k = 5,
3, if k = 6,
0, otherwise.
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1. Introduction

Catalan’s conjecture, one of the famous classical problems in number theory, states that the equation

xp − yq = 1

has no solutions in positive integers x and y, other than 32 − 23 = 1, where p and q are prime numbers.
In 2004, Mihuailesc [1] proved Catalan’s conjecture by using the theory of cyclotomic field. On the
other hand, some scholars (see [2], and [3–5]) studied the solutions to the general equation

ax − by = c, (1.1)
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where a, b and c are fixed positive integers. In 1936, Pillai conjectured that the number of positive
integer solutions (a, b, x, y), with x ≥ 2, y ≥ 2, to Eq (1.1) is finite. This conjecture which is still open
for all c > 1, amounts to saying that the distance between two consecutive terms in the sequence of all
perfect powers tends to infinity. However, it is easy to see that Pillai’s conjecture is closely related to
the number of consecutive integers tuples of perfect powers. In fact, Catalan’s conjecture is equivalent
to the statement that no two consecutive integers are perfect powers, other than 23 and 32. We also
easily know that there are no four consecutive integers with each of them being perfect powers, since
any set of four consecutive integers must contain one integer of the form 4n + 2 which can not be a
perfect power. Are there three consecutive integers with each of them being perfect powers? In 1962,
Chao Ko [6], by supplying a sufficient and necessary condition for the equation xp − yq = 1 to be
solvable with positive integers x and y, showed that no three consecutive integers are powers of other
positive integers,

Let k be an integer with k ≥ 2. In this paper, let us turn our attention to the number of k tuples of
consecutive integers such that each of them is the sum of two perfect powers. For any positive integer
n, we call the integer n a 22-STP (STP means Sum of Two Powers) number if it can be expressed in the
form 2x + y2 with x and y being nonnegative integers. Furthermore, we call a k-tuple (a1, a2, · · · , ak)
nice if a1, a2, · · · , ak are increasingly consecutive integers and each of them is a 22-STP number. Then
an interesting question is raised naturally as follows.

Question 1.1. For each integer k ≥ 2, how many nice k-tuples are there?

In this paper, we mainly study Question 1.1 by utilizing some elementary tools in number theory.
In fact, we provide the following theorem, which gives the complete answer to Question 1.1.

Theorem 1.2. Let k be an integer with k ≥ 2. Each of the following is true.

(a) If 2 ≤ k ≤ 4, then there exist infinitely many nice k-tuples.

(b) If k = 5, then there are only six nice 5-tuples. Moreover, the only six nice 5-tuples can be listed as
follows:

(1, 2, 3, 4, 5), (2, 3, 4, 5, 6), (8, 9, 10, 11, 12), (9, 10, 11, 12, 13),

(288, 289, 290, 291, 292), and (289, 290, 291, 292, 293).

(c) If k = 6, then there are only three nice 6-tuples. Moreover, the only three nice 6-tuples can be list
as follows:

(1, 2, 3, 4, 5, 6), (8, 9, 10, 11, 12, 13), and (288, 289, 290, 291, 292, 293).

(d) If k ≥ 7, then there is no nice k-tuple at all.

This paper is organized as follows. First in Section 2, we are mainly dedicated in presenting the
proof of Theorem 1.2 by using the method of elementary number theory, especially the tool of modulo
cover. In Section 3, we propose a general question for readers who are interested in this topic to do
further.
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2. Proof of Theorem 1.2

In this section, we are concentration on the proof of Theorem 1.2.
Proof of Theorem 1.2. First of all, it is noticed that Parts (c) and (d) of Theorem 1.2 follows immediately
from Part (b). So it is sufficient to show that Parts (a) and (b) are true.

For Part (a), we only need to prove that there exist infinitely nice 4-tuples, since from which one can
easily deduce that Part (a) holds for any k ∈ {2, 3}. One notes that the integers y2 + 20, y2 + 21, y2 + 22

are 22-STP numbers for every nonnegative integer y. So the proof of Part (a) will be done if we show
that y2 + 3 is 22-STP finitely often. Now let us consider the diophantine equation y2 + 3 = 2x + y′2. We
claim that this equation at least has one solution (y, y′) ∈ N2 for any x ∈ N≥2. In fact, since

y2 + 3 = 2x + y′2 ⇔ y2 − y′2 = 2x − 3⇔ (y + y′)(y − y′) = 2x − 3,

then one can take y − y′ = 1 and y + y′ = 2x − 3, that is, (y, y′) = (2x−1 − 1, 2x−1 − 2) ∈ N2. Thus, this
completes the proof of Part (a).

Now we turn our attention to Part (b). First, we make a key table as follows to show the results of
2x + y2 (mod 8).

2x + y2 (mod 8) x = 0 x = 1 x = 2 x ≥ 3
y ≡ 1 (mod 2) 2 3 5 1
y ≡ 0 (mod 4) 1 2 4 0
y ≡ 2 (mod 4) 5 6 0 4

One knows from the key table that there is no 22-STP number which is congruent to 7 modulo 8. It
then follows that any nice 5-tuple must contain an integer with 3 (mod 8). Let this integer be denoted
by A. Thus by the key table we know that A = y2

0 + 2 for some odd positive integer y0. So we can list
all possible nice 5-tuples containing A = y2

0 + 2 as follows:

(i) (y2
0 + 1, y2

0 + 2, y2
0 + 3, y2

0 + 4, y2
0 + 5),

(ii) or (y2
0, y

2
0 + 1, y2

0 + 2, y2
0 + 3, y2

0 + 4),

(iii) or (y2
0 − 1, y2

0, y
2
0 + 1, y2

0 + 2, y2
0 + 3),

since y2
0 + 2 ≡ 3 (mod 8) and any number in all possible nice 5-tuples is not congruent to 7 modulo 8.

Next, let’s discuss the details case by case.
case 1. Suppose the nice 5-tuple is (y2

0 + 1, y2
0 + 2, y2

0 + 3, y2
0 + 4, y2

0 + 5). Note that y2
0 + 2 ≡ 3

(mod 8), then y2
0 + 5 ≡ 6 (mod 8). It follows from the key table that there exists a positive integer z

with z ≡ 2 (mod 4) such that y2
0 + 5 = z2 + 2. So one has that (z + y0)(z − y0) = 3, which implies that

z + y0 = 3, z − y0 = 1, i.e., z = 2, y0 = 1. It gives the unique nice 5-tuple (2, 3, 4, 5, 6) of this case since
that 2 = 20 + 12, 3 = 21 + 12, 4 = 22 + 02, 5 = 22 + 12, 6 = 21 + 22.
case 2. Suppose the nice 5-tuple is (y2

0, y
2
0 + 1, y2

0 + 2, y2
0 + 3, y2

0 + 4). First, since y2
0 is a 22-STP

number, then there exist two nonnegative integers s and u such that y2
0 = 2s + u2, which one writes as

(y0 − u)(y0 + u) = 2s. (2.1)

Now we solve Eq (2.1) by dividing s into two subcases.
Subcase 2.1. Let 0 ≤ s ≤ 4.
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• If s = 0, then y0 = 1 and u = 0, which gives a nice 5-tuple (1, 2, 3, 4, 5) since 1 = 20 + 02.

• If s = 1, then it is easy to see that Eq (2.1) has no no integer solution since y0 + u and y0 − u
have the same parity.

• If s = 2, then Eq (2.1) is equivalent to the equations y0 + u = 2 and y0 − u = 2 since y0 + u and
y0 − u have the same parity, which gives y0 = 2, a contradiction with y0 being odd.

• If s = 3, then Eq (2.1) implies that y0 +u = 4 and y0−u = 2 since y0 +u and y0−u have the same
parity. So y0 = 3. It gives a nice 5-tuple (9, 10, 11, 12, 13) since 9 = 23 + 12, 10 = 20 + 32, 11 =

21 + 32, 12 = 23 + 22, 13 = 22 + 32.

• If s = 4, then from Eq (2.1), we have that y0 + u = 4 and y0 − u = 4, or y0 + u = 8 and y0 − u = 2
since y0 + u and y0 − u have the same parity. So y0 = 4 or 5. Note that y0 was odd, then y0 = 5,
which gives a possible nice 5-tuple (25, 26, 27, 28, 29). But it is easy to check that 28 is not a
22-STP integer. So the 5-tuple (25, 26, 27, 28, 29) is not nice.

Subcase 2.2. Suppose s ≥ 5. First, one notes that gcd(y0 + u, y0 − u) | 2y0 and y0 is odd. Then, by
(2.1) we have that y0 − u = 2, y0 − u = 2s−1, which implies that y0 = 2s−2 + 1. Let’s now focus on the
22-STP number y2

0 + 3. One can write that

y2
0 + 3 = 2t + w2 (2.2)

for some two nonnegative integers t and w. Now we discuss the details for t by splitting into following
cases.

Subcase 2.2.1. Assume 0 ≤ t ≤ 2.

? If t = 0, we then easily find that Eq (2.2) has no integer solution.

? If t = 1, then Eq (2.2) can be reduced to that y0 = 1 and w = 1, a contradiction, since y0 was
odd.

? If t = 2, then Eq (2.2) is equivalent to that y0 + w = 1 and y0 − w = 1, i.e., y0 = 1,w = 0. This
gives the nice 5-tuple (1, 2, 3, 4, 5) which was obtained in Subcase 2.1.

Subcase 2.2.2. Assume t ≥ 3. Note that y0 = 2s−2 + 1 with s ≥ 5. By substituting y0 = 2s−2 + 1 into
(2.2), we have that

22s−6 + 2s−3 − 2t−2 =
(w

2
)2
− 1. (2.3)

It yields that w ≡ 2 (mod 4) since s ≥ 5 and t ≥ 3. In (2.3), for simplicity, let s − 3 = c ≥ 2, t − 2 =

a ≥ 1, b = w
2 , then (2.3) becomes that

22c + 2c + 1 = 2a + b2. (2.4)

It then follows that

(2c + 1 − b)(2c + 1 + b) = (2c + 1)2 − b2 = 2a + 2c > 0,
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which implies that b ≤ 2c. So

2a + 2c = (2c + 1)2 − b2 ≥ (2c + 1)2 − (2c)2 = 2c+1 + 1 > 2c+1.

Then 2a > 2c, i.e., a > c. Thus we rewrite (2.4) as

(2c + 1 − b)(2c + 1 + b) = 2c(2a−c + 1). (2.5)

However, one notes that gcd(2c + 1 − b, 2c + 1 + b) | 2b and b is odd. Then we deduce that one of
2c + 1 − b and 2c + 1 + b has at most one factor of 2. By (2.5), we then know that 2c−1 divides one
of 2c + 1 − b and 2c + 1 + b. Hence b ≡ ±1 (mod 2c−1). This together with 1 ≤ b ≤ 2c gives that
b ∈ {1, 2c−1 − 1, 2c−1 + 1, 2c − 1}.

? If b = 1, then Eq (2.4) is equivalent to the equation 2c + 1 = 2a−c which has no integer solution
since c ≥ 2 and a > c.

? If b = 2c−1 − 1, then Eq (2.4) turns out to be 3 × 2c−2 = 2a−c − 2. It then follows that a − c = 3
and c − 2 = 1, i.e., c = 3 or s = 6. So y0 = 2s−2 + 1 = 17. This gives us a new nice 5-
tuple (289, 290, 291, 292, 293) since 289 = 26 + 152, 290 = 20 + 172, 291 = 21 + 172, 292 =

28 + 62, 293 = 23 + 172.

? If b = 2c−1 + 1, then Eq (2.4) is simplified to that 2c−1 + 2c−2 = 2a−c. Clearly, the later equation
has no integer solution.

? If b = 2c − 1, then Eq (2.4) is reduced to be 2c+1 = 2c(2a−c + 1), a contradiction.

case 3. Suppose the nice 5-tuple is (y2
0−1, y2

0, y
2
0+1, y2

0+2, y2
0+3). Then (y2

0, y
2
0+1, y2

0+2, y2
0+3, y2

0+4)
is also a nice 5-tuple since y2

0 + 4 = y2
0 + 22. It then follows from Case 2 that y0 ∈ {1, 3, 5, 17}. But one

checks that (y2
0 − 1, y2

0, y
2
0 + 1, y2

0 + 2, y2
0 + 3) can not be a nice 5-tuple for each y0 ∈ {1, 5} since both

0 and 28 are not 22-STP integers. But y0 = 3 or 17 give the new nice 5-tuples (8, 9, 10, 11, 12) and
(288, 289, 290, 291, 292), as 8 = 22 + 22 and 288 = 25 + 162.

Hence, the above cases give the all nice 5-tuples, which are (1, 2, 3, 4, 5), (2, 3, 4, 5, 6),
(8, 9, 10, 11, 12), (9, 10, 11, 12, 13), (288, 289, 290, 291, 292), (289, 290, 291, 292, 293).

To here, the proof of Part (b) is complete.
Thus we finish the proof of Theorem 2.2. �

3. A general question

In this section, we will propose one general question. Let a, b be given integers with a, b ≥ 2. Let
n be a positive integer. We call the integer n an ab-STP number if it can be expressed in the form
ax + yb with x and y being nonnegative integers. Furthermore, we call a k-tuple (a1, a2, · · · , ak) ab-nice
if a1, a2, · · · , ak are increasingly consecutive integers and each of them is an ab-STP number. Now we
propose the following general question which seems little hard, as follows.

Question 3.1. Let a and b be given integers with a, b ≥ 2. For each integer k ≥ 2, find all ab-nice
k-tuples.
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4. Conclusions

The gap in integer sequences are wide problems in Number Theory. The gap of primes |pn − pn+1|

is one of the most important topics in analytic Number Theory. In the field of Diophantine analysis,
there are many open questions on the gap of the powers |xm − yn|. In this paper, we considered k-tuples
of consecutive integers (a1, a2, · · · , ak) such that each of them is the sum of two perfect powers. We
used some elementary methods in number theory to prove that there exists infinitely many 4-tuples
with each elements of the form 2x + y2, no such 7-tuples exists, and such quintuples and sextuples were
listed. At the end of this paper, a general question was also proposed for the interested readers there.
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