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1. Introduction and preliminaries

The Sheffer sequences sn(x), n ∈ N0 are determined by the generating relation [1]:

A(w) exp(xJ(w)) =

∞∑
n=0

sn(x)
wn

n!
, x,w ∈ R, (1.1)

whereA(w), J(w) are power series such that

A(w) =

∞∑
k=0

βk
wk

k!
, β0 , 0, (1.2)

J(w) =

∞∑
l=1

hl
wl

l!
, h1 , 0. (1.3)

The Sheffer polynomials are extensively studied with full illustration due to their importance in
the field of applied sciences and mathematical physics. Recent research shows stimulated attention
on those sequences and their various presentations [2]. In [3], the close relationship between these
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polynomial sequences and Riordan arrays was established by demonstrating the isomorphism between
the Riordan and Sheffer group. Based on these results, the determinant approach has been presented
in [4].

Recently, several mixed special polynomial families connected to the Sheffer sequences are
investigated systematically [5–9]. In [10], Roman studied the technique of combining two sequences
applying Umbral composition which is a systematic method of forming mixed special sequences. In
this work, the composition of Boas-Buck and Sheffer polynomials is taken into account to introduce a
vibrant and novel family of special polynomials, called the Boas-Buck-Sheffer family.

In 1956, Boas and Buck [11] studied a large class of generating functions of polynomial sets, called
the Boas-Buck polynomials determined through the following generating relation:

A(w)ψ(xH(w)) =

∞∑
n=0

pn(x)
wn

n!
, (1.4)

where A(w), ψ(w), H(w) are power series such that

A(w) =

∞∑
k=0

ak
wk

k!
, a0 , 0; (1.5)

ψ(w) =

∞∑
l=0

γl
wl

l!
, γl , 0, ∀ l, (1.6)

with ψ(w) not a polynomial and

H(w) =

∞∑
m=1

hm
wm

m!
, h1 , 0. (1.7)

These sets involve general classes of polynomials, like Brenke polynomials Yn(x) [12] (for H(w) =

w), Sheffer polynomials sn(x) [13] (for ψ(w) = exp(w)), Appell polynomials An(x) [14] (for H(w) =

w, ψ(w) = exp(w)) and those determined sets like certain constant multiples of the Laguerre, Hermite
and Jacobi polynomials.

The idea of monomiality appeared in 1941 when Steffenson [15] developed the concept of poweroid
and later on this method was re-modified by Dattoli [16]. According to the hypothesis of monomiality,
the Φ+ and Φ− operators occur and perform as the multiplicative and derivative operators for {rn(x)}n∈N
polynomial set:

Φ+{rn(x)} = rn+1(x), (1.8)

Φ−{rn(x)} = n rn−1(x). (1.9)

The operators Φ+ and Φ− exhibit the commutation expression

[Φ−,Φ+] = 1̂ (1.10)

and therefore represents the structure of Weyl group.
If the underlying set {rn(x)}n∈N is quasi-monomial and its properties can be achieved from Φ+ and

Φ−, operators. Thus, following properties holds:

Φ+Φ−{rn(x)} = n rn(x). (1.11)
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Throughout this paper, we assume that r0(x) = 1, then rn(x) is given by

rn(x) = Φ+n
{1} (1.12)

and thus the generating expression of rn(x) can be determined in the following way

G(x,J(w)) = exp(J(w)Φ+){1} =

∞∑
n=0

rn(x)
(J(w))n

n!
. (1.13)

The Boas-Buck polynomial set defined in Eq 1.4 is quasi-monomial with the operations of the
following multiplicative and derivative expressions [17]:

Φ+
p =

A′(H−1(ς))
A(H−1(ς))

+ xDxH′(H−1(ς))ς−1, (1.14)

Φ−p = H−1(ς), (1.15)

where ς ∈ Λ(−1) is given by

ς(1) = 0 and ς(xn) =
γn−1

γn
xn−1, n = 1, 2, · · · (1.16)

and Λ( j), j ∈ Z represents the space of operators operating on analytic functions which increase the
degree of each polynomial exactly by j for j ≥ 0 or j ≤ 0, respectively.

The following linear positive operators was developed by Szasz [18]:

S m(g; u) := e−mu
∞∑

k=0

(mu)k

k!
g
(

k
m

)
, (1.17)

where u ≥ 0 and g ∈ C[0,∞), whenever the preceding sum converges.
Later, various extensions of the Szasz operators are obtained such as Appell, Sheffer, Brenke, Boas-

Buck, and mixed special polynomials, see, for example, [19–21].
In this paper, the Boas-Buck-Sheffer family is proposed and studied through different aspects. In

Section 2, an important property quasi-monomiality of this family is established. The extension of
Szasz operators is established and their approximation properties are studied in Section 3.

2. The Boas-Buck-Sheffer polynomials

The Boas-Buck-Sheffer polynomials are proposed here by the means of generating expression.
Further, quasi-monomial and approximation properties of these polynomials are demonstrated.

First, the generating expression for the Boas-Buck-Sheffer polynomials is demonstrated by the
following result:

Theorem 1. For the Boas-Buck-Sheffer polynomials, the following generating expression:

A(w)A(J(w))ψ
(
xH

(
J(w)

))
=

∞∑
n=0

pS n(x)
wn

n!
. (2.1)

holds true.

AIMS Mathematics Volume 5, Issue 5, 4432–4443.



4435

Proof. Changing w in Eq 1.1 by Φ+
p , that is the multiplicative operator of the polynomials pn(x), we

have

A(w) exp
(
Φ+

pJ(w)
)

=

∞∑
n=0

sn

(
Φ+

p

) wn

n!
, (2.2)

which by virtue of Eq 1.13, becomes

A(w)
∞∑

n=0

pn(x)
(
J(w)

)n

n!
=

∞∑
n=0

sn

(
Φ+

p

) wn

n!
. (2.3)

Using Eq 1.4 with w replaced by J(w) in the l.h.s of expression (2.3) and representing sn

(
Φ+

p

)
in

the right hand side by the Boas-Buck-Sheffer polynomials psn(x), that is

sn

(
Φ+

p

)
= sn

(
A′(H−1(ς))
A(H−1(ς))

+ xDxH′(H−1(ς))ς−1
)

= psn(x), (2.4)

assertion (2.1) follows. �

Next, we derive the quasi-monomial properties of the Boas-Buck-Sheffer polynomials psn(x).
The following result is established to frame the psn(x) in the context of monomiality hypothesis:

Theorem 2. The following multiplicative and derivative operators for the Boas-Buck-Sheffer
polynomials psn(x), hold true:

Φ+
ps = xH′

(
H−1(ς)

)
J ′

(
J−1(H−1(ς))

)
Dxς

−1 +
A′(H−1(ς))
A(H−1(ς))

J ′
(
J−1(H−1(ς))

)
+
A′

(
J−1(H−1(ς))

)
A

(
J−1(H−1(ς))

) (2.5)

Φ−pS = J−1(H−1(ς)). (2.6)

Proof. Notice that Eq 1.16 is equivalent to the relation [17].

ςψ(xw) = wψ(xw), (2.7)

so that, we can write

J−1(H−1(ς))A(w)A(J(w))ψ
(
xH(J(w))

)
= wA(w)A(J(w))ψ

(
xH(J(w))

)
. (2.8)

Differentiating (2.1) with respect to (w.r.t) w partially, we obtain the following expression.(
x

H′(J(w))
H(J(w))

J ′(w)Dx +
A′(J(w))
A(J(w))

J ′(w) +
A′(w)
A(w)

) ∞∑
n=0

psn(x)
wn

n!
=

∞∑
n=0

psn+1(x)
wn

n!
. (2.9)

Using Eq 2.8 and equating the like powers of w on both sides of Eq 2.9, the following expression is
obtained:
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(
xH′

(
H−1(ς)

)
J ′

(
J−1(H−1(ς))

)
Dxς

−1 +
A′(H−1(ς))
A(H−1(ς))

J ′
(
J−1(H−1(ς))

)
+
A′

(
J−1(H−1(ς))

)
A

(
J−1(H−1(ς))

) )
psn(x) = psn+1(x). (2.10)

In view of Eq 1.8, we get assertion (2.5).
Again, from expression (2.8), we have

J−1(H−1(ς))
∞∑

n=0
psn(x)

wn

n!
=

∞∑
n=0

psn(x)
wn+1

n!
,

Simplifying and then equating the coefficients of like powers of t, we have assertion (2.6). �

Theorem 3. For the Boas-Buck-Sheffer polynomials psn(x), the following differential equation holds
true: (

xH′
(
H−1(ς)

)
J ′

(
J−1(H−1(ς))

)
Dxς

−1J−1(H−1(ς))

+
A′(H−1(ς))
A(H−1(ς))

J ′
(
J−1(H−1(ς))

)
J−1(H−1(ς)) +

A′
(
J−1(H−1(ς))

)
A

(
J−1(H−1(ς))

) J−1(H−1(ς)) − n
)

psn(x) = 0. (2.11)

Proof. Inserting expressions (2.5) and (2.6) in the monomiality expression (1.11), assertion (2.11)
follows. �

Remark 2.1. For H(w) = w, the Boas-Buck polynomials pn(x) reduce to Brenke polynomials
Yn(x) [12], thus in consideration of H(w) = w, the Boas-Buck-Sheffer polynomials psn(x) reduce to
the Brenke-Sheffer polynomials Y sn(x). Accordingly, taking H(w) = w in Eqs 2.1, 2.5, 2.6 and 2.11,
the following consequences of results 2.1, 2.2 and 2.3 are derived:

Corollary 2.1. The following generating expression for the Brenke-Sheffer polynomials holds true:

A(w)A(J(w))ψ(xJ(w)) =

∞∑
n=0

Y sn(x)
wn

n!
. (2.12)

Corollary 2.2. The Brenke-Sheffer polynomials Y sn(x) are quasi-monomial w.r.t the following Φ+
Y s and

Φ−Y s operators:

Φ+
Y s = xJ ′

(
J−1(ς)

)
Dxς

−1 +
A′(ς)
A(ς)

J ′
(
J−1(ς)

)
+
A′

(
J−1(ς)

)
A

(
J−1(ς)

) (2.13)

Φ−YS = J−1(ς). (2.14)
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Corollary 2.3. The Brenke-Sheffer polynomials Y sn(x) satisfy the following differential equation:(
xJ ′

(
J−1(ς)

)
Dxς

−1J−1(ς) +
A′(ς)
A(ς)

J ′
(
J−1(ς)

)
J−1(ς)

+
A′

(
J−1(ς)

)
A

(
J−1(ς)

) J−1(ς) − n
)

Y sn(x) = 0. (2.15)

Remark 2.2. In consideration of ψ(w) = exp(w), the Boas-Buck polynomials pn(x) reduce to the
Sheffer polynomials sn(x) [13]. Accordingly, taking ψ(w) = exp(w) (for this case ς = Dx) in Eqs 2.1,
2.5, 2.6 and 2.11, the analogous results for the two-iterated Sheffer polynomials s[2]

n (x) established
in [22] are obtained.

Remark 2.3. In consideration of J(w) = w, the polynomials sn(x) reduce to An(x) [14]. Accordingly,
taking J(w) = w (for this case ς = Dx) in Eqs 2.1, 2.5, 2.6 and 2.11, the analogous results for the
Boas-Buck-Appell polynomials pAn(x) can be obtained easily.

3. Generalization of the Szasz operators involving the Boas-Buck-Sheffer polynomials and
approximation properties of S n operators

The Boas-Buck-Sheffer polynomials determined by the generating expression (2.1) holding the
conditions given by expressions (1.1)–(1.2) and (1.5)–(1.7). Thus restricting to the psn(x), satisfying
the assumptions:

(i)A(1) , 0, A(J(1)) , 0,J ′(1) = 1,H′(J(1)) = 1, psn(x) ≥ 0, k = 0, 1, 2, ....

(ii) ψ : R→ (0,∞),

(iii) (2.1) and (1.1) − (1.7) converges f or |t| < R (R > 1). (3.1)

With the above assumptions, we give a new formulation of positive linear operators with psn(x) as:

S n( f ; x) =
1

A(1)A(J(1))ψ(nxH(J(1)))

∞∑
n=0

psn(nx)g(
k
n

), (3.2)

where x ≥ 0 and n ∈ N.

Remark 3.1. For J(w) = w, the operator given by (3.2) gives the operators of the Boas-Buck-Appell
polynomials.

Remark 3.2. ForA(w) = 1 andJ(w) = w, the operator given by (3.2) (resp. (2.1)) meets the operators
of the Boas-Buck polynomials [21].

Remark 3.3. For A(w) = 1, J(w) = w and H(w) = w the operator given by (3.2) (resp. (2.1)) meets
the operators of the Brenke-type polynomials [12].

Remark 3.4. ForA(w) = 1, J(w) = w and ψ(w) = ew, the operator given by (3.2) (resp. (2.1)) meets
the operators of the Sheffer polynomials [20].
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Remark 3.5. For A(w) = 1, J(w) = w, H(w) = w and ψ(w) = ew the operator given
by (3.2) (resp. (2.1)) meets the operators of the Appell polynomials [19].

Remark 3.6. For A(w) = 1, A(w) = 1, J(w) = w, H(w) = w and ψ(w) = ew the operator given
by (3.2) (resp. (2.1)) meets the Szasz operators [18].

Next, we give the approximation results by means of Sn positive linear operators using Krovokin’s
theorem.

Lemma 4. For the operators Sn( f ; x) and x ∈ [0,∞), we have
Sn(1; x) = 1 (3.3)

Sn(s; x) =
ψ′

(
nxH

(
J(1)

))
ψ
(
nxH

(
J(1)

)) x +
1
n

(
A′(1)
A(1)

+
A′

(
J(1)

)
A
(
J(1)

) )
(3.4)

Sn(s2; x) =
ψ′′

(
nxH

(
J(1)

))
ψ
(
nxH

(
J(1)

)) x2 +

(
2
A′(1)
A(1)

+ 2
A′

(
J(1)

)
A
(
J(1)

) + 1 +J ′′(1) + H′′
(
J(1)

))

×
ψ′

(
nxH

(
J(1)

))
nψ

(
nxH

(
J(1)

)) x

+
1
n2

(
A′′(1)
A(1)

+
A′(1)
A(1)

+
A′

(
J(1)

)
A
(
J(1)

) (
1 +J ′′(1)

)
+ 2
A′(1)
A(1)

A′
(
J(1)

)
A
(
J(1)

) +
A′′

(
J(1)

)
A
(
J(1)

) )
. (3.5)

proof. From the generating function of the Boas-Buck-Sheffer polynomials given by (2.1), we have

∞∑
k=0

sAk(nx) = A(w)A
(
J(w)

)
ψ
(
nxH

(
J(w)

))
. (3.6)

Differentiating above equation w.r.t. w successively on both sides and then putting w = 1 and using
J ′(1) = 1 and H′

(
J(1)

)
we have

∞∑
k=0

psk(nx) = A(1)A
(
J(1)

)
ψ
(
nxH

(
J(1)

))
, (3.7)

∞∑
k=0

kpsk(nx) =
(
A′(1)A

(
J(1)

)
+A(1)A′

(
J(1)

))
ψ
(
nxH

(
J(1)

))
+A(1)A

(
J(1)

)
ψ′

(
nxH

(
J(1)

))
nx, (3.8)

∞∑
k=0

k2
psk(nx) =

(
2A′(1)A

(
J(1)

)
+A′′(1)A

(
J(1)

)
+A(1)A′′

(
J(1)

)
+A′(1)A

(
J(1)

)
+A(1)A′

(
J(1)

)(
J ′′(1) + H′′

(
J(1)

)))
ψ
(
nxH

(
J(1)

))
+

(
A(1)A

(
J(1)

)(
1 +

(
J ′′(1)

)
+ H′′

(
J(1)

))
+ 2A′(1)A(1) + 2A′(1)A

(
J(1)

)
+A(1)A′

(
J(1)

))
× ψ′

(
nxH

(
J(1)

))
nx +A(1)A

(
J(1)

)
ψ′′

(
nxH

(
J(1)

))
(nx)2. (3.9)
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In view of the equalities (3.7)–(3.9), assertions (3.3)–(3.5) are obtained.
Next, we define the class of E as follows:

E :=
{

g : x ∈ [0,∞),
g(x)

1 + x2 is convergent as x→ ∞
}
. (3.10)

Theorem 5. Let g ∈ C[0,∞) ∩ E and suppose

lim
y→∞

G′(y)
G(y)

= 1, lim
y→∞

G′′(y)
G(y)

= 1. (3.11)

Then,
lim
n→∞
Sn(g; x) = g(x) (3.12)

on each compact subset of [0,∞), uniformly.

Proof. In view of Lemma 3.1 and and assumption given by expression (3.10), we find

lim
n→∞
Sn(si; x) = xi, i = 0, 1, 2. (3.13)

The above-mentioned convergences are satisfied uniformly in each compact subset of [0,∞). The
use of universal Krovokin-type property (vi) of Theorem 4.1.4 from [23], desired result is established.

In order to estimate the rate of convergence, we will give some definitions and lemmas.

Definition 3.1. Let g ∈ Ĉ[0,∞) and δ > 0. Then w(g; δ), that is, modulus of continuity of the function g
is determined by

w(g; δ) := sup
u,v∈[0,∞)
|u−v|

|g(u) − g(v)|, (3.14)

where Ĉ[0,∞) is the space of uniformly continuous functions on [0,∞).

Lemma 6. For x ∈ [0,∞), the following identities:

Sn(s − x; x) :=
(ψ′(nxH

(
J(1)

))
ψ
(
nxH

(
J(1)

)) − 1
)
x +

1
n

(
A′(1)
A(1)

+
A′

(
J(1)

)
A
(
J(1)

) )
(3.15)

Sn((s − x)2; x) :=
ψ′′

(
nxH

(
J(1)

))
− 2ψ′

(
nxH(J(1))

)
+ ψ

(
nxH(J(1))

)
ψ
(
nxH

(
J(1)

)) x2

+

(
A′(1)
A(1) +

A′(J(1))
A(J(1))

)(
2ψ

(
nxH(J(1))

)
− ψ

(
nxH(J(1))

))
+

(
1 +J ′′(1) + H′′

(
J(1)

))
ψ
(
nxH(J(1))

)
nψ

(
nxH(J(1))

) x

+
1
n2

(
A′′(1)
A(1)

+
A′(1)
A(1)

+
A′

(
J(1)

)
A
(
J(1)

) (
1 +J ′′(1)

)
+ 2
A′(1)
A(1)

A′
(
J(1)

)
A
(
J(1)

) +
A′′

(
J(1)

)
A
(
J(1)

) )
(3.16)

are satisfied.
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Proof. In view of linearity property of Sn operators:

Sn((s − x)2; x) = Sn(s2; x) − 2xSn(s; x) + x2Sn(1; x) (3.17)

and applying Lemma 3.1, equalities (3.15) and (3.16) are obtained.

Theorem 7. Let g ∈ Ĉ[0,∞) ∩ E,Sn operators satisfy the following inequality:

|Sn(g; x) − g(x)| 6 2w(g;
√
µn(x)), (3.18)

where,
µ := µn(x) = Sn((s − x)2; x). (3.19)

Proof. Using Lemma 3.1 and the modulus of continuity property, we get

|Sn(g; x) − g(x)| =

∣∣∣∣∣∣ 1
A(1)A(J(1))ψ(nxHJ(1))

∞∑
k=0

psk(nx)g
(

k
n

)
− g(x)

∣∣∣∣∣∣
6

1
A(1)A(J(1))ψ(nxHJ(1))

∞∑
k=0

psk(nx)

∣∣∣∣∣∣g
(

k
n

)
− g(x)

∣∣∣∣∣∣
6 w(g; δ)

1 +
1

A(1)A(J(1))ψ(nxHJ(1))
1
δ

∞∑
k=0

psk(nx)
∣∣∣∣∣kn − x

∣∣∣∣∣
 . (3.20)

The use of Cauchy-Schwarz inequality, and taking into account the Lemma 3.2, we have

∞∑
k=0

psk(nx)
∣∣∣∣∣kn − x

∣∣∣∣∣ 6 √
A(1)A(J(1))ψ(nxHJ(1))

{ ∞∑
k=0

psk(nx)
∣∣∣∣∣kn − x

∣∣∣∣∣2 } 1
2

=
ψ′′

(
nxH

(
J(1)

))
− 2ψ′

(
nxH(J(1))

)
+ ψ

(
nxH(J(1))

)
ψ
(
nxH

(
J(1)

)) x2

+

(
A′(1)
A(1) +

A′(J(1))
A(J(1))

)(
2ψ

(
nxH(J(1))

)
− ψ

(
nxH(J(1))

))
+

(
1 +J ′′(1) + H′′

(
J(1)

))
ψ
(
nxH(J(1))

)
nψ

(
nxH(J(1))

) x

+
1
n2

(
A′′(1)
A(1)

+
A′(1)
A(1)

+
A′

(
J(1)

)
A
(
J(1)

) (
1 +J ′′(1)

)
+ 2
A′(1)
A(1)

A′
(
J(1)

)
A
(
J(1)

) +
A′′

(
J(1)

)
A
(
J(1)

) )
. (3.21)

Using Eq 3.21, Eq 3.20 becomes

|Sn(g; x) − g(x)| 6
{

1 +
1
δ

√
µn(x)

}
w(g; δ). (3.22)

On choosing δ =
√
µn(x), we get the required result.
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Definition 3.2. Let g ∈ CB[a, b], then the second modulus of continuity g is

w2(g; δ) := sup
0<t≤δ
||g(. + 2t) − 2g(. + t) + g(.)||CB , (3.23)

where CB[0,∞) is the class of real valued functions on [0,∞), bounded and uniformly continuous with
the norm

||g||CB = sup
x∈[0,∞)

|g(x)|. (3.24)

Lemma 8. (Gavrea and Raşa [24]). Let g ∈ C2[0, a] and (Kn)n≥0 be a sequence of linear positive
operators with the property Kn(1; x) = 1. Then,

|Kn(g; x) − g(x)| ≤ ||g′||
√

Kn((s − x)2; x) +
1
2
||g′′||Kn((s − x)2; x). (3.25)

Lemma 9. (Zhuk [25]). Let f ∈ C[a, b] and h ∈ (0, a−b
2 ). Let gh be the second-order Steklov function

to the function g. Then, the subsequent inequalities hold true

(i) ||gh − g|| ≤
3
4

w2(g; h), (3.26)

(ii) |||g′′h | ≤
3

2h2 w2(g; h). (3.27)

Theorem 10. For g ∈ C[0, a], the following estimate

|Sn(g; x) − g(x)| ≤
2
β
||g||l2 +

3
4

(β + 2 + l2)w2(g; l) (3.28)

holds, where
l := ln(x) =

4
√
Sn((s − x; x)2; x). (3.29)

Proof. Let gl be the second-order Steklov function linked to g. Considering the identity Zn(1; x) = 1,
we have

|Sn(g; x) − g(x)| ≤ |Sn(g − gl; x)| + |Sn(gl; x) − g(x)| + |(gl; x) − g(x)|,

≤ 2||gl − g|| + |Sn(gl; x) − gl(x)|. (3.30)

Taking into the fact that gl ∈ C2[0, β], it follows from Lemma 3.5

|Sn(gl; x) − gl(x)| ≤ ||g′l ||
√

S n((s − x)2; x) +
1
2
||g′′l ||S n((s − x)2; x). (3.31)

On combining the Landau inequality with Lemma 3.6, we have

||g′′l || ≤
2
β
||gl|| +

β

2
||g′′l ||,

≤
2
β
||g|| +

3β
4l2 w2(g; l). (3.32)

Using the last inequality and taking l =
4
√
Sn((s − x)2); x, we have

|Sn(gl; x) − gl(x)| ≤
2
β
||g||l2 +

3β
4

w2(g; l) +
3
4

l2w2(g; l). (3.33)

Substituting (3.33) in (3.30), hence Lemma (3.6) confers the proof of the theorem.
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Remark 3.7. In Theorem 3.7, for the special case ψ(w) = ew, H(J(w)) = w, A(w) = 1, A(J(w)) = 1
and x = 0, one can get l = 0 from the equality l := ln(x) =

4
√

S n((s − x)2; x). The inequality obtained in
Theorem 3.7, still holds true when l = 0.

4. Conclusions

Several mixed special polynomial families related to the Sheffer sequences are available in the
literature. In this line, we established a mixed family of polynomials called the Boas-Buck-Sheffer
family and studied their properties. Also, we studied the extension of the Szasz operators involving the
Boas-Buck-Sheffer polynomials and gave their approximation properties.
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