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proposed method.

Keywords: shifted Legendre polynomials; Cholesky decomposition; arbitrary approximation order;
time-delayed systems; stability analysis
Mathematics Subject Classification: 93D99

1. Introduction

Time-delay systems exist in many practical situations as industry process, biological, ecological
groups, telecommunication, economy, mechanical engineering, and so on. A time-delay in a system
often induces oscillation and instability, which motivated a huge number of researchers to study the
stability analysis with various criteria [1–3]. Evaluation of system stability with a constant delay has
been studied extensively and lots of theoretical tools have been presented like characteristic equation
and eigenvalues analysis [4, 5]. Those methods have been well established currently which can derive
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effective criteria smoothly with numerical efficiency. However, this type of criteria cannot be applied to
a time-varying delay system and some other methodologies have been employed.

Generally, two different methodologies have been employed: the first one is so called input-output
method that treats a delay as an uncertain operator, and transforms the original time-varying delay
system into a closed loop between a nominal LTI system and a perturbation depending on the delay. The
stability criteria of which have been well developed by using conventional robustness tools like Small
Gain Theorem [6, 7], Integral Quadratic Constraint or Quadratic Separation [8, 9]. The conservativeness
is small for a slowly varying delay, but large for a quickly one because it depending on the upper bound
on the derivative of the delay. Another technique is based on the proper construction of Lyapunov-
Krasovskii functions. The conservativeness of this method comes from two aspects: the choice of
functional and the bound on its derivative. It is not easy to find an appropriate Lyapunov-Krasovskii
functional (LFK) to obtain less conservative criteria since it contains both the delay and its bounds.

In earlier research, only a single integral term was employed as a part of LFK to analysis and handle
the time delay in systems [10–12]. Up to now, double, triple, even quadruple integral terms has been
developed which usually bring more effective stability criteria [13–15]. And also an augmented and
a delay-partitioning LKF method were proposed to reduce the conservativeness, and the difficulty
now lies in the bounds of the integrals that appear in the derivative of the functional for a stability
condition [16, 17].

Previously, The Jensen inequality and Wirtinger-based integral inequality were reported as the
integral inequality method that yields less conservative stability criteria [2, 18]. Delay-dependent
strategy and delay-independent approach under time-varying delays, uncertainties and disturbance
are employed to stability analysis. Delay-dependent strategy has been received many attentions as
a result of its less conservatism than delay-independent [19–27]. Later, the first- and second-order
reciprocally convex approach were proposed based on a new kind of linear combination of positive
functions weighted by the inverses of squared convex parameters emerges when the Jensen inequality
was applied to partitioned double integral terms in the derivation of LMI conditions [28, 29]. And the
optimal divided method and the secondary partitioning method were provided for stability criteria in
double integral terms in LPF [30, 31].

Recently, the integral term with higher order approximation has been proposed, such as Wirtinger-
based double integral inequality [32], free-matrix-based integral inequality [33], auxiliary function-based
integral inequality [34]. These inequalities provided less conservation of stability criteria that those of the
Jensen or Wirtinger-based single integral inequities. Especially, a novel integral inequality which called
Bessel-Legendre (B-L) inequality has only been applied to the system with constant delays [35–38].
And also multiple-integral inequalities were newly developed to give high-order approximation to the
original integral, the associated integral terms in LPF are also increased [39, 40].

In this study, a new single integral inequality is proposed through using shifted Legendre polynomials,
and then the double integral inequality is developed with the utilization of Cholesky decomposition.
Both single and double integral inequalities are with arbitrary approximation order, which encompasses
the well-known Jensen and Wirtinger-based inequalities, auxiliary function-based integral inequalities,
and even the B-L inequality. The proposed two inequalities yield improved stability criteria with less
conservativeness.

This paper is organized as follows. Section 2 introduces the relevant theories of shifted Legendre
polynomials-based single and double integral inequalities, and section 3 and 4 provide application of
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proposed methods to systems with constant and time-varying delays, including numerical examples.

2. Shifted Legendre polynomials-based single and double integral inequalities

2.1. Shifted Legendre polynomials for single integral

The classical shifted Legendre polynomials are a set of functions analogous to the Legendre
polynomials, but defined on the interval [0, 1] as follows

pi(s) =

i∑
j=0

wi, js j, j = 0,1, · · · ,i (2.1)

where pi(s) denotes the i-order shifted Legendre polynomial, wi, j denotes the jth coefficient of pi(s).
We here call classical shifted Legendre polynomials as the shifted Legendre polynomials for single

integral with the following coefficient

wi, j = (−1)iCi
i+ jC

j
i (2.2)

where C j
i denotes the combination which can be written using factorials as

C j
i =

i!
j!(i − j)!

(2.3)

Shifted Legendre polynomials obey the orthogonality relationship, i. e.

∫ 1

0
pl(s)pm(s)ds =

l∑
i=0

m∑
j=0

(−1)i+ jCl
l+iC

i
lC

m
m+ jC

j
m

∫ 1

0
si+ jds

=

l∑
i=0

m∑
j=0

(−1)i+ jCl
l+iC

i
lC

m
m+ jC

j
m

1
i + j + 1

=
1

2m + 1
δlm

(2.4)

where δnm denotes the Kronecker delta.
Also we can represent shifted Legendre polynomials for single integral in the matrix form as follows

Um(s) =


1
s
...

sm

 , Lm(s) =


p0(s)
p1(s)
...

pm(s)

 (2.5)

The relationship between Lm(s) and Um(s) is obtained

Lm(s) = WmUm(s) (2.6)

where Wm is the coefficient matrix with the following form
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Wm = [(−1) jCi
i+ jC

j
i ]︸          ︷︷          ︸

i≥ j

=



1 · · ·

1 −2 · · ·

1 −6 6 · · ·
...

...
...

. . .

1 −m(m + 1) Cm
m+2C

2
m · · · (−1)mCm

2m


(2.7)

It’s obvious that Wn is a lower triangular matrix.
With similar formulation, (2.4) can be rewritten as

Gm =

∫ 1

0
Lm(s)LT

m(s)du =
[
gi j

]
=



1 · · ·
1
3 · · ·

1
5 · · ·

...
...

...
. . .

0 0 0 · · · 1
2m+1


(2.8)

2.2. Shifted Legendre polynomials for double integral

The interest of shifted Legendre polynomials for double integral is that the orthogonality relationship
exists if we use double integral instead of single integral.

The double integral of the product of two classical shifted Legendre polynomials can be obtained as
follows

hlm =

∫ 1

0

∫ 1

s
pl(u)pm(u)duds

=

l∑
i=0

m∑
j=0

(−1)i+ jCl
l+iC

i
lC

m
m+ jC

j
m

∫ 1

0

∫ 1

s
ui+ jduds

=

n∑
i=0

m∑
j=0

(−1)i+ jCl
l+iC

i
lC

m
m+ jC

j
m

1
i + j + 2

=


1

2(2m+1) , l = m
− m

2(2m−1)(2m+1) , l = m − 1
− l

2(2l−1)(2l+1) , l = m + 1
0, otherwise

(2.9)

which can also be extended using the form of matrix

Hm =

∫ 1

0

∫ 1

s
Lm(u)LT

m(u)duds

=
1
2



1
1 − 1

1×3
− 1

1×3
1
3 − 2

3×5
− 2

3×5
1
5 − 3

5×7

− 3
5×7

. . .
. . .

. . . 1
2m−1 − m

(2m−1)(2m+1)
− m

(2m−1)(2m+1)
1

2m+1


(2.10)
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Considering that Hm is a real-valued symmetric positive semi-definite matrix, we can gain the
associated lower triangular matrix using Cholesky decomposition

Hm = BmBT
m (2.11)

where

Bm =

√
2

2



1
−1

3

√
2

3

−
√

2
5

√
3

5
. . .

. . .

−
√

m
2m+1

√
m+1

2m+1


(2.12)

Since Bm > 0, Hm has the unique Cholesky decomposition. Unfortunately, (2.10) shows that Lm(u) is
not a proper set of basic functions when the double integral is employed instead of single integral. Thus,
we need to find new ones. We introduce the linear combination of {p j(s)} as follows

p̄i(s) =

i∑
j=0

di, j p j(s) (2.13)

i.e.

L̄m(u) =


p̄0(u)
p̄1(u)
...

p̄m(u)

 = DmLm(u) (2.14)

where Dm denotes the transition matrix from Lm(u) to L̄m(u) with the form

Dm = [di j]︸︷︷︸
i≥ j

=


d00 · · ·

d10 d11 · · ·
...

...
. . .

...

dm0 dm1 · · · dmm

 (2.15)

In order to obtain the proper shifted Legendre polynomials for double integral, the following equation
should be solved.

H̄m =

∫ 1

0

∫ 1

s
L̄m(u)L̄T

m(u)duds = DmHmDT
m =


h̄11

h̄22
. . .

h̄mm

 (2.16)

where {di j} and {hi j} are coefficients to be determined.
Substituting (2.11) into (2.16) yields
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DmVm =

√
H̄m =



√
h̄00 √

h̄11
. . . √

h̄mm

 (2.17)

By solving a serial of linear equations of (2.17), the matrices Dm and H̄m are achieved as following

Dm = [di j =
2 j + 1
i + 1

]︸           ︷︷           ︸
i≥ j

=


1
1
2

3
2

...
...

. . .
1

m+1
3

m+1 · · · 2m+1
m+1

 (2.18)

H̄m = [h̄ii =
1

2i + 2
]︸          ︷︷          ︸

i= j

= diag{
1
2
,
1
4
, · · · ,

1
2m + 2

} (2.19)

Thus the vector of shifted Legendre polynomials are achieved

L̄m(u) = DmLm(u) = DmWmUm(u) = W̄mUm(u) (2.20)

where, by (2.6),

W̄m =

(−1) j
i∑

k= j

2k + 1
i + 1

Ck
k+ jC

j
k

︸                          ︷︷                          ︸
i≥ j

=



1
2 −3
3 −12 10
...

...
...

. . .

m
m∑

k=1

2k+1
m+1 k(k + 1)

m∑
k=2

2k+1
m+1 Ck

k+2C
2
k · · · (−1)m 2m+1

m+1 Cm
2m



(2.21)

2.3. Shifted Legendre polynomials-based single integral inequality

For continuously vector function ẋ(τ) : [a,b] → Rn, the associated function ˙̃x(s) : [0,1] → Rn is
defined as follows

˙̃x(s) = ẋ(τ) = ẋ((b − a)s + a) (2.22)

where τ = (b − a)s + a.
We can develop the relationships between the single integrals of ẋ(τ) and ˙̃x(s)

(b − a)
∫ 1

0
sk ˙̃x(s)ds =

1
(b − a)k

∫ b

a
(τ − a)k ẋ(τ)dτ, k = 0,1,2, · · · (2.23)

The best weighted square approximation can be obtained with minimizing the following cost function

AIMS Mathematics Volume 5, Issue 5, 4371–4398.



4377

Js =

∫ b

a
( f (τ) − ẋ(τ))TR( f (τ) − ẋ(τ))dτ

= (b − a)
∫ 1

0
( f̃ (s) − ˙̃x(s))TR( f̃ (s) − ˙̃x(s))ds

(2.24)

where R > 0 denotes a symmetric positive-defined matrix with proper dimensions, f̃ (s) denotes the
approximation function defined as follows

f̃ (s) =

m∑
i=0

βi pi(s) (2.25)

where βi ∈ Rn denotes the weight corresponding to the shifted Legendre polynomial pi(s) for single
integral.

Substituting (2.25) into (2.24) yields

Js = (b − a)
∫ 1

0
(

m∑
i=0

βi pi(s) − ˙̃x(s))
T

R(
m∑

i=0

βi pi(s) − ˙̃x(s))ds

= (b − a)


m∑

i=0

m∑
j=0
βT

i Rβ j

∫ 1

0
pi(s)p j(s)ds

−sym
(

m∑
j=0
βT

i R
∫ 1

0
˙̃x(s)pi(s)ds

)
 +

∫ b

a
ẋT(τ)Rẋ(τ)dτ

= (b − a)
m∑

i=0

1
2i + 1

βT
i Rβi −

m∑
i=0

sym(βT
i Rωi) +

∫ b

a
ẋT(τ)Rẋ(τ)dτ

(2.26)

where ωi denotes the integral of the product of ˙̃x(s) and the i-th shifted Legendre polynomial pi(s) for
single integral. sym() is defined as the sum of vector/matrix with its own transpose sym(x) = x + xT.

ωi = (b − a)
∫ 1

0

˙̃x(s)pi(s)ds (2.27)

i.e.

$m =


ω0

ω1
...

ωm

 = (b − a)



∫ 1

0
˙̃x(s)p0(s)ds∫ 1

0
˙̃x(s)p1(s)ds

...∫ 1

0
˙̃x(s)pm(s)ds

 = (b − a)Ŵm



∫ 1

0
˙̃x(s)ds∫ 1

0
˙̃x(s)sds
...∫ 1

0
˙̃x(s)smds

 (2.28)

where Ŵm denotes the extension matrix associated to Wm

Ŵm = [(−1) jCi
i+ jC

j
i I]︸            ︷︷            ︸

i≥ j

=



I · · ·

I −2I · · ·

I −6I 6I · · ·
...

...
...

. . .

I −m(m + 1)I Cm
m+2C

2
mI · · · (−1)mCm

2mI


(2.29)
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where I denotes the identity matrix with proper dimensions.
Substituting (2.23) into (2.28) yields

$m =


ω0

ω1
...

ωm

 = Ŵm



∫ b

a
ẋ(τ)dτ

1
b−a

∫ b

a
(τ − a)ẋ(τ)dτ
...

1
(b−a)m

∫ b

a
(τ − a)m ẋ(τ)dτ


(2.30)

According to the static condition of (2.26), we obtain

∂Js

∂βi
= (R + RT)

(
b − a
2i + 1

βi − ωi

)
= 0 (2.31)

The second condition of (2.26)

[
∂2Js

∂βi∂β j
] =

b − a
2i + 1

(R + RT)δi j > 0 (2.32)

It means that the optimal β∗i = (2i + 1)ωi/(b − a) leads to the only minimum cost value

Ls ≥ L∗s =

∫ b

a
ẋT(s)Rẋ(s)ds −

1
b − a

m∑
i=0

ωT
i [(2i + 1)R]ωi > 0 (2.33)

Lemma 1 (shifted Legendre polynomials-based single integral inequality): For any symmetric
positive-defined constant matrix R ∈ Rn×n, R > 0, and vector function ẋ(t) : [a,b]→ Rn such that the
integrations concerned are well defined, then the following inequality exists∫ b

a
ẋT(τ)Rẋ(τ)dτ ≥

1
b − a

$T
mΩm(R)$m

=
1

b − a



ω0

ω1

ω2
...

ωm



T 

R 0 0 · · · 0
0 3R 0 · · · 0
0 0 5R · · · 0
...

...
...

. . .
...

0 0 0 · · · (2m + 1)R





ω0

ω1

ω2
...

ωm


(2.34)

Proof: It can be obtained from (2.33) observably.

Remark 1: The right term of the proposed single integral inequality (2.34) is approximation with
arbitrary order to the left term, i.e., when ẋ(t) = c0 + c1t + · · · + cmtm, ci ∈ Rn, i = 0,1, · · · ,m, the left
term is exactly equal to the right term.
Proof: The function ẋ(t) = c0 + c1t + · · · + cmtm can be rewritten as

ẋ((b − a)s + a) = c0 + c1[(b − a)s + a] + · · · + cm[(b − a)s + a]m

= c̃0 + c̃1s + · · · + c̃msm

= ˙̃x(s)
(2.35)

where
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c̃k = (b − a)k
m∑

i=k

ak−iCi
k (2.36)

˙̃x(s) can also be expressed by serial of shifted Legendre polynomials {pk(s)} as follows

˙̃x(s) = λ0 p0(s) + λ1 p1(s) + · · · + λm pm(s) (2.37)

where

λi =

∫ 1

0
˙̃x(s)pi(s)ds∫ 1

0
pi(s)pi(s)ds

=
2i + 1
b − a

ωi (2.38)

Thus the left term of (2.34) becomes∫ b

a
ẋT (τ)Rẋ(τ)dτ = (b − a)

∫ 1

0

 m∑
i=0

λi pi(s)

 R

 m∑
i=0

λi pi(s)

 ds

= (b − a)
m∑

i=0

m∑
j=0

λT
i Rλ j

∫ 1

0
pi(s)p j(s)ds

= (b − a)
m∑

i=0

1
2i + 1

λT
i Rλi

= (b − a)
m∑

i=0

1
2i + 1

(
2i + 1
b − a

ωi

)T

R
(
2i + 1
b − a

ωi

)T

=
1

b − a

m∑
i=0

(2i + 1)ωT
i Rωi

(2.39)

This complete the proof.

Remark 2: The integral inequality (2.34) degenerates to Jensen inequality when m = 0 [2].
Proof: Substituting m = 0 into (2.34) yields∫ b

a
ẋT(τ)Rẋ(τ)dτ ≥

1
b − a

$TΩ$ =
1

b − a
ωT

0 Rω0

=
1

b − a

(∫ b

a
ẋ(τ)dτ

)T

R
(∫ b

a
ẋ(τ)dτ

)
=

1
b − a

(x(b) − x(a))TR(x(b) − x(a))

(2.40)

This complete the proof.

Remark 3: The integral inequality (2.34) degenerates to Wirtinger-based inequality when m = 1 [18].
Proof: According to (2.30) we have

ω0 =

∫ b

a
ẋ(τ)dτ = x(b) − x(a) = ωWirtinger,0 (2.41)
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ω1 =

∫ b

a
ẋ(τ)dτ −

2
b − a

∫ b

a
(τ − a)ẋ(τ)dτ

= x(b) − x(a) −
2

b − a

[
(b − a)x(b) −

∫ b

a
x(τ)dτ

]
= −

[
x(a) + x(b) −

2
b − a

∫ b

a
x(τ)dτ

]
= −ωWirtinger,1

(2.42)

Substituting (2.41) and (2.42) into (2.34) yields∫ b

a
ẋT(τ)Rẋ(τ)dτ ≥

1
b − a

[
ω0

ω1

]T [
R

3R

] [
ω0

ω1

]
=

1
b − a

[
ωWirtinger,0

ωWirtinger,1

]T [
R

3R

] [
ωWirtinger,0

ωWirtinger,1

] (2.43)

This complete the proof.

2.4. Shifted Legendre polynomials-based double integral inequality

For continuously vector function ẋ(τ) : [a,b]→ Rn, and it’s associated function ˙̃x(s) : [0,1]→ Rn

defined in (2.22), we can develop the relationships between the double integrals of ẋ(τ) and ˙̃x(s) as
follows

(b − a)2
∫ 1

0

∫ 1

s
uk ˙̃x(u)duds = 1

(b−a)k

∫ b

a

∫ b

θ
(τ − a)k ẋ(τ)dτdθ

k = 0,1,2, · · ·
(2.44)

where

u =
τ − a
b − a

, s =
θ − a
b − a

The best weighted square approximation with double integral can be obtained with minimizing the
following cost function

Jd =

∫ b

a

∫ b

θ

(g(τ) − ẋ(τ))TR(g(τ) − ẋ(τ))dτdθ

= (b − a)2
∫ 1

0

∫ 1

s
(g̃(u) − ˙̃x(u))TR(g̃(u) − ˙̃x(u))duds

(2.45)

where R > 0 denotes a positive-defined matrix with proper dimensions, g̃(u) denotes the approximation
function defined as follows

g̃(u) =

m∑
i=0

βi p̄i(s) (2.46)

where βi ∈ Rn denotes the weight corresponding to the shifted Legendre polynomial p̄i(s) for double
integral .

AIMS Mathematics Volume 5, Issue 5, 4371–4398.



4381

Substituting (2.46) into (2.45) yields

Jd = (b − a)2
∫ 1

0

∫ 1

s

 m∑
i=0

βi p̄i(u) − ˙̃x(u)

T

R

 m∑
i=0

βi p̄i(u) − ˙̃x(u)

 duds

= (b − a)2


m∑

i=0

m∑
j=0
βT

i Rβ j

∫ 1

0

∫ 1

s
p̄i(s) p̄ j(s)duds

−sym
(

m∑
j=0
βT

i R
∫ 1

0

∫ 1

s
˙̃x(s) p̄ j(s)duds

)
 +

∫ b

a

∫ b

θ

ẋT(τ)Rẋ(τ)dτdθ

= (b − a)2
m∑

i=0

1
2i + 2

βT
i Rβi − (b − a)

m∑
i=0

sym(βT
i Rνi) +

∫ b

a

∫ b

θ

ẋT(τ)Rẋ(τ)dτdθ

(2.47)

where νi denotes the integral of the product of ˙̃x(s) and the i-th shifted Legendre polynomial pi(s) for
single integral

νi = (b − a)
∫ 1

0

∫ 1

s

˙̃x(s) p̄i(u)duds (2.48)

i.e.

ν̄m =


ν0

ν1
...

νm

 = (b − a)



∫ 1

0

∫ 1

s
˙̃x(s) p̄0(u)duds∫ 1

0

∫ 1

s
˙̃x(s) p̄1(u)duds

...∫ 1

0

∫ 1

s
˙̃x(s) p̄m(u)duds

 = (b − a)̂̄Wm



∫ 1

0

∫ 1

s
˙̃x(s)duds∫ 1

0

∫ 1

s
˙̃x(s)duds
...∫ 1

0

∫ 1

s
˙̃x(s)umduds

 (2.49)

where ̂̄Wm denotes the extension matrix associated to W̄m

̂̄Wm = [(−1) j
i∑

k= j

2k + 1
i + 1

Ck
k+ jC

j
kI]︸                           ︷︷                           ︸

i≥ j

=



I
2I −3I
3I −12I 10
...

...
...

. . .

mI
m∑

k=1

2k+1
m+1 k(k + 1)I

m∑
k=2

2k+1
m+1 Ck

k+2C
2
k I · · · (−1)m 2m+1

m+1 Cm
2mI



(2.50)

Substituting (2.44) into (2.49) yields

ν̄m =


ν0

ν1
...

νm

 = ̂̄Wm


1

b−a

∫ b

a

∫ b

θ
ẋ(τ)dτdθ

1
(b−a)2

∫ b

a

∫ b

θ
(τ − a)ẋ(τ)dτdθ
...

1
(b−a)m+1

∫ b

a

∫ b

θ
(τ − a)m ẋ(τ)dτdθ


= ̂̄Wm


1

b−a

∫ b

a
(τ − a)ẋ(τ)dτ

1
(b−a)2

∫ b

a
(τ − a)2 ẋ(τ)dτ
...

1
(b−a)m+1

∫ b

a
(τ − a)m+1 ẋ(τ)dτ


(2.51)
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According to the static condition of (2.47), we obtain

∂Jd

∂βi
= (R + RT)

[
(b − a)2

2i + 2
βi − (b − a)νi

]
= 0 (2.52)

The second condition of (2.47)

[
∂2Jd

∂βi∂β j
] =

(b − a)2

2i + 2
(R + RT)δi j > 0 (2.53)

It means that the optimal β∗i = 2i+2
b−a νi leads to the only minimum cost value

Ld ≥ L∗d =

∫ b

a

∫ b

θ

ẋT(τ)Rẋ(τ)dτdθ −
m∑

i=0

νT
i [(2i + 2)R]νi > 0 (2.54)

Lemma 2 (shifted Legendre polynomials-based double integral inequality): For any
positive-defined constant matrix R ∈ Rn×n, R > 0, and vector function ẋ(t) : [a,b]→ Rn such that the
integrations concerned are well defined, then the following inequality exists

∫ b

a

∫ b

θ

ẋT(τ)Rẋ(τ)dτdθ ≥ ν̄T
mΩ̄m(R)ν̄m =



ν0

ν1

ν2
...

νm



T 

2R 0 0 · · · 0
0 4R 0 · · · 0
0 0 6R · · · 0
...

...
...

. . .
...

0 0 0 · · · (2m + 2)R





ν0

ν1

ν2
...

νm


(2.55)

Proof: It can be obtained from (2.54) observably.

Remark 1: The right term of the proposed single integral inequality (2.34) is approximation with
arbitrary order to the left term, i.e., when ẋ(t) = c0 + c1t + · · · + cmtm, ci ∈ Rn, i = 0,1, · · · ,m, the left
term is exactly equal to the right term.
Proof: The function ẋ(t) = c0 + c1t + · · · + cmtm can be rewritten as

ẋ((b − a)s + a) = c0 + c1[(b − a)s + a] + · · · + cm[(b − a)s + a]m

= c̃0 + c̃1s + · · · + c̃msm

= ˙̃x(s)
(2.56)

where

c̃k = (b − a)k
m∑

i=k

ak−iCi
k (2.57)

˙̃x(s) can also be expressed by serial of shifted Legendre polynomials {p̄k(s)} as follows

˙̃x(s) = λ0 p̄0(s) + λ1 p̄1(s) + · · · + λm p̄m(s) (2.58)

where
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λi =

∫ 1

0

∫ 1

s
˙̃x(s) p̄i(u)duds∫ 1

0

∫ 1

s
p̄i p̄i(u)duds

=
2i + 2
b − a

νi (2.59)

Thus the left term of (2.34) becomes

∫ b

a

∫ b

θ

ẋT(τ)Rẋ(τ)dτdθ = (b − a)2
∫ 1

0

∫ 1

s

˙̃x(u)TR ˙̃x(s)duds

= (b − a)2
m∑

i=0

m∑
j=0

(
2i + 2
b − a

νi

)T

R
(
2 j + 2
b − a

ν j

) ∫ 1

0

∫ 1

s
p̄i(s) p̄ j(s)duds

=

m∑
i=0

νT
i [(2i + 2)R]νi

(2.60)

This complete the proof.

Remark 2: The integral inequality (2.34) degenerates to auxiliary function-based integral inequality
when m = 1 [34].
Proof: According to (2.51) we have

ν0 =
1

b − a

∫ b

a

∫ b

θ

ẋ(τ)dτdθ = x(b) −
1

b − a

∫ b

a
x(τ)dτ (2.61)

ν1 =
2

b − a

∫ b

a

∫ b

θ

ẋ(τ)dτdθ −
2

(b − a)2

∫ b

a

∫ b

θ

(τ − a)ẋ(τ)dτdθ

= 2
[
x(b) −

1
b − a

∫ b

a
x(τ)dτ

]
− 3

[
x(b) −

2
(b − a)2

∫ b

a

∫ b

θ

x(τ)dτdθ
]

= −x(b) −
2

b − a

∫ b

a
x(τ)dτ +

6
(b − a)2

∫ b

a

∫ b

θ

x(τ)dτdθ

(2.62)

Note that ν0 and ν1 are just the coefficients of auxiliary function-based integral inequality. This
complete the proof.

3. Applications to systems with constant delays

3.1. Systems with constant delays

Let us consider the following linear system with constant delay interval

ẋ(t) = Ax(t) + Ahx(t − h)
x(t) = ϕ(t), t ∈ [−h,0]

(3.1)

where x(t) ∈ Rn denotes the state vector of the system with n dimensions, A and Ah are real known
constant matrices with appropriate dimensions, the continuously differentiable functions ϕ(t) denote the
initial condition, h ≥ 0 denotes the system’s constant delay.
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Theorem 1: The system (3.1) is asymptotically stable if there exist matrices P > 0, Q > 0, R > 0 and
S > 0 such that the following conditions hold [41]: BTPC + CTPB + eT

1 Qe1 − eT
2 Qe2 + h2AT

e RAe + 1
2h2AT

e S Ae

−ΨTŴT
mΩm(R)ŴmΨ − Ψ̄T ̂̄WT

mΩ̄m(S )̂̄WmΨ̄

 < 0 (3.2)

where the notations in (3.2) are intermediate variables that defined properly in previous and in the
process of proof, which can be found as B in (3.10), C in (3.12), e1, e2 in (3.10), h in (3.1), Ae in (3.11),
Ψ in (3.13), Ŵm in (2.29), Ωm in (2.34), Ψ̄ in (3.14), ̂̄Wm in (3.7), Ω̄m in (3.18).
Proof: We define a set of functions {yk(t)} as follows

yk(t)
∆
= h

∫ 1

0

˙̃x(s)ukdu =
1
hk

∫ t

t−h
ẋ(τ)(τ − t + h)kdτ

k = 0,1,2, · · ·
(3.3)

The time derivatives of yk(t) can be obtained as follows

ẏk(t) =
d
dt

[
1
hk

∫ t

t−h
ẋ(τ)(τ − t + h)kdτ

]
= ẋ(t) −

k
hk

∫ t

t−h
ẋ(τ)(τ − t + h)k−1dτ

= ẋ(t) −
k
h

yk−1(t)

= Ax(t) + Ahx(t − h) −
k
h

yk−1(t)

(k ≥ 1)

(3.4)

And the initial we have

y0(t) =

∫ t

t−h
ẋ(τ)dτ = x(t) − x(t − h)

ẏ1(t) = ẋ(t) −
1
h

y0(t) = (A −
1
h

I)x(t) + (Ah +
1
h

I)x(t − h)
(3.5)

Let a = t − h, b = t, we can obtain {ωk} and {νk} for shifted Legendre polynomials-based single and
double integral inequalities, respectively

ω0

ω1
...

ωm

 = Ŵm



∫ t

t−h
ẋ(τ)dτ

1
h

∫ t

t−h
ẋ(τ)(τ − t + h)dτ

...
1

hm

∫ t

t−h
ẋ(τ)(τ − t + h)mdτ

 = Ŵm


y0(t)
y1(t)
...

ym(t)

 (3.6)


ν0

ν1
...

νm−1

 = ̂̄Wm


1
h

∫ t

t−h
ẋ(τ)(τ − t + h)dτ

1
h2

∫ t

t−h
ẋ(τ)(τ − t + h)2dτ

...
1

hm

∫ t

t−h
ẋ(τ)(τ − t + h)mdτ

 = ̂̄Wm


y1(t)
y2(t)
...

ym(t)

 (3.7)
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We define extra-states χ(t) and ξ(t) as follows

χ(t) =


x(t)
y1(t)
...

ym(t)


 , ξ(t) =



[
x(t)

x(t − h)

]


y1(t)
...

ym(t)




(3.8)

The extra-states χ(t) can be expressed by ξ(t)

χ(t) = Bξ(t) (3.9)

where

B =



e1

e3

e4
...

em


=

 [
In 0n

]
Inm

 (3.10)

where ek = [ 0 0 0︸      ︷︷      ︸
k−1

I 0 0 0︸      ︷︷      ︸
m+2−k

] denotes the k-th row coefficient of ξ(t), In and 0n denote the identity

and zeros matrix with dimensions n × n, respectively.
And the system (3.1) can be rewritten as

ẋ(t) = Aeξ(t) (3.11)

where Ae = Ae1 + Ahe2.
The time derivative of χ(t) can be obtained as follows

χ̇(t) = Cξ(t) (3.12)

where

C =

 [
A Ah

]
0n×nm

M −1
hΛ



M =



A − 1
h I Ah + 1

h I
A Ah

A Ah
...

...

A Ah


, Λ =



0
2I 0

3I 0
. . .

. . .

mI 0


According to (3.6) and (3.8), we have
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ω0

ω1
...

ωm

 = Ŵm


y0(t)
y1(t)
...

ym(t)

 = Ŵm


x(t) − x(t − h)

y1(t)
...

ym(t)

 = ŴmΨξ(t) (3.13)

where

Ψ =

[
In −In 0
0 0 Inm

]
With similar method, we have following according to (3.7) and (3.8)

ν0

ν1
...

νm−1

 = ̂̄Wm


y1

y2
...

ym

 = ̂̄WmΨ̄ξ(t) (3.14)

where Ψ̄ =
[

0nm×n 0nm×n Inm

]
In order to analysis the stability of the system (3.1), we consider the following Lyapunov-Krasovskii

functional (LKF) candidates

V =

 χ(t)TPχ(t) +
∫ t

t−h
xT(τ)Qx(τ)dτ

+h
∫ t

t−h

∫ t

θ
ẋT(τ)Rẋ(τ)dτdθ +

∫ t

t−h

∫ t

γ

∫ t

θ
ẋT(τ)S ẋ(τ)dτdθdγ

 (3.15)

Taking the time derivative of V(t) yields

V̇(t) =


χT(t)Pχ̇(t) + χ̇T(t)Pχ(t)
+xT(t)Qx(t) − xT(t − h)Qx(t − h)
+h2 ẋT(t)Rẋ(t) − h

∫ t

t−h
ẋT(τ)Rẋ(τ)dτ

+h2

2 ẋT(t)S ẋ(t) −
∫ t

t−h

∫ t

θ
ẋT(τ)S ẋ(τ)dτdθ


≤ ξT(t)

 BTPC + CTPB + eT
1 Qe1 − eT

2 Qe2 + h2AT
e RAe + 1

2h2AT
e S Ae

−ΨTŴT
mΩm(R)ŴmΨ − Ψ̄T ̂̄WT

mΩ̄m(S )̂̄WmΨ̄

 ξ(t)
< 0

(3.16)

Recalling that (2.34) and (2.55), following inequalities are employed to yield the upper bound of V̇(t)

h
∫ t

t−h
ẋT(τ)Rẋ(τ)dτ ≥ $TΩm(R)$ = ξT(t)

(
ΨTŴT

mΩm(R)ŴmΨ
)
ξ(t) (3.17)

∫ t

t−h

∫ t

θ

ẋT(τ)S ẋ(τ)dτdθ ≥ ν̄TΩ̄m(S )ν̄ = ξT(t)
(
Ψ̄T ̂̄WT

mΩ̄m(S )̂̄WmΨ̄

)
ξ(t) (3.18)

This complete the proof.
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3.2. Examples

Example 1: We consider the well-known delay dependent stable system (3.1) with following coefficient
matrices as given in [29]:

A =

[
−2 0
0 −0.9

]
, Ah =

[
−1 0
−1 −1

]

Using delay sweeping techniques the maximum allowable delay hmax = 6.1725 can be obtained.
Also many recent papers provide different results using Jensen inequality, Wirtinger-based inequality,
and so on. The allowable maximum delays are shown in Table 1. We observe that the upper bounds
obtained by our proposed inequalities are significantly better than those in other literatures.

Table 1. The maximum allowable delay.

Theorems hmax Number of variables

Sun et al. (2010) [24] 4.47 1.5n2 + 1.5n
Park, Ko, and Jeong (2011) [28] 5.02 18n2 + 18n

Ariba, Gouaisbaut, and Johansson (2010) [42] 5.12 7n2 + 4n
Seuret and Gouaisbaut (2013) [18] 6.059 3n2 + 2n

Hien and Trinh (2015) [43] 6.16 19.5n2 + 4.5n
Liu and Seuret (2017) Theorem 1 [38] 6.1664 79.5n2 + 4.5n

Theorem 1 (m=0) 4.472 1.5n2 + 1.5n
Theorem 1 (m=1) 6.059 3.5n2 + 2.5n
Theorem 1 (m=2) 6.167 6n2 + 3n
Theorem 1 (m=3) 6.1719 9.5n2 + 3.5n
Theorem 1 (m=4) 6.1725 14n2 + 4n

Example 2: We consider the dynamics of machining chatter with following coefficient matrices as
firstly studied in [36]:

A =


0 0 1 0
0 0 0 1

−10 − K 10 0 0
5 −15 0 −0.25

 , Ah =


0 0 0 0
0 0 0 0
−K 0 0 0
0 0 0 0


where K denotes a parameter.

It’s obviously that the system is stable with K less than some upper bound. Here we try to the upper
bound in various delays. It’s shown that Lemma 1 and Lamme 2 yield more stability region than
those derived from Jensen and Wirtinger-based Lemma, as illustrated in Figure 1. When the parameter
K ≤ 0.295, the system is still stable even the delay is very large, such as h = 500.
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Figure 1. Allowable upper K with variable delay h.

4. Applications to systems with time-varying delays

4.1. Systems with time-varying delays

Let us consider the following system with interval time-varying delay:

ẋ(t) = Ax(t) + Ahx(t − h(t))
x(t) = ϕ(t), t ∈ [−h2,0]

(4.1)

where x(t) ∈ Rn denotes the state vector of the system with n dimensions, A and Ah are real known
constant matrices with appropriate dimensions, the continuously differentiable functions h(t) and ϕ(t)
denote the system’s time-varying delay and the initial condition, respectively.
Assumption 1: The delay function h(t) and its differential ḣ(t) both have finite bounds, i.e., there exist
scales h2 ≥ h1 > 0 and µ1 ≤ µ2 ≤ 1 such that{

0 < h1 ≤ h(t) ≤ h2

µ1 ≤ ḣ(t) ≤ µ2 ≤ 1
(4.2)

Theorem 2: The system (4.1) is asymptotically stable if there exist matrices P > 0, Q1 > 0, Q2 > 0,
Q3 > 0, R1 > 0, R2 > 0, R3 > 0, and S 1 > 0, S 2 > 0, S 3 > 0 such that the following conditions
hold [41]:

Φ =


BT

2 PC2 + CT
2 PB2 + eT

1 (Q1 + Q2 + Q3)e1 − eT
3 Q1e3 − eT

4 Q2e4 − (1 − µ2)eT
2 Q3e2

+h1AT
e R1Ae −

1
h1

ΨT
1 ŴT

mΩ1(R1)ŴmΨ1 + h2AT
e R2Ae −

1
h2

ΨT
2 ŴT

mΩ2(R2)ŴmΨ2

+h2AT
e R3Ae −

(1−µ2)
h2

ΨT
3 ŴT

mΩ3(R3)ŴmΨ3 +
h2

1
2 AT

e S 1Ae − Ψ̄T
1
̂̄WT

mΩ̄1(S 1)̂̄WmΨ̄1

+
h2

2
2 AT

e S 2Ae − Ψ̄T
2
̂̄WT

mΩ̄2(S 2)̂̄WmΨ̄2 +
h2

2
2 AT

e S 3Ae − (1 − µ2)Ψ̄T
3
̂̄WT

mΩ̄3(S 3)̂̄WmΨ̄3

 < 0 (4.3)
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where the notations in (4.2) are intermediate variables that defined properly in previous and in the
process of proof, which can be found as B2 in (4.8), C2 in (4.11), e1, e2, e3, e4 in (3.10), h1, h2 in (4.6),
µ2 in (4.16), Ae in (3.11), Ψ1,Ψ2,Ψ3 in (4.14), Ψ̄1, Ψ̄2, Ψ̄3 in (4.14), Wm in (2.7), Ŵm in (2.29), ̂̄Wm in
(3.7), Ω1,Ω2,Ω3 in (4.13), Ω̄m in (3.18), Ω̄1, Ω̄2, Ω̄3 in (4.13).
Proof: If the delay h is varying with time t, then we can develop from (3.3)

d
dt

yk(t) =
∂yk(t)
∂t

+
∂yk(t)
∂h

∂h
∂t

= ẋ(t) −
k
h

yk−1(t) −
kḣ
h

(yk(t) − yk−1(t))

= ẋ(t) −
(1 − ḣ)k

h
yk−1(t) −

ḣk
h

yk(t)

(4.4)

d
dt

y1(t) = ẋ(t) −
(1 − ḣ)

h
y0(t) −

ḣk
h

y1(t)

=

[
A −

(1 − ḣ)
h

I
]

x(t) +

[
Ah +

(1 − ḣ)
h

I
]

x(t − h) −
ḣk
h

y1(t)
(4.5)

If h = h1 or h = h2 is a constant variable, (3.3) yields

d
dt

ŷk(hi, t) = ẋ(t) −
k
hi

ŷk−1(hi, t)

= Ax(t) + Ah(t − h) −
k
hi

ŷk−1(hi, t)

d
dt

ŷ1(hi, t) = ẋ(t) −
1
hi

ŷ0(hi, t)

=

(
A −

1
hi

I
)

x(t) + Ahx(t − h) +
1
hi

x(t − hi)

(i = 1,2)

(4.6)

We introduce the following extra-states χ̂m(t) and ξ̂m(t) as follows

χ̂m(t) =



x(t)
y1(t)
...

ym(t)


ŷ1(h1, t)

...

ŷm(h1, t)


ŷ1(h2, t)

...

ŷm(h2, t)





, ξ̂m(t) =




x(t)

x(t − h)
x(t − h1)
x(t − h2)


y1(t)
...

ym(t)


ŷ1(h1, t)

...

ŷm(h1, t)


ŷ1(h2, t)

...

ŷm(h2, t)





(4.7)
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The extra-states can be expressed by ξ̂m(t)

χ̂m(t) = B2ξ̂m(t) (4.8)

where

B2(h) =


[

In 0n 0n 0n

]
Inm

Inm

Inm

 (4.9)

And the system (3.1) can be rewritten as

ẋ = Aeξ̂m(t) (4.10)

where Ae =
[

A Ah 0n×(nm+2n)

]
The time derivative of χ̂m(t) can be obtained as follows

˙̂χm(t) = C2(h, ḣ)ξ̂m(t) (4.11)

where

C2(h, ḣ) =


[

A Ad 0n 0n

]
M0 −

(1−ḣ)
h Λ − ḣ

hΓ

M1 − 1
h1

Λ

M2 − 1
h2

Λ


where

Λ =



0
2I 0

3I 0
. . .

. . .

mI 0


, Γ =



I
2I

3I
. . .

mI



M0 =


A − (1−ḣ)

h I Ah +
(1−ḣ)

h I 0n 0n

A Ah 0n 0n
...

...
...

...

A Ah 0n 0n
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M1 =


A − 1

h1
I Ah

1
h1

In 0n

A Ah 0n 0n
...

...
...

...

A Ah 0n 0n

 , M2 =


A − 1

h2
I Ah 0n

1
h2

In

A Ah 0n 0n
...

...
...

...

A Ah 0n 0n


In order to analysis the stability of the system (4.1), we consider the following Lyapunov-Krasovskii

functional (LKF) candidates

V(t) =

10∑
k=1

Vk(t) (4.12)

where

V1(t) = χ̂(t)TPχ̂(t)

V2(t) =

∫ t

t−h1

xT(s)Q1x(s)ds

V3(t) =

∫ t

t−h2

xT(s)Q2x(s)ds

V4(t) =

∫ t

t−h(t)
xT(s)Q3x(s)ds

V5(t) =

∫ t

t−h1

∫ t

s
ẋT(u)R1 ẋ(u)duds

V6(t) =

∫ t

t−h2

∫ t

s
ẋT(u)R2 ẋ(u)duds

V7(t) =

∫ t

t−h(t)

∫ t

s
ẋT(u)R3 ẋ(u)duds

V8(t) =

∫ t

t−h1

∫ t

θ

∫ t

s
ẋT(u)S 1 ẋ(u)dudsdθ

V9(t) =

∫ t

t−h2

∫ t

θ

∫ t

s
ẋT(u)S 2 ẋ(u)dudsdθ

V10(t) =

∫ t

t−h(t)

∫ t

θ

∫ t

s
ẋT(u)S 3 ẋ(u)dudsdθ

Taking the time derivative of Vk(t) yields
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V̇1(t) = χ̂m(t)TP ˙̂χm(t) + ˙̂χm(t)TPχ̂m(t)

= ξ̂T
m(t)

(
BTPC + CTPB

)
ξ̂m(t)

V̇2(t) = xT (t)Q1x(t) − xT(t − h1)Q1x(t − h1)

= ξ̂T
m(t)

(
eT

1 Q1e1 − eT
3 Q1e3

)
ξ̂m(t)

V̇3(t) = xT(t)Q2x(t) − xT(t − h2)Q2x(t − h2)

= ξ̂T
m(t)

(
eT

1 Q2e1 − eT
4 Q2e4

)
ξ̂m(t)

V̇4(t) = xT(t)Q3x(t) − (1 − ḣ)xT(t − h)Q3x(t − h)

= ξ̂T
m(t)

[
eT

1 Q3e1 − (1 − ḣ)eT
2 Q3e2

]
ξ̂m(t)

V̇5(t) = h1 ẋT(t)R1 ẋ(t) −
∫ t

t−h1

ẋT(s)R1 ẋ(s)ds

≤ ξ̂T
m(t)

(
h1AT

e R1Ae −
1
h1

ΨT
1 ŴT

mΩ1(R1)ŴmΨ1

)
ξ̂m(t)

V̇6(t) = h2 ẋT(t)R2 ẋ(t) −
∫ t

t−h2

ẋT(s)R2 ẋ(s)ds

≤ ξ̂T
m(t)

(
h2AT

e R2Ae −
1
h2

ΨT
2 ŴT

mΩ2(R2)ŴmΨ2

)
ξ̂m(t)

V̇7(t) = h(t)ẋT(t)R3 ẋ(t) − (1 − ḣ)
∫ t

t−h(t)
ẋT(s)R3 ẋ(s)ds

≤ ξ̂T
m(t)

(
hAT

e R3Ae −
1 − ḣ

h
ΨT

3 ŴT
mΩ3(R3)ŴmΨ3

)
ξ̂m(t)

V̇8(t) =
h2

1

2
ẋT(t)S 1 ẋ(t) −

∫ t

t−h1

∫ t

s
ẋT(u)S 1 ẋ(u)duds

≤ ξ̂T
m(t)

(
h2

1

2
AT

e S 1Ae − Ψ̄T
1
̂̄WT

mΩ̄1(S 1)̂̄WmΨ̄1

)
ξ̂m(t)

V̇9(t) =
h2

2

2
ẋT(t)S 2 ẋ(t) −

∫ t

t−h2

∫ t

s
ẋT(u)S 2 ẋ(u)duds

≤ ξ̂T
m(t)

(
h2

2

2
AT

e S 2Ae − Ψ̄T
2
̂̄WT

mΩ̄2(S 2)̂̄WmΨ̄2

)
ξ̂m(t)

V̇10(t) =
h2

2
ẋT(t)S 3 ẋ(t) − (1 − ḣ)

∫ t

t−h1

∫ t

s
ẋT(u)S 1 ẋ(u)duds

≤ ξ̂T
m(t)

(
h2

2
AT

e S 3Ae − (1 − ḣ)Ψ̄T
3
̂̄WT

mΩ̄3(S 3)̂̄WmΨ̄3

)
ξ̂m(t)

(4.13)

where
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Ψ1 =

[
In 0n −In 0n 0nm

Ψ̄1

]
, Ψ̄1 =

[
0nm×4n 0nm Inm 0nm

]
Ψ2 =

[
In 0n 0n −In 0nm

Ψ̄2

]
, Ψ̄2 =

[
0nm×4n 0nm 0nm Inm

]
Ψ3 =

[
In −In 0n 0n 0nm

Ψ̄3

]
, Ψ̄3 =

[
0nm×4n Inm 0nm 0nm

] (4.14)

Thus the sum of V̇k(t), k = 1,2, · · · ,10 yields

V̇(t) = ξT (t)


BT

2 PC2 + CT
2 PB2 + eT

1 (Q1 + Q2 + Q3)e1 − eT
3 Q1e3 − eT

4 Q2e4 − (1 − ḣ)eT
2 Q3e2

+h1AT
e R1Ae −

1
h1

ΨT
1 ŴT

mΩ1(R1)ŴmΨ1 + h2AT
e R2Ae −

1
h2

ΨT
2 ŴT

mΩ2(R2)ŴmΨ2

+hAT
e R3Ae −

(1−ḣ)
h ΨT

3 ŴT
mΩ3(R3)ŴmΨ3 +

h2
1

2 AT
e S 1Ae − Ψ̄T

1
̂̄WT

mΩ̄1(S 1)̂̄WmΨ̄1

+
h2

2
2 AT

e S 2Ae − Ψ̄T
2
̂̄WT

mΩ̄2(S 2)̂̄WmΨ̄2 +
h2

2 AT
e S 3Ae − (1 − ḣ)Ψ̄T

3
̂̄WT

mΩ̄3(S 3)̂̄WmΨ̄3

︸                                                                                                      ︷︷                                                                                                      ︸
Ξ(h,ḣ)

ξ(t)

< 0
(4.15)

Notice that Ξ(h,ḣ) ≤ Ξ(h2,µ2) for all h ∈ [h1,h2] and ḣ ∈ [µ1,µ2], we can develop that V̇(t) ≤
ξT (t)Φξ(t) < 0, where

Φ = Ξ(h2, µ2) =


BT

2 PC2 + CT
2 PB2 + eT

1 (Q1 + Q2 + Q3)e1 − eT
3 Q1e3 − eT

4 Q2e4 − (1 − µ2)eT
2 Q3e2

+h1AT
e R1Ae −

1
h1

ΨT
1 ŴT

mΩ1(R1)ŴmΨ1 + h2AT
e R2Ae −

1
h2

ΨT
2 ŴT

mΩ2(R2)ŴmΨ2

+h2AT
e R3Ae −

(1−µ2)
h2

ΨT
3 ŴT

mΩ3(R3)ŴmΨ3 +
h2

1
2 AT

e S 1Ae − Ψ̄T
1
̂̄WT

mΩ̄1(S 1)̂̄WmΨ̄1

+
h2

2
2 AT

e S 2Ae − Ψ̄T
2
̂̄WT

mΩ̄2(S 2)̂̄WmΨ̄2 +
h2

2
2 AT

e S 3Ae − (1 − µ2)Ψ̄T
3
̂̄WT

mΩ̄3(S 3)̂̄WmΨ̄3


(4.16)

This complete the proof.

4.2. Examples

Example 1: We also consider the well-known delay dependent stable system (4.1) with following
coefficient matrices as given in [29]:

A =

[
−2 0
0 −0.9

]
, Ah =

[
−1 0
−1 −1

]
(4.17)

The delay rate bounds µ1 = −µ, µ2 = µ. We herein calculate the allowable upper bound h2 for various
delay rate µ via Theorem 2, as illustrate in Figure 2. It’s shown that h2 deceases continuously with delay
rate µ growing.

The allowable upper bounds h2 varying with given µ are shown in Table 2. We observe that the
upper bounds obtained by Theorem 2 are significantly better than others. Theorem 1 provides the least
conservative results.

For simulation, let the time-varying delay h(t) = 3 + 2 cos(0.25t), which means that h1 = 1, h2 = 5,
µ1 = −0.5, and µ2 = 0.5. The initial condition of the system is chosen as x(0) = [1, − 1]T. The time
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history of system states is illustrated in Figure 3. As our expectation, both states asymptotically converge
to zero despite the previous vibration.

 

Figure 2. Allowable upper h2 with variable delay µ.

 

Figure 3. Time history of system states.

Example 2: Consider the time-varying delay system (4.1) with the following parameters [33]:

A =

[
0 1
−1 −1

]
, Ah =

[
0 0
0 −1

]
(4.18)
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Table 2. Allowable upper bound h2 for different µ (example 1).

µ

Methods 0.1 0.2 0.5 0.8 Number of variables

Fridman and Uri (2002) [44] 3.604 3.033 2.008 1.364 5.5n2 + 1.5n
He et al. (2007) [16] 3.605 3.039 2.043 1.492 3n2 + 3n

Park and Ko (2007) [45] 3.658 3.163 2.337 1.934 11.5n2 + 4.5n
Ariba and Gouaisbaut (2009) [13] 4.794 3.995 2.682 1.957 22n2 + 8n

Zeng et al. (2013) (N=2) [17] 4.466 3.657 2.375 1.987 11.5n2 + 3.5n
Zeng et al. (2013) (N=3) [17] 4.628 3.766 2.442 2.079 17n2 + 5n

Seuret and Gouaisbaut (2013) [18] 4.703 3.834 2.420 2.137 10n2 + 3n
Zeng et al. (2015) [33] 4.788 4.060 3.055 2.615 65n2 + 11n

Theorem 2 (m=2) 5.791 5.496 5.123 4.906 14.5n2 + 4.5n

When the delay is constant (µ = 0), the analytical upper bound can be obtain hmax = π. The
improvement of our approach is shown in Table 3. It’s verified that the advantage of Theorem 2 is over
the results in other literatures.

Table 3. Allowable upper bound h2 for different µ (example 2).

µ

Methods 0.1 0.2 0.5 0.8 Number of variables

Park and Ko (2007) [45] 1.99 1.81 1.75 1.61 11.5n2 + 4.5n
Kim (2011) [46] 2.52 2.17 2.02 1.62 49n2 + 3n

Zeng et al. (2015) [33] 3.03 2.57 2.41 1.93 65n2 + 11n
Theorem 2 (m=2) 3.136 3.04 2.95 2.90 14.5n2 + 4.5n

5. Conclusions

New single and double integral inequalities with arbitrary approximation order are developed through
the use of shifted Legendre polynomials and Cholesky decomposition. These two inequalities encompass
several former well-known integral inequities, such as Jensen inequality, Wirtinger-based inequality,
auxiliary function-based integral inequalities, and bring new less-conservative stability criteria by
employing proper Lyapunov-Krasovskii functionals. Several numerical examples have been provided
which show large improvements compared to existing results in both constant and time-varying delay
systems.
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