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1. Introduction

In the study of the classical queueing theory, it is always assumed that when an arriving customer
finds the server temporarily unavailable (e.g., the server may be busy, on vacation or under repair), the
customer either joins the waiting line to get service or leaves the service system forever. However, in
day-to-day queueing activities, we often meet some congestion situations where the arriving customers
who cannot be served in time leave the service zone and join a retrial group (called orbit) to approach
the server for their requests after some random length of time. In literature such queueing phenomena
are referred to as retrial queues which arise naturally in the real world. Nowadays, retrial queues have
been widely and successfully used to model many realistic congestion scenarios such as telephone
switching systems, computer and communication systems, packet switching networks and collision-
avoidance star local area networks. Taking call center as an example, when a caller finds the line busy,
he/she may decide to enter a virtual retrial group and can retry for service again and again after a
random amount of time until the line is found available. During the last few decades, a considerable
amount of work has been devoted to investigating retrial queueing model. For comprehensive details
on retrial queues we refer the reader to the outstanding survey papers by Yang and Templeton [1],
Falin [2], Artalejo [3, 4], and Kim and Kim [5], and the monographs by Falin and Templeton [6], and
Artalejo and Gómez-Corral [7].

In the retrial queueing literature, the previous studies were focused mainly on continuous time
setting. However, in recent years, there has been an increasing interest in addressing discrete-time
retrial queues. The research of discrete-time retrial queueing systems does have important practical
significance in daily life. In modern communication technology, there are numerous systems, such as
broadband integrated services digital network (BISDN), time division multiple access (TDMA) and
asynchronous transfer mode (ATM), operating in discrete-time environment where the events (e.g.,
arrival of packets and their forward transmissions) can only occur at regularly spaced epochs. This
fact indicates that discrete-time queues are more suitable than their continuous-time counterparts in
characterizing the behaviors of data communication and computer networks. The pioneer work
concerning discrete-time queue can be traced to Meisling [8]. Detailed analysis and applications of
discrete-time queues can be found in the books by Hunter [9], Bruneel and Kim [10], and
Woodward [11]. Since there are repeated requests for establishing a communication link among
various nodes and repeated transmissions of unsuccessfully received packets, retrial phenomenon is
inherited in network communication system which operates in discrete time regime. Yang and Li [12]
pioneered the study of discrete-time retrial queue. They investigated a Geo/G/1 retrial queueing
system with geometric retrial times by using generating function technique. Based on the
fundamental work of Yang and Li [12], many researchers have concentrated on the study of
discrete-time retrial queueing model, see e.g., [13–19], and references therein.

In many real life scenarios such as computer and communication networks, flexible manufacturing
system, transportation system and production system, we often encounter the case that the service
station may be subject to breakdowns (e.g., arrival of virus to the CPU, hardware breakdowns) when
rendering service to customers. The breakdowns of service facilities will result in a temporarily
unavailable period of the systems and therefore the performance and the efficiency of these systems
will be heavily affected. As a consequence, the managers or manufacturers not only have to face the
disruption of production and the loss of products, but also afford the additional repair expense due to
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the broken machine. Under such circumstances, the research of repairable queueing system is well
worth doing from the viewpoint of queueing and reliability theory. Atencia and Moreno [20]
considered a discrete-time Geo/G/1 retrial queue where the server may fail during busy period
(called active breakdowns). Also, Atencia and Moreno [21] applied the supplementary variables
method to examine a discrete-time Geo/G/1 retrial queueing system associated with starting failures
(called passive breakdown) and repairs, in which an arriving customer who finds the server is idle
must turn on the server and the server may fail to be activated. Wang and Zhao [22] dealt with a
discrete-time Geo/G/1 retrial queueing model where all the arriving customers require a first
essential service while only some of them may opt for a second optional service. Several other papers
on the discrete-time retrial queues with server breakdowns can be referred to [23–25].

It is observed from the existing literature that in almost all the models of repairable discrete-time
retrial queues (including the above-mentioned models), the authors always assumed that during repair
period the repair times can last, without any interruption, from the beginning of the repair until the
completion of the repair. But in real-world situations, the repair of the broken server may be interrupted
by some casual random factors such as the limited ability of repairman, the failures of repair facility
and the delayed supplies of the required device components. On the basis of this fact, in the present
study, we introduce the repair replacement discipline into our model. More specifically speaking,
when the repair is subject to interruption, a replacement occurs in the remaining repair times and a
new repair whose length is independent of the previous repair times commences from the beginning.
The introduction of repair replacements makes the considered system more realistic and flexible. Up
to now, the study regarding the repair replacement discipline in discrete-time queue can only be found
in [26], but it does not take retrial phenomenon into consideration.

A very important class of queues in congestion situations is retrial queues with priorities. The
priority queue has received remarkable attention in the queueing literature because different kinds of
customers need different quality of service (QoS). Queues with priority subscribers can be used in a
wide range of stochastic service systems like manufacturing and production systems, transportation
systems, telecommunication industry, computer and communication systems, etc. In recent years,
many fruitful theoretical results have been reported in the area of retrial queues with priorities.
Atencia [27] analyzed a Geo/G/1 retrial queueing system with priority services in which the arriving
customers can decide to go directly to the server expelling out of the system the customer that is
currently being served, if any, or to join the retrial orbit. Lan and Tang [28] considered a discrete-time
Geo/G/1 retrial queueing system with non-preemptive priority, working vacations and vacation
interruption, and derived various crucial performance measures in steady state. More studies on retrial
queues with priorities can be referred to [29–33].

Another significant feature in queueing literature is queue with balking behavior proposed by
Haight [34]. The balking means that when the arriving customers find that the server is unavailable or
the queue is long, they may be discouraged and decide to abandon the system without service.
Queueing models with balking phenomenon arise in many real-life congestion problems such as
customers’ impatience at a telephone switchboard, hospital emergency rooms handling critical
patients, machine repair models and perishable goods for storage in inventory systems. Additionally,
since a customer who balks is definitely considered to be lost, the balking of customers can greatly
lead to the economic loss, which is what the system managers do not want to see. Therefore, it is
worth investigating the queues with balking customers. Although the incorporation of balking
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customers in queueing systems is rather significant, there is only little work concerning discrete-time
queues with balking customers in the literature, see [35–38].

In this paper, we are interested in analyzing a single-server discrete-time Geo/G/1 retrial queueing
system with probabilistic preemptive priority and balking customers taking into account starting
failures and replacements of repair times. To the best of our knowledge, the present investigation is
the first one that deals with such system, and there are some significant differences between our
research and the existing works. The contributions and advantages of this paper are stated as follows.

(1) Model. A novel discrete-time Geo/G/1 retrial queueing system is considered. By incorporating
probabilistic preemptive priority, balking customers, starting failures and replacements of repair
times, this model has much greater flexibility in characterizing some complicated stochastic
phenomena.

(2) Methodology and Results. Employing the supplementary variable method and the generating
function technique, the probability generating functions of the queue size under different server
states are obtained. Various performance measures in steady state are also derived. Some
corresponding results for special discrete-time queues are directly obtained by our results.

(3) Numerical Illustrations. Sensitivity analysis is carried out to illustrate the impact of different
system parameters on the performance characteristics, which can provide insight to the system
managers so as to supervise the operation status of this system and reduce the congestion
problem. In addition, we establish a cost function to determine the optimal value of
replacement probability η so as to help the system managers or decision-makers regulate the
system economically.

A practical justification of the considered model is the following flexible manufacturing system
that operates in discrete-time environment where the events (e.g., arrival of components and their
processing time) can only occur at regularly spaced epochs. Since diverse components have different
processing requirements, the situation with priority levels is often encountered in practice. Assume
that there are two types of components (the urgent components and the regular components). The raw
components arrive at the system according to a Bernoulli process. If the system is busy processing
component upon an arrival, the newly arriving component either interrupts the component in service
and occupies the system to begin its own processing immediately with probability p (corresponding
to the urgent components), or leaves the service zone and enters a group of blocked components with
complementary probability p̄ (corresponding to the regular components). In order to save energy, the
system will be turned off once there is no component needing to be processed, and the new arrival
must turn on the server to commence its service. Also, the system may be subjected to starting failures.
When the system breaks down, it will be fixed immediately. During a repair period, replacements
may take place due to the limited ability of repairman (or the failures of repair facility), and the new
arrivals may balk with some probability. In this scenario, the flexible manufacturing system, the raw
components, the failures of system, and a group of blocked components correspond to the server, the
customers, unreliable server, and retrial customers in the queueing terminology, respectively.

The rest of this paper is as follows. In the next section, a detailed description of the mathematical
model under consideration is given. Section 3 is dedicated to the steady-state analysis by the
supplementary variable method and the generating function technique. We obtain the closed-form
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expressions for the generating functions of the stationary distribution of the considered system. In
Section 4, various important performance indices of our model are given. Further, some special cases
of the proposed model are deduced in Section 5. In Section 6, some numerical results for sensitivity
analysis are provided. Section 7 focuses on a cost optimization problem. At last, concluding remarks
and suggestions for future work are given in Section 8.

2. Model formulation

Consider a single-server discrete-time Geo/G/1 retrial queueing system with probabilistic
preemptive priority, starting failures, balking rule and replacements of repair times. It is well known
that the probability of two or more queueing activities occurring simultaneously is zero in
continuous-time queueing systems while it is not so in discrete-time queueing systems. In
discrete-time queues, the time axis is divided into equal time intervals (called slots) and is marked
with 0, 1, 2, · · · ,m, · · · . All the queueing events (arrivals, departures, beginning and ending of repairs,
and retrials) are nonnegative integer-valued random variables and only occur around the slot
boundaries. As a result, these queueing activities may take place at the same time and the order of
occurrence of these events must be stipulated. In this study, it is assumed that the arrivals, the retrials
and the beginning of the repairs occur in time interval (m,m+), and the departures and the completion
of the repairs occur in time interval (m−,m). That is, we consider an early arrival system (EAS). More
details on the EAS policy and related concepts can be referred to [9]. To make it clearer, the various
time epochs at which queueing events occur are displayed in Figure 1.

  

Departure

Arrival

*

Potential arrival epoch Potential departure epoch * Outside observer's epoch

m ( 1)mm m 1m ( 1)m

Arrival

Departure

m Epoch prior to a potential departurem Arbitrary epoch

m Epoch after a potential arrival

Beginning of the repairs

  

End of the repairs

      

Retrial epoch

     

Figure 1. Various time epochs in an early arrival system (EAS).

The detailed formulation of our model is described as follows. Throughout this paper, we have
x̄ = 1 − x for any real number x ∈ [0, 1].

Customers arrive at the system according to a Bernoulli process with parameter λ. There is no
waiting space in front of the service station. If the server is busy rendering service to a customer upon
an arrival, the newly arriving customer either interrupts the customer in service and occupies the server
to begin its own service immediately with probability p or leaves the service zone and enters a group of
blocked customers (called retrial orbit) with complementary probability p̄. The interrupted customer
joins the orbit and its service resumes from the beginning after some random length of time. It is
supposed that the customers in the orbit form a waiting line in accordance with first-come-first-served
(FCFS) regime, that is, only the customer (if any) at the head of the orbit is allowed to make retrials to
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get service. Successive inter-retrial times of any customer are governed by a general distribution with
probability distribution function (pdf) {ai}

∞
i=0 and probability generating function (pgf) A(z) =

∑∞
i=0 aizi.

When the server is free and both a new external arrival and a retrial take place at the same time, the
customer making retrials gives up the attempt for service and the newly arriving customer has access
to the server. In this case, the retrial customer goes back to its position in the retrial queue.

If an arriving customer (external or repeated) finds the server free, he/she must turn on the server to
commence his/her service. If the server is switched on successfully (with probability β), the customer
is served immediately and leaves the system forever after service completion. Otherwise, if the server
is activated unsuccessfully (with complementary probability β̄), the server immediately undergoes a
repair process and the customer must enter the orbit. The repair times of the broken server are
independent and identically distributed with pdf {ri}

∞
i=1, pgf R(z) =

∑∞
i=1 rizi and n-th factorial moments

µ2,n. During a repair period, replacements in the repair times may take place, that is, in every slot of a
repair period, a replacement in the remaining repair time occurs with probability η, and does not occur
with probability η̄. The replacement time is assumed to be negligible. After repair completion, the
server is as good as new. Moreover, if an external arrival finds that the server is down (under repair),
he/she decides either to join the orbit with probability q or leaves the system completely (balking)
with probability q̄.

The service times follow an arbitrary distribution with pdf {si}
∞
i=1, pgf S (z) =

∑∞
i=1 sizi, and n-th

factorial moments µ1,n. It is further assumed that all the random variables involved in our model are
independent of each other. Finally, in order to avoid trivial cases and make our system more realistic,
we suppose that 0 < λ < 1, 0 < p ≤ 1, 0 < β ≤ 1, 0 ≤ q ≤ 1, and 0 ≤ η < 1.

3. The Markov chain

The state of the system at time m+ (the epoch immediately after time epoch m) can be designated
by the process

{Xm,m ∈ N} =
{(

Jm, ξJm,m,Nm
)
,m ∈ N

}
, (3.1)

where Nm denotes the number of repeated customers in the orbit, and Jm represents the state of the
server as

Jm =


0, the server is free at time m+,
1, the server is busy at time m+,
2, the server is under repair at time m+.

(3.2)

If Jm = 0 and Nm > 0, then ξ0,m denotes the remaining retrial time. If Jm = 1, then ξ1,m corresponds to
the remaining service time of the customer currently being served. If Jm = 2, then ξ2,m represents the
residual repair time.

After introducing the supplementary variables corresponding to the remaining retrial time, the
remaining service time and the remaining repair time, the next state of the system is independent of
the past state and only depends on the present state. Therefore, it can be readily shown that
{Xm,m ∈ N} is the Markov chain of our queueing model with state space

Ω = {(0, 0)} ∪ {(0, i, k) : i ≥ 1, k ≥ 1} ∪ {(1, i, k) : i ≥ 1, k ≥ 0}
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∪ {(2, i, k) : i ≥ 1, k ≥ 1} . (3.3)

The steady-state probability distributions of the Markov chain {Xm,m ∈ N} are defined as follows:

π0,0 = lim
m→∞

Pr [Jm = 0,Nm = 0] , (3.4)

π0,i,k = lim
m→∞

Pr
[
Jm = 0, ξ0,m = i,Nm = k

]
, i ≥ 1, k ≥ 1, (3.5)

π1,i,k = lim
m→∞

Pr
[
Jm = 1, ξ1,m = i,Nm = k

]
, i ≥ 1, k ≥ 0, (3.6)

π2,i,k = lim
m→∞

Pr
[
Jm = 2, ξ2,m = i,Nm = k

]
, i ≥ 1, k ≥ 1. (3.7)

By using the supplementary variable method, we establish the Kolmogorov equations for the
stationary distribution of the system under investigation as follows

π0,0 = λ̄π0,0 + λ̄π1,1,0, (3.8)
π0,i,k = λ̄π0,i+1,k + λ̄aiπ1,1,k + λ̄aiπ2,1,k, i ≥ 1, k ≥ 1, (3.9)

π1,i,k = δ0,kλβsiπ0,0 + λ̄βsiπ0,1,k+1 +
(
1 − δ0,k

)
λβsi

∞∑
j=1

π0, j,k + λβsiπ1,1,k

+λ̄βsia0π1,1,k+1 +
(
1 − δ0,k

)
λpsi

∞∑
j=2

π1, j,k−1 +
(
1 − δ0,k

)
λ p̄π1,i+1,k−1

+λ̄π1,i+1,k +
(
1 − δ0,k

)
λβsiπ2,1,k + λ̄βa0siπ2,1,k+1, i ≥ 1, k ≥ 0, (3.10)

π2,i,k = δ1,kλβ̄riπ0,0 + λ̄β̄riπ0,1,k +
(
1 − δ1,k

)
λβ̄ri

∞∑
j=1

π0, j,k−1 + λβ̄riπ1,1,k−1

+λ̄β̄ria0π1,1,k +
(
1 − δ1,k

)
λβ̄riπ2,1,k−1 + λ̄β̄ria0π2,1,k

+
(
1 − δ1,k

)
λqη̄π2,i+1,k−1 +

(
1 − δ1,k

)
λqηri

∞∑
j=2

π2, j,k−1

+
(
λ̄ + λq̄

)
η̄π2,i+1,k +

(
λ̄ + λq̄

)
ηri

∞∑
j=2

π2, j,k, i ≥ 1, k ≥ 1, (3.11)

where δi, j is the Kronecker delta, i.e., δi, j =

{
1, i = j,
0, i , j,

, and the normalization condition is

π0,0 +

∞∑
i=1

∞∑
k=1

π0,i,k +

∞∑
i=1

∞∑
k=0

π1,i,k +

∞∑
i=1

∞∑
k=1

π2,i,k = 1. (3.12)

In order to derive the solutions of (3.8)–(3.11), we introduce the following generating functions

ϕ0(x, z) =

∞∑
i=1

∞∑
k=1

π0,i,kxizk, (3.13)

ϕ1(x, z) =

∞∑
i=1

∞∑
k=0

π1,i,kxizk, (3.14)
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ϕ2(x, z) =

∞∑
i=1

∞∑
k=1

π2,i,kxizk, (3.15)

and the auxiliary generating functions

ϕ0,i(z) =

∞∑
k=1

π0,i,kzk, i ≥ 1, (3.16)

ϕ1,i(z) =

∞∑
k=0

π1,i,kzk, i ≥ 1, (3.17)

ϕ2,i(z) =

∞∑
k=1

π2,i,kzk, i ≥ 1. (3.18)

Multiplying Eq (3.9)–(3.11) by zk, summing over k, and taking into account (3.8), it follows that

ϕ0,i(z) = λ̄ϕ0,i+1(z) + λ̄aiϕ1,1(z) + λ̄aiϕ2,1(z) − λaiπ0,0, i ≥ 1, (3.19)

ϕ1,i(z) =
λ̄β

z
siϕ0,1(z) + λβsiϕ0(1, z) +

(
λz + λ̄a0

z
β − λpz

)
siϕ1,1(z)

+τ1(z)ϕ1,i+1 (z) + λpzsiϕ1 (1, z) +
λz + λ̄a0

z
βsiϕ2,1 (z)

+
z − a0

z
λβsiπ0,0, i ≥ 1, (3.20)

ϕ2,i(z) = λ̄β̄riϕ0,1(z) + λβ̄zriϕ0(1, z) +
(
λz + λ̄a0

)
β̄riϕ1,1(z)

+τ2(z)
(
η̄ϕ2,i+1(z) + ηriϕ2(1, z)

)
+ (z − a0) λβ̄riπ0,0

+
[(
λz + λ̄a0

)
β̄ − τ2(z)η

]
riϕ2,1(z), i ≥ 1, (3.21)

where τ1(z) = λ̄ + λ p̄z, τ2(z) = λ̄ + λq̄ + λqz.

Multiplying (3.19)–(3.21) by xi and summing over i gives

x − λ̄
x

ϕ0(x, z) = λ̄ (A(x) − a0)
(
ϕ1,1 (z) + ϕ2,1 (z) −

λ

λ̄
π0,0

)
− λ̄ϕ0,1(z), (3.22)

x − τ1(z)
x

ϕ1(x, z) =
λ̄β

z
S (x)ϕ0,1(z) + λβS (x)ϕ0(1, z) + λpzS (x)ϕ1 (1, z)

+


(
λz + λ̄a0

)
β − λpz2

z
S (x) − τ1(z)

ϕ1,1(z)

+
λz + λ̄a0

z
βS (x)ϕ2,1 (z) +

z − a0

z
λβS (x)π0,0, (3.23)

x − τ2(z)η̄
x

ϕ2(x, z) = λ̄β̄R(x)ϕ0,1(z) + λβ̄R(x)ϕ0(1, z)

+
(
λz + λ̄a0

)
β̄R(x)ϕ1,1(z)

+
{[(
λz + λ̄a0

)
β̄ − τ2(z)η

]
R(x) − τ2(z)η̄

}
ϕ2,1(z)
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+τ2(z)ηR(x)ϕ2(1, z) + (z − a0) λβ̄R(x)π0,0. (3.24)

Setting x = 1 in (3.22)–(3.24) and solving for ϕ0(1, z), ϕ1(1, z) and ϕ2(1, z), we have

λϕ0(1, z) = λ̄ (1 − a0)
(
ϕ1,1 (z) + ϕ2,1 (z) −

λ

λ̄
π0,0

)
− λ̄ϕ0,1(z), (3.25)

λz(1 − z)ϕ1(1, z) = λ̄β(1 − z)ϕ0,1(z) +
[
τ3(z)β − z(λ̄ + λz)

]
ϕ1,1(z)

+τ3(z)βϕ2,1 (z) − (1 − z)λβa0π0,0, (3.26)
λq(1 − z)ϕ2(1, z) = λ̄β̄(1 − z)ϕ0,1(z) + τ3(z)β̄ϕ1,1(z)

+
[
τ3(z)β̄ − τ2(z)

]
ϕ2,1(z) − (1 − z) λβ̄a0π0,0, (3.27)

where τ3(z) = z + λ̄a0(1 − z).

Substituting Eq (3.25)–(3.27) into (3.23) and (3.24), after some tedious algebraic manipulation, we
obtain

z(1 − z)
x − τ1(z)

x
ϕ1(x, z)

= λ̄β(1 − z)(1 − p̄z)S (x)ϕ0,1(z)
+

{[
β(1 − p̄z)τ3(z) − pz2

]
S (x) − z(1 − z)τ1(z)

}
ϕ1,1(z)

+β(1 − p̄z)τ3(z)S (x)ϕ2,1 (z)

−(1 − z)(1 − p̄z)λβa0S (x)π0,0, (3.28)

λq(1 − z)
x − τ2(z)η̄

x
ϕ2(x, z)

= λ̄β̄(1 − z)τ4(z)R(x)ϕ0,1(z) + β̄τ3(z)τ4(z)R(x)ϕ1,1(z)
+

{[
β̄τ3(z)τ4(z) − τ2(z)η

]
R(x) − λq(1 − z)τ2(z)η̄

}
ϕ2,1(z)

−λβ̄(1 − z)τ4(z)a0R(x)π0,0, (3.29)

where τ4(z) = λq(1 − z) + τ2(z)η.

Letting x = λ̄ in (3.22), x = τ1(z) in (3.28) and x = τ2(z)η̄ in (3.29) respectively, it finally leads to

λ
(
A(λ̄) − a0

)
π0,0

= −λ̄ϕ0,1(z) + λ̄
(
A(λ̄) − a0

)
ϕ1,1 (z) + λ̄

(
A(λ̄) − a0

)
ϕ2,1 (z) , (3.30)

(1 − z)(1 − p̄z)λβa0S (τ1(z))π0,0

= λ̄β(1 − z)(1 − p̄z)S (τ1(z))ϕ0,1(z)
+

{[
β(1 − p̄z)τ3(z) − pz2

]
S (τ1(z)) − z(1 − z)τ1(z)

}
ϕ1,1(z)

+β(1 − p̄z)τ3(z)S (τ1(z))ϕ2,1 (z) , (3.31)

λβ̄(1 − z)τ4(z)a0R(τ2(z)η̄)π0,0
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= λ̄β̄(1 − z)τ4(z)R(τ2(z)η̄)ϕ0,1(z) + β̄τ3(z)τ4(z)R(τ2(z)η̄)ϕ1,1(z)
+

{[
β̄τ3(z)τ4(z) − τ2(z)η

]
R(τ2(z)η̄) − λq(1 − z)τ2(z)η̄

}
ϕ2,1(z), (3.32)

Solving the above system for ϕ0,1(z), ϕ1,1(z) and ϕ2,1(z), we get

ϕ0,1(z) =

(
A(λ̄) − a0

)
zD0(z)

D(z)
λ

λ̄
π0,0, (3.33)

ϕ1,1(z) =
λβA(λ̄)(1 − p̄z)S (τ1(z))τ2(z)D1(z)

D(z)
π0,0, (3.34)

ϕ2,1(z) =
λβ̄A(λ̄)zR(τ2(z)η̄)τ4(z)D2(z)

D(z)
π0,0, (3.35)

where

D(z) = S (τ1(z))
{
R(τ2(z)η̄)

[
pz2β̄[λqz + λ̄A(λ̄)τ4(z)] + ∆1(z)

]
+λqτ2(z)η̄

[
β(1 − p̄z)∆2(z) − pz2

]}
+zτ1(z)

{
R(τ2(z)η̄)

[
β̄τ4(z)∆2(z) − τ2(z)η

]
− λqη̄(1 − z)τ2(z)

}
, (3.36)

D0(z) = S (τ1(z))
{
λqτ2(z)η̄

[
pz − (1 − p̄z)β

]
−R(τ2(z)η̄)

[
λqpz2β̄ + (β − pzβ̄)τ2(z)η

]}
+τ1(z)

{
R(τ2(z)η̄)

[
τ2(z)η − β̄zτ4(z)

]
+ λqη̄(1 − z)τ2(z)

}
, (3.37)

D1(z) = ηR(τ2(z)η̄) + λqη̄(1 − z), (3.38)
D2(z) = pzS (τ1(z)) + (1 − z)τ1(z), (3.39)
∆1(z) =

[
(β − pzβ̄)z + (1 − p̄z)βλ̄A(λ̄)

]
τ2(z)η, (3.40)

∆2(z) = z + λ̄A(λ̄)(1 − z). (3.41)

Inserting (3.33)–(3.35) into (3.22), (3.28) and (3.29) gives

ϕ0(x, z) =
A(x) − A(λ̄)

x − λ̄
λxzD0(z)

D(z)
π0,0, (3.42)

ϕ1(x, z) =
S (x) − S (τ1(z))

x − τ1(z)
λβxA(λ̄)(1 − p̄z)τ1(z)τ2(z)D1(z)

D(z)
π0,0, (3.43)

ϕ2(x, z) =
R(x) − R(τ2(z)η̄)

x − τ2(z)η̄
λβ̄η̄xA(λ̄)zτ2(z)τ4(z)D2(z)

D(z)
π0,0. (3.44)

At this point, the only unknown is π0,0 and it can be determined by the normalization condition π0,0 +

ϕ0(1, 1) + ϕ1(1, 1) + ϕ2(1, 1) = 1. Taking x = z = 1 in (3.42)–(3.44) and using L’Hospital rule, we can
get

π0,0 =
D(1)

pA(λ̄)S
(
λ̄ + λ p̄

) [
βηR(η̄) + λβ̄q̄ (η̄ − R(η̄))

] , (3.45)

where D(1) = S
(
λ̄ + λ p̄

) [
R(η̄)[λpqβ̄ + λ̄pηA(λ̄) + (β − pβ̄)η] − λpqβ̄η̄

]
− (λ̄ + λ p̄)βηR(η̄).
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From the representation of π0,0, as π0,0 > 0, we have that D(1) > 0 is a necessary condition for the
system to be stable. Also, employing Foster’s criterion (see [39]), we can show that D(1) > 0 is also a
sufficient condition for the stability of the system.

We summarize the above results in the following theorem.
Theorem 1. If D(1) > 0, the stationary distribution of the Markov chain {Xm,m ∈ N} has the

following generating functions

ϕ0(x, z) =
A(x) − A(λ̄)

x − λ̄
λxzD0(z)

D(z)
π0,0, (3.46)

ϕ1(x, z) =
S (x) − S (τ1(z))

x − τ1(z)
λβxA(λ̄)(1 − p̄z)τ1(z)τ2(z)D1(z)

D(z)
π0,0, (3.47)

ϕ2(x, z) =
R(x) − R(τ2(z)η̄)

x − τ2(z)η̄
λβ̄η̄xA(λ̄)zτ2(z)τ4(z)D2(z)

D(z)
π0,0, (3.48)

where π0,0 is given by (3.45).
Based on Theorem 1, we can directly derive the marginal generating functions for the number of

customers in the orbit under different server states and the generating functions for the number of
customers in the orbit and in the system.

Corollary 1. (1) The marginal generating function for the number of customers in the orbit when
the server is idle is given by

π0,0 + ϕ0(1, z) =
A(λ̄)K(z)

D(z)
π0,0, (3.49)

where

K(z) = S (τ1(z))
{
R(τ2(z)η̄)

[
pz2β̄[λqz + λ̄τ4(z)] + [(β − pzβ̄)z + (1 − p̄z)βλ̄]τ2(z)η

]
+λqτ2(z)η̄

[
β(1 − p̄z)(λ̄ + λz) − pz2

]}
+zτ1(z)

{
R(τ2(z)η̄)

[
β̄τ4(z)(λ̄ + λz) − τ2(z)η

]
− λqη̄(1 − z)τ2(z)

}
. (3.50)

(2) The marginal generating function for the number of customers in the orbit when the server is busy
is given by

ϕ1(1, z) =
(1 − S (τ1(z))) βA(λ̄)τ1(z)τ2(z)D1(z)

D(z)
π0,0. (3.51)

(3) The marginal generating function for the number of customers in the orbit when the server is down
(under repair) is given by

ϕ2(1, z) =
1 − R(τ2(z)η̄)

1 − τ2(z)η̄
λβ̄η̄A(λ̄)zτ2(z)τ4(z)D2(z)

D(z)
π0,0. (3.52)

(4) The probability generating function of the number of customers in the orbit is given by

φ (z) = π0,0 + ϕ0(1, z) + ϕ1(1, z) + ϕ2(1, z). (3.53)

(5) The probability generating function of the number of customers in the system is given by

ψ (z) = π0,0 + ϕ0(1, z) + zϕ1(1, z) + ϕ2(1, z). (3.54)
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4. Performance measures

In the previous discussion, the analytical results for the probability generating functions of various
queue size distributions for different system states are established. Now some important performance
measures of the system in steady state are obtained as follows.
(1) The probability that the system is empty is given by

π0,0 =
D(1)

pA(λ̄)S
(
λ̄ + λ p̄

) [
βηR(η̄) + λβ̄q̄ (η̄ − R(η̄))

] , (4.1)

where

D(1) = S
(
λ̄ + λ p̄

) [
R(η̄)[λpqβ̄ + λ̄pηA(λ̄) + (β − pβ̄)η] − λpqβ̄η̄

]
−(λ̄ + λ p̄)βηR(η̄). (4.2)

(2) The probability that the system is non-empty (occupied) is given by

ϕ0(1, 1) + ϕ1(1, 1) + ϕ2(1, 1) = 1 − π0,0. (4.3)

(3) The probability that the server is idle is given by

π0,0 + ϕ0(1, 1) =
K(1)

pS
(
λ̄ + λ p̄

) [
βηR(η̄) + λβ̄q̄ (η̄ − R(η̄))

] , (4.4)

where

K(1) = S
(
λ̄ + λ p̄

) [
R(η̄)[λpqβ̄ + λ̄pη + (β − pβ̄)η] − λpqβ̄η̄

]
−(λ̄ + λ p̄)βηR(η̄). (4.5)

(4) The probability that the server is busy is given by

ϕ1(1, 1) =

(
λ̄ + λ p̄

) [
1 − S (λ̄ + λp̄)

]
βηA(λ̄)R(η̄)

D(1)
π0,0. (4.6)

(5) The probability that the server is down (under repair) is given by

ϕ2(1, 1) =
λpβ̄η̄A(λ̄)S (λ̄ + λ p̄) (1 − R(η̄))

D(1)
π0,0. (4.7)

(6) The expected number of customers in the orbit, denoted by E [W], is given by

E [N] = φ′ (z) |z=1. (4.8)

(7) The expected number of customers in the system, denoted by E [L], is given by

E [L] = ψ′ (z) |z=1 = E [N] + ϕ1(1, 1). (4.9)
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(8) The arrival rate to the orbit is given by

POrbit = λ p̄ϕ1(1, 1) + λqϕ2(1, 1). (4.10)

(9) The arrival rate to the system is given by

PS ystem = λ
(
π0,0 + ϕ0(1, 1) + ϕ1(1, 1)

)
+ λqϕ2(1, 1) = λ (1 − q̄ϕ2(1, 1)) . (4.11)

(10) The loss probability of a customer due to server breakdowns

PLoss = λq̄ϕ2(1, 1). (4.12)

(11) The equilibrium interruption frequency of the service due to preemptive resume is given by

PInterruption = λpϕ1(1, 1). (4.13)

(12) The steady-state availability of the server is given by

PA = 1 − ϕ2(1, 1). (4.14)

(13) The steady-state replacement frequency is given by

PReplacement = ηϕ2(1, 1). (4.15)

(14) According to the well-known Little’s formula, the expected sojourn time of a customer in the
system, denoted by E [W], is given by

E [W] =
E [L]

PS ystem
. (4.16)

5. Special cases

In this section, some special cases are directly deduced by choosing appropriate values of some
critical parameters in our results.
(1) If a0 = 1 (i.e., without retrials), then A

(
λ̄
)

= 1 and our model becomes the discrete-time Geo/G/1
queue with preemptive resume, starting failures, balking customers and replacements of repair times.
In this case, the probability generating function of the number of customers in the system is

ψ (z) =

[
K(z) + (1 − S (τ1(z))) βzτ1(z)τ2(z)D1(z)

K(z)

+
λβ̄η̄zτ2(z)τ4(z)D2(z) (1 − R(τ2(z)η̄))

(1 − τ2(z)η̄) K(z)

]
π0,0, (5.1)

where τ1(z), τ2(z), τ4(z), K(z), K(1), D1(z) and D2(z) are given as previously defined, and

π0,0 =
K(1)

pS
(
λ̄ + λ p̄

) [
βηR(η̄) + λβ̄q̄ (η̄ − R(η̄))

] . (5.2)
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(2) When p → 0, q = 1 and η = 0 in our model, the queueing system under consideration reduces to
the discrete-time Geo/G/1 retrial queue with starting failures. In this case, the probability generating
function of the number of customers in the system is

ψ (z) =
βA(λ̄)(1 − z)(λ̄ + λz)S (λ̄ + λz)(

βS (λ̄ + λz) + β̄zR(λ̄ + λz)
) [

z + λ̄A(λ̄)(1 − z)
]
− z(λ̄ + λz)

π0,0, (5.3)

where π0,0 =
λ+λ̄A(λ̄)−β̄−λβµ1,1−λβ̄µ2,1

βA(λ̄) . This result coincides with the corresponding formula presented by
Corollary 1(5) of [23] with θ = 0.
(3) If q = 0 and β = 1, then the proposed model becomes the discrete-time Geo/G/1 retrial queue with
FCFS preemptive resume discipline. In this case, the probability generating function of the number of
customers in the system is

ψ (z) =
A(λ̄)(1 − p̄z)(λ̄ + λz)S (λ̄ + λ p̄z)

S (λ̄ + λ p̄z)
[
z + λ̄A(λ̄)(1 − p̄z)

]
− z(λ̄ + λ p̄z)

π0,0, (5.4)

where π0,0 =
S (λ̄+λ p̄)(1+λ̄pA(λ̄))−(λ̄+λ p̄)

pA(λ̄)S (λ̄+λ p̄) .
(4) If p = 1, q = 0 and β = 1, then the proposed model is reduced to the discrete-time Geo/G/1 retrial
queue with LCFS preemptive resume discipline. In this case, the probability generating function of the
number of customers in the system is

ψ (z) =
(λ̄ + λz)

[
S (λ̄)

(
1 + λ̄A(λ̄)

)
− λ̄

]
S (λ̄)

(
z + λ̄A(λ̄)

)
− λ̄z

. (5.5)

(5) If p → 0, q = 0 and β = 1, then our system can be reduced to the Geo/G/1 retrial queue with
general retrial times. In this case, the probability generating function of the number of customers in
the system is

ψ (z) =
(1 − z) S

(
λ̄ + λz

) (
λ̄ + λz

) (
λ + λ̄A

(
λ̄
)
− λµ1,1

)[
z + (1 − z) λ̄A

(
λ̄
)]

S
(
λ̄ + λz

)
− z

(
λ̄ + λz

) , (5.6)

which is in agreement with the corresponding result given by Corollary 1(4) of [13].
(6) If a0 = 1, p→ 0, q = 0 and β = 1, our system becomes the classical discrete-time Geo/G/1 queue.
In this case, the probability generating function of the number of customers in the system is

ψ (z) =

(
1 − λµ1,1

)
(1 − z) S

(
λ̄ + λz

)
S

(
λ̄ + λz

)
− z

, (5.7)

which matches with the result obtained by Hunter [9].

6. Numerical results

In this section, some numerical results are presented to illustrate the effect of various system
parameters on the performance measures of our queueing model, such as the probability that the
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system is empty π0,0, the probability that the server is down ϕ2(1, 1), the loss probability of a customer
due to server breakdowns PLoss, and the expected number of customers in the system E [L]. All the
computations are done by developing program in MATLAB software and the values of the parameters
involved in these numerical examples are selected to satisfy the stability condition D(1) > 0.
Throughout this section, it is assumed that the service time is governed by a geometric distribution
with parameter χ and the inter-retrial times are geometrically distributed with parameter ᾱ = 1 − α,
where α is the probability that a repeated customer does not make a retrial in a slot.

In Figures 2–7, we assume that the repair time follows a geometric distribution with parameter
σ = 0.4. Figures 2 and 3 are depicted to explore the impact of p on π0,0 and E [L] for different values
of α. We set default parameters for Figures 2 and 3 as λ = 0.2, χ = 0.6, σ = 0.4, q = 0.2, η = 0.15,
and β = 0.7. It can be observed from Figure 2 that for fixed α, π0,0 is insensitive to the change of p,
which is due to the Markovian property of geometric service time distribution. On the other hand, as
α increases from 0.15 to 0.75, π0,0 shows a decreasing trend. The reason is that as α increases (i.e.,
the probability that customer does not make retrial increases), the number of customers in the orbit
gradually increases, which undoubtedly leads to the decrease of π0,0. From Figure 3, one can see that
the mean system size E [L] decreases with the increase of p while increases as α increases, which is in
accordance with our expectation. In fact, when α increases, more and more customers accumulate in
the retrial orbit, which certainly causes the increase of the mean queue length of system E [L].
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Figure 2. The effect of p on π0,0 for different values of α.
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Figure 3. The effect of p on E[L] for different values of α.
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Figures 4–7 describe the influence of q on π0,0, E [L], ϕ2(1, 1) and PLoss for different values of β.
We set default parameters for Figures 4–7 as λ = 0.2, χ = 0.6, σ = 0.4, p = 0.35, η = 0.15, and
α = 0.15. Figure 4 shows that π0,0 slightly decreases with the increment of q for β = 0.6 and β = 0.8.
Actually, as the values of q become larger, the newly arriving customers are more likely to join the
system, which in turn reduces the probability that the system is empty. However, when β = 1, we
observe that π0,0 keeps unchanged with the increase of q. This is due to the fact that for β = 1, the
idle server is activated successfully with probability 1 and our model is reduced to the corresponding
queue without starting failures. Therefore, all arrivals must enter the system regardless of the value of
q. Additionally, for a fixed q, π0,0 shows an increasing trend as β increases. This is intuitively true.
Actually, as the value of β (i.e., the probability that the idle server is activated successfully) becomes
larger, the server can serve more customers, which can obviously lead to the increase of the probability
that the system is empty. The reverse effect of q and β on E [L] is plotted in Figure 5. From Figure
6, there is a gradual growth in ϕ2(1, 1) with the increase of q. This could be due to the fact that the
increasing q will lead to the excessive accumulation of customers in the orbit, and the system operates
under an overload condition, which makes the idle server be prone to breakdowns. Also, it is clear
from Figure 6 that ϕ2(1, 1) decreases with the increasing values of β, which matches with the reality.
In particular, it is noted that ϕ2(1, 1) is equal to zero when β = 1, which matches with our intuition.
Moreover, as it is expected in Figure 7, PLoss shows a decreasing trend with the increasing values of
q or β. In deed, as q increases, the probability that an arrival joins the queue increases, and hence the
probability of loss of customer decreases. Similarly, when β (i.e., the probability that the idle server
is activated successfully) increases, the probability that the arrivals enter the system increases, which
evidently results in the decrease of the probability of loss of customer PLoss.

In Figure 8, ϕ2(1, 1) is plotted against the parameter η with three types of repair time distributions,
i.e., geometric (σ = 1/3), deterministic (r3 = 1), arbitrary (r1 = 0.2, r3 = 0.6, r5 = 0.2). It is easy to be
seen that the three distributions have the same mean value 3. The other default parameters for Figure
8 are taken as λ = 0.2, χ = 0.6, p = 0.35, q = 0.2, α = 0.15, β = 0.7. We can observe from Figure 8
that when the repair time follows geometric distribution, the value of ϕ2(1, 1) is the lowest and remains
constant with the increase of η, which is due to the Markovian property of geometric distribution. In
addition, it is remarkable that η has a significant impact on ϕ2(1, 1) when the repair time is governed
by a deterministic distribution. That is, as the replacement probability η increases, the probability that
the system is under repair becomes bigger and bigger. This observation suggests that system designers
should pay attention to choosing appropriate repair time distribution to avoid the practical congestion
situation.

The above sensitivity analysis is highly consistent with the practical situation and our expectation,
which not only demonstrates the validity of our queueing model and analytical results, but also can
provide managerial insight to the system designers and decision makers so as to reduce the congestion
problem encountered in their respective discrete-time queueing systems.
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Figure 4. The effect of q on π0,0 for different values of β
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Figure 5. The effect of q on E[L] for different values of β.
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Figure 6. The effect of q on ϕ2(1, 1) for different values of β.
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Figure 7. The effect of q on PLoss for different values of β.
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Figure 8. ϕ2(1, 1) versus η for different repair time distributions.

7. Cost optimization analysis

In practice, the operating cost of the system plays a key role in the analysis of economic revenue.
Therefore, in order to make the system more profitable, system designers or system managers are
usually interested in minimizing the operating cost of unit time. To demonstrate the applicability
of the results obtained in the previous discussion, in this section, we develop an expected operating
cost function per unit time for the queueing model under investigation in this paper, in which the
replacement probability η is a decision variable. Our objective is to determine the optimum value of η,
say η∗, so as to minimize the long-run expected operating cost per unit time.

To this end, we first discuss the expected length of a busy cycle period C. Denote by E[B] the
expected length of the period that begins at the epoch at which a new arrival finds the system is empty
and the server is free and ends at a service completion epoch at which the server becomes idle and the
system is empty again. Let E[I] be the expected length of the period that starts at the instant at which
the system becomes empty and ends at the instant when the first customer arrives at the empty system.
Thus, the expected length of a busy cycle period is given by E[C] = E[B] + E[I]. Since the inter-arrival
times follow a geometric distribution with parameter λ, E[I] can be expressed as E[I] = 1

λ
.

Furthermore, by using the argument of an alternating renewal process, we get

π0,0 =
E[I]
E[C]

, (7.1)
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which gives

E[C] =
E[I]
π0,0

=
1

λπ0,0
, (7.2)

where π0,0 is determined by (3.45).
We now begin to study the cost optimization problem. Let us define the cost elements as follows.
Ch ≡ per unit time cost of every customer present in the system;
Ci ≡ per unit time cost for keeping the server idle;
Cb ≡ per unit time cost for keeping the server busy;
Cr ≡ per unit time fixed repair cost for broken server.;
Cs ≡ fixed setup cost per busy cycle;
Co ≡ fixed cost for the every replacement of repair times.
Utilizing the above cost elements and the corresponding performance measures obtained previously,

the total expected cost function per unit time is given by

TC (η) = Ch E[L] + Ci(π0,0 + ϕ0(1, 1)) + Cbϕ1(1, 1) + Crϕ2(1, 1)

+Cs
1

E[C]
+ Coηϕ2(1, 1). (7.3)

One may note that it would be a hard task to solve the cost minimization problem (7.3) by using
analytic method because TC (η) is highly non-linear and complex. Here, we use the parabolic method
to find the optimum value η∗. The details about the parabolic method can be referred to [40]. According
to the polynomial approximation theory, the unique optimum of the quadratic function agreeing with
the objective function g (x) at 3-point pattern

{
x(l), x(m), x(r)

}
occurs at

x(q) =
g(x(l))((x(m))2−(x(r))2)+g(x(m))((x(r))2−(x(l))2)+g(x(r))((x(l))2−(x(m))2)

2[g(x(l))(x(m)−x(r))+g(x(m))(x(r)−x(l))+g(x(r))(x(l)−x(m))] . (7.4)

The parabolic method uses this approximation to improve the current 3-point pattern by replacing
one of its points with an approximate optimum x(q). For the purpose of clarity, the procedures of the
parabolic method are described as follows.

Step 1 (Initialization). Choose a starting 3-point pattern {x(l), x(m), x(r)} along with a stopping
tolerance ε = 10−6, and initialize the iteration counter i = 0.

Step 2 (Stopping ). If
∣∣∣x(q) − x(m)

∣∣∣ ≤ ε, stop and report approximate optimum solution x(m).
Step 3 (Quadratic fit). Compute a quadratic fit optimum x(q) according to (7.3) and (7.4). If

x(q) ≤ x(m), go to Step 4 . If x(q) > x(m), go to Step 5.
Step 4 (Left). If g

(
x(m)

)
is less than g

(
x(q)

)
, then update x(q) → x(l). Otherwise, replace x(m) → x(r),

x(q) → x(m). Either way, advance i = i + 1, and return to Step 2.
Step 5 (Right). If g

(
x(m)

)
is less than g

(
x(q)

)
, then update x(q) → x(r). Otherwise, replace x(m) → x(l),

x(q) → x(m). Either way, advance i = i + 1, and return to Step 2.
In the following numerical experiment, we employ the parabolic method to determine the optimum

replacement probability η∗.
Example 1. We consider a practical problem concerning the flexible manufacturing system

mentioned in Introduction (Section 1). It is assumed that the raw components arrive at the system
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according to a Bernoulli process with parameter λ. The processing times per component, the
inter-retrial times and the repair times are geometrically distributed with parameter χ, ᾱ and σ,
respectively. The default values of the system parameters and the cost elements are taken as λ = 0.2,
χ = 0.6, σ = 0.4, p = 0.35, q = 0.2, α = 0.25, β = 0.7, Ch = $35, Ci = $20, Cb = $55, Cr = $15,
Cs = $10 and Co = $25. The effect of η on the system operating cost is illustrated in Figure 9. From
the information of Figure 9, we observe that there is an optimum value of η to minimize the system
cost and we choose the initial 3-point pattern η(l) = 0.2, η(m) = 0.25 and η(r) = 0.3. Applying the
parabolic method as mentioned above with the stopping tolerance ε = 10−6, after six iterations, one
can see from Table 1 that the minimum expected operating cost per unit time converges to the solution
η∗ = 0.259841 with value $102.899274.
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102.5
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Figure 9. The effect of η on TC(η).

Table 1. The parabolic method in searching for the optimum solution.
No. of

iterations η(l) η(m) η(r) TC(η(l)) TC(η(m)) TC(η(r)) η∗ TC(η∗) Tolerance

0 0.200000 0.250000 0.300000 102.986247 102.901156 102.925387 0.263918 102.899580 0.013918
1 0.250000 0.263918 0.300000 102.901156 102.899580 102.925387 0.260376 102.899279 0.003542
2 0.250000 0.260376 0.263918 102.901156 102.899279 102.899580 0.259925 102.899274 4.513242×10−4

3 0.250000 0.259925 0.260376 102.901156 102.899274 102.899279 0.259853 102.899274 7.166558×10−5

4 0.250000 0.259853 0.259925 102.901156 102.899274 102.899274 0.259843 102.899274 9.823264×10−6

5 0.250000 0.259843 0.259853 102.901156 102.899274 102.899274 0.259842 102.899274 1.541255×10−6

6 0.250000 0.259842 0.259843 102.901156 102.899274 102.899274 0.259841 102.899274 2.152343×10−7

8. Conclusions

In the foregoing study, we considered a discrete-time Geo/G/1 retrial queue with probabilistic
preemptive priority, balking customers, starting failures and replacements of repair times. The
introduction of replacements in the repair times is an interesting novelty of this investigation. By
employing the supplementary variable method and the generating function technique, the closed-form
expressions for the probability generating functions of the stationary distributions of different system
states, orbit size and system size were obtained. Some performance measures such as the probabilities
that the server is free, busy period or down, the mean steady-state system queue length, the mean
sojourn time were also derived. Furthermore, sensitivity analysis was carried out by some numerical
examples, which can help the system managers better understand the operating characteristics of the
system. Finally, we established a cost structure to search for optimal replacement probability for
minimizing the system cost. The incorporation of retrial policy, preemptive resume priority, balking
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behavior, starting failures and replacements of repair times makes our system closer to real-life
congestion scenarios and the analysis of this paper can provide potentially practical application in
telecommunication systems, flexible manufacturing systems, transportation system, inventory
problems, etc.

For future research, one could extend the present work by considering server vacations, multi-
optional services, Markovian arrival process (MAP) of customers. It is also interesting to consider the
case that the replacement time cannot be negligible.
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