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Abstract: We present a system of four nonlinear differential equations to model the use of virotherapy
as a treatment for cancer. This model describes interactions among infected tumor cells, uninfected
tumor cells, effector T-cells, and virions. We establish a necessary and sufficient treatment condition to
ensure a globally stable cure state, and we additionally show the existence of a cancer persistence state
when this condition is violated. We provide numerical evidence of a Hopf bifurcation under estimated
parameter values from the literature, and we conclude with a discussion on the biological implications
of our results.
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1. Introduction

Oncolytic virotherapy is a cancer treatment that involves injecting cancerous tumor cells with a
virus to both infect and break down those cells without destroying healthy cells [1]. This treatment also
works to jump-start the body’s defenses by stimulating the immune system [2]. Oncolytic virotherapy
attacks cancer as a virus would normally attack the body and works without chemotherapy agents or
any kind of radiation. Because of this, it is not vulnerable to the same drug and radiation resistance
that current commonly used treatments experience. Due to the way in which virotherapy works, this
type of treatment can be applied in tandem with other treatments; it can be administered before or after
surgery or between radiation or chemotherapy appointments [2]. The average length of virotherapy
treatment is three years with scheduled monitoring, and oncolytic virotherapy avoids the detrimental
side effects other common cancer treatments such as chemotherapy and radiation tend to exhibit [3].
In order for a virus to be acceptable for oncolytic virotherapy, it must be capable of replication and
selective infection [4].

In recent years, scientists have been looking into the possibility of a single-shot cure, a threshold
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limit for vascular delivery, and an alternate way for viruses to target the cancer cells [5]. In 2017,
information was released on the first study of herpes simplex virus-1, HSV-1, being used in children and
young adults for its oncolytic properties [6]. Researchers from both Nationwide Children’s Hospital
and Cincinnati Children’s Hospital Medical Center have together completed the first phase 1 trial of a
mutated HSV-1 virus, HSV1716 [6]. They have determined that after the completion of phase 1, the
HSV1716 is both endurable and nontoxic [7]. As of 2018, viruses from nine families have progressed
to clinical trials of oncolysis. While these viruses have shown encouraging results, their efficacy as a
single agent therapy is limited [8]. Current research is exploring how oncolytic viruses can support
immunotherapy, particularly in cancers susceptible to checkpoint inhibitors [9].

Since the onset of oncolytic virotherapy, mathematicians have utilized experimental results and
analytical techniques to build mathematical models which could be studied to determine key model
parameters, as well as short and long-term dynamics of such a treatment approach. Previous
mathematical studies have incorporated a virotherapy treatment within their models using a constant
source rate; these same papers have focused on the dynamics of the infected and uninfected cell
populations in their main equations, without a free virus equation [10, 11]. Some studies have
included an immune response in their system of differential equations [11, 12], while others have
neglected to include an immune response to the cancerous cells [13–16]. The aim of this paper is to
study the long-term dynamics of a system of nonlinear differential equations that describes the role of
virotherapy on tumors and the impact of immune response specific to fighting cancer.

2. Model development

In 2015, Kim, Crivelli and Choi et al. [17] studied the short-term dynamics of a model describing
the interaction between an oncolytic virus and tumor cells. Their model explicitly utilizes a free virus
population that includes a virotherapy treatment term as well as growth due to infected tumor cell lysis:

dU
dt

= rU − β
UV
N
− k(I)

UT
N

dI
dt

= β
UV
N
− δI I − k(I)

IT
N

dV
dt

= u(t) + αδI I − δVV

dT
dt

= sT (I) + pA − δT T

dA
dt

= sA(I) − δAA

where U, I,V,T, and A represent uninfected tumor cells, infected tumor cells, virions, T-cells, and
APCs [17].

In [17], Kim et al. utilize experimental data to fit parameter values to their proposed model, and then
vary treatment strategies to determine the effects of various dosage, treatment schedules, and targeted
viruses have on the short-term behavior of the tumor cell populations. The authors conclude that the
most important factors in controlling short-term tumor growth are the immune response and the virus
burst size.
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The goal of this paper is to use build upon the work of Kim et al. [17] to study the long-term
dynamics of oncolytic virotherapy on a tumor cell population. The use of an exponential growth rate
in [17] allows for the model to simulate up to at most sixty days. Since we are interested in the long-
term dynamics of virotherapy, we propose the following modification to the model presented in [17].
First, we include logistic growth in place of exponential growth to allow for long-term population
dynamics. Secondly, we simplify the immune response to study the response of effector T-cells on
the infected tumor cell population. Here, we assume that the effector T-cells are recruited at a rate
proportional to the infected tumor cell population and the effector T-cells decrease the infected tumor
cell population according to the law of mass action. The effector T-cell recruitment is consistent with
the assumptions made in Kim et al. [17], while relaxing the frequency-dependent impact on tumor
cells facilitates the global study of long-term dynamics. Furthermore, these assumptions are well-
documented in mathematical models, and we refer the reader to [18] for further reading on the modified
terms.

Thus, we propose the following model describing the interactions between uninfected tumor cells,
U, infected tumor cells, I, effector T-cells, E, and virions, V .

dU
dt

= rU
(
1 −

I + U
k

)
− βUV − γUUE

dI
dt

= βUV − γI IE − δI I

dE
dt

= cI − δEE

dV
dt

= N(t) + αδI I − δVV.

Here, we use r to represent the growth rate of uninfected tumor cells, k to represent the total carrying
capacity of tumor cells, β to represent the rate of uninfected tumor cells becoming infected, γU to
represent the rate of decay of uninfected cells via T-cells, γI to represent the rate of decay of infected
cells via T-cells, δI to represent the rate of decay for infected cells, c to represent the rate of T-cell
growth via infected tumor cells, δE to represent the rate of decay for effector T-cells, δV to represent
the rate of decay for virions, α to represent the number of virions released via infected cell lysis, and
N to represent the virotherapy dosage.

To simplify later calculations, we non-dimensionalize our model by setting t̃ = rt, Ũ =
U
k
, Ĩ =

I
k
,

Ẽ =
γU

r
E, Ṽ =

β

r
V, γ̃ =

γI

γU
, δ̃I =

δI

r
, c̃ =

γukc
r2 , δ̃E =

δE

r
, Ñ =

βN
r2 , α̃ =

βkα
r
, and δ̃V =

δV

r
. We drop

all the tildes from our notation and arrive at the following non-dimensionalized model:

dU
dt

= U(1 − I − U) − UV − UE

dI
dt

= UV − γIE − δI I

dE
dt

= cI − δEE

dV
dt

= N + αδI I − δVV.

(2.1)
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3. Analysis

3.1. Preliminary results

Assuming (2.1) is subject to non-negative initial conditions, we note that the system is invariant in
the non-negative orthant. Additionally, because the associated vector field is continuously
differentiable, there exists a unique solution to (2.1) under non-negative initial conditions by the
Picard–Lindelöf Theorem.

3.1.1. Boundedness

In order to confirm that our model does not predict uninhibited cell growth, we ensure that our cell
populations are bounded above. For uninfected tumor cells:

dU
dt

= U(1 − I − U) − UV − UE

≤ U(1 − U)
< 0 if U > 1.

Thus, lim sup
t→∞

U(t) ≤ 1. Using this upper bound, we can derive an upper bound for the infected

tumor cell population. From (2.1), we have:

d(U + I)
dt

= U(1 − I − U) − UV − UE + UV − γIE − δI I

≤ U(1 − (I + U))
< 0 if I + U > 1.

It follows that lim sup
t→∞

I(t) ≤ 1. Utilizing the asymptotic upper bound of the infected tumor cells, for

effector T-cells we have
dE
dt
≤ c − δEE. By standard comparison theory, it follows that lim sup

t→∞
E(t) ≤

c
δE

. Similarly, for the virion population, we have lim sup
t→∞

V(t) ≤
N + αδI

δV
.

3.1.2. Existence of equilibria

To establish equilibria of (2.1), we must solve the following system of equations:

0 = U∗(1 − I∗ − U∗) − U∗V∗ − U∗E∗ (3.1)
0 = U∗V∗ − γI∗E∗ − δI I∗ (3.2)
0 = cI∗ − δEE∗ (3.3)
0 = N + αδI I∗ − δVV∗. (3.4)

AIMS Mathematics Volume 5, Issue 5, 4136–4150.



4140

If U∗ = 0, it readily follows that I∗ = E∗ = 0 and V∗ = N
δV

. Thus we find a cure state equilibrium

point of the form P0 = (0, 0, 0,
N
δV

).

If U∗ , 0, we can use (3.1), (3.3), and (3.4) to solve for U∗, E∗, and V∗ in terms of I∗:

E∗ =
cI∗

δE

V∗ =
N + αδI I∗

δV

U∗ = 1 − I∗ − V∗ − E∗

= 1 − I∗ −
N + αδI I∗

δV
−

cI∗

δE
.

Substituting these expressions into (3.2) leaves us with a polynomial in I∗, denoted by f (I∗):

f (I∗) = U∗V∗ − γI∗E∗ − δI I∗

=

(
1 − I∗ −

N + αδI I∗

δV
−

cI∗

δE

) (
N + αδI I∗

δV

)
− γI∗

(
cI∗

δE

)
− δI I∗

= −

(
cγδI + cαδI

δEδI
+
αδIδV + α2δ2

I

δ2
V

)
I∗

2
−

(
δI +

N
δV

+
2NαδI

δ2
V

+
Nc
δEδV

−
αδI

δV

)
I∗ +

N(δV − N)
δ2

V

.

The number of internal equilibria is thus determined by the number of solutions to f (I∗) = 0. We
first note that f (I∗) is a quadratic function and that the coefficient on I∗

2
is negative. We also note

that the constant term is positive if and only if δV > N. By Descartes’ Rule of Signs, it follows that
there exists one unique positive real root for f (I∗). Since I∗ is positive and real, U∗, E∗, and V∗ must
also be positive and real. We conclude that there exists a unique cancer persistence state of the form
P∗ = (U∗, I∗, E∗,V∗) when δV > N. We summarize these results in the following theorem:

Theorem 1.

1. There exists a unique cure state of the form P0 = (0, 0, 0, N
δV

).
2. When N < δV , there exists a unique cancer persistence state of the form P∗ = (U∗, I∗, E∗,V∗).

3.2. Stability of the cure state

In this section, we explore the stability of the cure state equilibrium P0 =

(
0, 0, 0,

N
δV

)
. We note

that the nonzero virion population in the cure state results from assuming a continuous constant dosage
treatment. Furthermore, the lack of effector T-cells in the cure state represents there no longer being a
need for an immune response due to cancer clearance.

3.2.1. Local stability of the cure state

We first consider the local stability of the cure state equilibrium P0. Recall that our
non-dimensionalized model is
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dU
dt

= U(1 − I − U) − UV − UE

dI
dt

= UV − γIE − δI I

dE
dt

= cI − δEE

dV
dt

= N + αδI I − δVV.

Evaluating the Jacobian matrix at P0 yields

J
(
0, 0, 0,

N
δV

)
=


1 − N

δV
0 0 0

N
δV

−δI 0 0
0 c −δE 0
0 αδI 0 −δV


with eigenvalues

−N + δV

δV
,−δI ,−δV ,−δE. Thus, we find the local stability condition for the cure state

to be N > δV . If this condition is not met, the cure state is unstable. We demonstrate this result with
numerical simulations in Section 4.

3.2.2. Global stability of the cure state

We next explore the global stability of P0. We begin by establishing a lower bound on the virion
population V:

dV
dt

= N + αδI I − δVV

≥ N − δVV.

Using standard comparison theory, this implies that lim inf
t→∞

V(t) ≥
N
δV

.

We next seek conditions to ensure U(t)→ 0 as t → ∞. Defining the Lyapunov-type function L = U,
we compute its derivative along trajectories of our system:

dL
dt

= U (1 − I − U) − UV − UE

≤ U (1 − V) .

Using the lower bound on V , we then have

dL
dt
≤ U(1 −

N
δV

).
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Thus
dL
dt

< 0 if 1 −
N
δV

< 0, or equivalently if N > δV . We note that this is the same condition for

local stability of the cure state. Under this condition, it then follows that U(t)→ 0 as t → ∞.
We next explore the asymptotic behavior of I:

dI
dt

= UV − γIE − δI I

→ −γIE − δI I

Thus U(t)→ 0 implies I(t)→ 0 as well. Similarly, for E and V we have:

dE
dt

= cI − δEE

→ −δEE.

dV
dt

= N + αδI I − δVV

→ N − δVV.

Hence I(t)→ 0 implies E(t)→ 0 and V(t)→
N
δV

. These results are summarized as follows:

Theorem 2. If N > δV , then the cure state P0 =

(
0, 0, 0,

N
δV

)
is globally asymptotically stable.

3.3. Stability of the cancer persistence state

We now explore the long-term dynamics of the model when the stability condition for the cure state
is violated; that is, N < δV . Recall that in this case, the cancer persistence equilibrium (U∗, I∗, E∗,V∗)
exists in the nonnegative orthant. Although full stability analysis of this equilibrium proves intractable,
we can glean some useful bounds on our treatment term N from a local stability analysis. Substituting
the cancer persistence equilibrium into the Jacobian matrix yields:

J (U∗, I∗, E∗,V∗) =


1 − E∗ − I∗ − 2U∗ − V∗ −U∗ −U∗ −U∗

V∗ −E∗γ − δI −I∗γ U∗

0 c −δE 0
0 αδI 0 −δV


After algebraic simplification, the characteristic polynomial can be written in the form:

λ4 + a3λ
3 + a2λ

2 + a1λ + a0

where ai > 0 for i = 0, 1, 2, 3. Our characteristic polynomial has the following coefficients:
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a0 = αδEδIU∗V∗ + cδVU∗V∗ + cγδV I∗U∗ + δEδVU∗V∗ +
NδEU∗

2

I∗

a1 = cU∗V∗ + cγI∗U∗ + δEU∗V∗ + γδEE∗U∗ + αδIU∗V∗

+ δEδIU∗ + δVU∗V∗ + cγδV I∗ + δEδVU∗ +
NU∗

2

I∗
+

NδEU∗

I∗

a2 = U∗V∗ + γE∗U∗ + cγI∗ + δEU∗ + γδEE∗ + δIU∗ + δEδI + δVU∗ + δEδV +
NU∗

I∗

a3 = U∗ + γE∗ + δE + δI + δV .

The Routh-Hurwitz criterion provide necessary and sufficient conditions for the cancer state to be
locally stable, normally with the conditions

a0 − a3 > 0 (3.5)
a3a2 > a1 (3.6)
a3a2a1 > a2

1 + a2
3a0. (3.7)

While condition (3.5) is satisfied, establishing (3.6) and (3.7) in general is intractable due to the
nonlinear nature of the model. However, we note that (3.7) implies (3.6), and we will show in the
numerical example below that (3.7) establishes a lower bound for stability of cancer persistence on the
dosage, N.

4. Numerical results

We continue our exploration of the stability of the cancer persistence state numerically, with
parameter values chosen from literature as seen below in Table 1. We utilize the parameter values
derived from experimental results in [17] for our numerical simulations, in which the authors perform
various simulations that elicit different immune responses. Since we are only considering the effector
T cell immune response in our model, we choose parameter values from [17] that are present with no
APC response. To address the change from exponential growth to logistic growth, we use a carrying
capacity of k = 3 × 109. This is equivalent to a tumor having a volume of 3000 mm3, which Kim et
al. [17] found experimentally to be the lethal size of tumors in mice. Finally, in [17], the authors
divide the infection rate β = 8.9 × 10−4 by the total cell population; thus we similarly adjust the value
of β to align with the chosen carrying capacity. The corresponding non-dimensionalized parameter
values are found in Table 2.
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Table 1. Parameter values [17].

Name Meaning Dimension Value
k carrying capacity total tumor cells 3.0 × 109

c rate of T-cell growth via infected tumor cells T-cells per virion per day 2.9
β rate of uninfected becoming infected per virion per day 8.9 × 10−13

r growth rate of uninfected tumor cells per day 0.31
γU rate of decay of uninfected cells via T-cells per T-cell per day 1.5 × 10−7

γI rate of decay of infected cells via T-cells per T-cell per day 1.5 × 10−7

δE rate of decay for effector T-cells per cell per day 0.35
δI rate of decay for infected cells per cell per day 1
δV rate of decay for virions per cell per day 2.3
α virions released via infected cell lysis per day 3500
N virotherapy dosage virions per day varied

Table 2. Non-dimensionalized parameter values.

Name Meaning Value
γ̃ γI

γU
1

δ̃I
δI
r 3.22581

c̃ γU kc
r2 13579.6

δ̃E
δE
r 1.12903

α̃ βkα
r 30.1451

δ̃V
δV
r 7.41935

Ñ βN
r2 varied

With the non-dimensionalized parameters from Table 2, Theorem 2 guarantees a globally stable cure
state for Ñ > 7.41935 (corresponding to N > 8.01123×1011 virions), while the Routh-Hurwitz criteria
above predicts a locally stable cancer persistence state for 0.000819195 < Ñ < 7.41935 (corresponding
to 8.84546×107 < N < 8.01123×1011 virions). The expected behavior of the model with representative
dosages chosen from these ranges can be seen in Figures 1 and 2.

Figure 1. Cure state (N = 8.6382 ×
1011 virions).

Figure 2. Cancer persistence state
(N = 1.07978 × 1011 virions).
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For representative dosages satisfying Ñ < 0.000819195 (corresponding to N < 8.84546 × 107

virions), we observe sustained oscillations in each population as seen in Figure 3.

Figure 3. Cancer recurrence ctate (N = 8.6382 × 107 virions).

This suggests the existence of a Hopf bifurcation at the critical value Ñ = 0.000819195,
(correspondingly N = 8.84546 × 107 virions.) The following theorem from [19] provides a method of
establishing the existence of a Hopf bifurcation and analyzing its stability by calculating the first
Lyapunov coefficient:

Theorem 3. Suppose that the system ẋ = f (x, µ), x ∈ RN , µ ∈ R has an equilibrium (x0, µ0) and the
following properties are satisfied:

(H1) The Jacobian Dx f
∣∣∣∣
(x0,µ0)

has a simple pair of pure imaginary eigenvalues λ(µ0) and λ(µ0) and no

other eigenvalues with zero real parts,

(H2)
d

dµ
Re (λ(µ))

∣∣∣∣
µ=µ0
, 0.

Then the dynamics undergo a Hopf bifurcation at (x0, µ0) resulting in periodic solutions. The stability
of the periodic solutions is given by the sign of the first Lyapunov coefficient of the dynamics l1(x0, µ0).
If l1 < 0, then these solutions are stable limit cycles and the Hopf bifurcation is supercritical, while if
l1 > 0, the periodic solutions are repelling.

To numerically calculate the first Lyapunov coefficent l1(P∗), we utilize the following theorem
from [20]:

Theorem 4. Let dx
dt = F(x) be a differential system having P∗ as an equilibrium point. Consider the

third order Taylor approximation of F around P∗ given by

F(x) = Ax +
1
2!

B(x, x) +
1
3!

C(x, x, x) + O(|x|4).

Assume that A has a pair of purely imaginary eigenvalues ±ω0i. Let q be the eigenvector of A
corresponding to the eigenvalue ω0i. Let p be the adjoint eigenvector such that AT p = −ω0ip and
〈p, q〉 = 1. If I denotes the identity matrix, then the first Lyapunov coefficient l1(P∗) of the system
dx
dt = F(x) at P∗ is given by
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l1(P∗) =
1

2ω0
Re[〈p,C(q, q, q)〉 − 2〈p, B(q, A−1B(q, q))〉 + 〈p, B(q, (2iω0In − A)−1B(q, q))〉]

where

Bi(x, y) =

n∑
j,k=1

∂2Fi(ξ)
∂ξ j∂ξk

∣∣∣∣∣
ξ=0

x jyk

Ci(x, y, z) =

n∑
j,k,l=1

∂3Fi(ξ)
∂ξ j∂ξk∂ξl

∣∣∣∣∣
ξ=0

x jykzl.

We begin numerically establishing the existence of a Hopf bifurcation by recalling the Jacobian
evaluated at P∗ = (U∗, I∗, E∗,V∗):

A = J (P∗) =


1 − E∗ − I∗ − 2U∗ − V∗ −U∗ −U∗ −U∗

V∗ −E∗γ − δI −I∗γ U∗

0 c −δE 0
0 αδI 0 −δV

 .
Using the non-dimensionalized parameter values found in Table 2 together with the critical dosage

value Ñ = 0.000819195, we first calculate the values of U∗, I∗, E∗, and V∗. We find the approximate
values of (0.265432, 0.0000609925, 0.733598, 0.000909817) and substitute them into the Jacobian
matrix to find

A =


−0.265432 −0.265432 −0.265432 −0.265432

0.000909817 −3.95941 −0.0000609925 0.265432
0 13579.6 −1.12903 0
0 97.2424 0 −7.41935

 .
This gives the following eigenvalues and corresponding eigenvectors (λi, vi) of the system:

λi = −11.0387,−1.73456,±1.18878i;

vi =


−0.0250904
0.000729374
−0.999493
−0.0195966

 ,

−0.177655

0.000043882
−0.984093

0.000750633

 ,

−0.0466716 + 0.208015i

0.0000812302 + 0.0000855293i
0.97701

0.00121312 + 0.000926622i

 ,

−0.0466716 − 0.208015i

0.0000812302 − 0.0000855293i
0.97701

0.00121312 − 0.000926622i

 .
With these eigenvalues and eigenvectors, we note that (H1) of Theorem 3 is satisfied. To establish

the transversality condition (H2), we use the following result from [20]:

d
dµ

Re (λ(µ))
∣∣∣∣
µ=µ0

= Re 〈p, A′(µ0)q〉,
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with A, p and q as defined in Theorem 4. Using the eigenvalues and eigenvectors calculated above,

we compute ω0 = 1.188783 and q =


−0.0466716 + 0.208015i

0.0000812302 + 0.0000855293i
0.977010

0.00121312 + 0.000926622i

. To calculate p, we derive the

eigenvalues and corresponding eigenvectors of AT :

λi = −11.0387,−1.73456,±1.18878i;

vi =
0.0000842254
−0.997321

−3.88239 × 10−6

0.0731474

 ,

−0.000618614

0.99891
−0.00017055

0.0466696

 ,

−0.000162668 + 0.000728537i

−0.999377
−0.0000417853 − 0.00012728i
−0.0348568 + 0.00555895i

 ,

−0.000162668 − 0.000728537i

−0.999377
−0.0000417853 + 0.00012728i
−0.0348568 − 0.00555895i

.

We then find that p =


−0.000162668 − 0.000728537i

−0.999377
−0.0000417853 + 0.00012728i
−0.0348568 − 0.00555895i

.
When we compute p ·q, we see that it is not equal to 1, but is equal to −0.000313395−0.000303225i

so we must scale q as follows:

q =
1

−0.000313395 − 0.000303225i


−0.0466716 + 0.208015i

0.0000812302 + 0.0000855293i
0.977010

0.00121312 + 0.000926622i

 =


−254.776 − 417.239i
−0.270253 − 0.0114296i
−1610.16 + 1557.9i
−3.47683 + 0.407281i

 .
Finally, we compute

A′(0.235537) =


11.5004 11.5256 11.5256 11.5256

0.0125721 −11.5372 −0.000959219 −11.5256
0 0 0 0
0 0 0 0


and so

Re 〈p, A′(µ0)q〉 = −28.4146 , 0.

Thus, we have satisfied the transversality condition of Theorem 3 and therefore have established the
existence of a Hopf bifurcation.

To determine the stability of the Hopf bifurcation, we proceed with calculations needed for l1(P∗):

A−1 =


−0.37585 989.471 0.0349081 35.4124

−0.000281653 −0.0821699 0.0000706547 −0.0029296
−3.38762 −988.312 −0.0359048 −35.2363
−0.00369151 −1.07697 0.000926042 −0.17318

 ,
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(2iω0I4 − A)−1 =
−0.0042 − 0.4720i 133.179 − 148.759i 0.04497 + 0.0243i 2.7793 − 6.1957i
−0.00012 − 0.00004i 0.0602 − 0.3429i 0.00002 − 5.2976 × 10−6i −0.0016 − 0.0118i
−0.4547 + 0.5099i −1465.14 − 1039.52i 0.1725 − 0.4270i −58.333 − 18.5147i
−0.0017 + 0.00004i −0.5909 − 4.3056i 0.0002 − 0.0001i 0.0584 − 0.1727i

 ,

B((U1, I1, E1,V1), (U2, I2, E2,V2)) =


−2U1U2 − I2U1 − E2U1 − U1V2 − I1U2 − E1U2 − V1U2

U1V2 − E2I1 − E1I2 + U2V1

0
0

 ,

B(q, q) =


−14.6055 − 25.0483i
5.25272 + 19.2029i

0
0

 , B(q, q) =


−6.82718 × 10−7

597.072
0
0

 ,

B(q, (2iω0I4 − A)−1B(q, q)) =


−4.64218 × 106 − 7.37735 × 106i

−2673.55 + 34713.6i
0
0

 ,

and B(q, A−1B(q, q)) =


−550395 − 123490i
842.573 + 464.146i

0
0

 .
Substituting the above matrices and vectors into l1(P∗) yields

l1(P∗) =
1

2ω0
Re

[
〈p, 0〉 − 2〈p, B(q, A−1B(q, q))〉 + 〈p, B(q, (2iω0I4 − A)−1B(q, q))〉

]
=

1
2 ∗ 1.188783

Re[0 − 2(−842.483 − 42.7851i) + (−1947.66 − 30024.3i)]

= −110.488.

Since l1(P∗) < 0, we conclude that the Hopf bifurcation that occurs at the critical dosage N =

8.84546 × 107 virions is supercritical, implying that the cancer persistence equilibrium bifurcates into
a stable limit cycle. This agrees with the behavior observed in Figure 3.

5. Conclusions

The model of Kim et al. [17] uses experimental data to simulate tumor progression for up to sixty
days due with the use of an exponential growth term for the uninfected tumor cells. In this work, we
modify the model presented in [17] to allow for long-term dynamics through logistic growth. In doing
so, we find thresholds for dosages of an effective virotherapy treatment that are sufficient to reach
long term tumor eradication. Conversely, when the virotherapy protocol is not strong enough to
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ensure tumor eradication, our model gives two possibilities. The first possibility is a stable cancer
persistence state where the tumor may shrink, but is never eradicated. In such a case, this model
predicts that virotherapy could be useful as a neoadjuvant therapy in preparation for surgery or
radiotherapy treatment. The second possibility is periodic cancer recurrence that may indicate further
progression of the tumor or metastasis.

In this latter case, to numerically demonstrate the existence of a Hopf bifurcation, we compute the
first Lyapunov coefficient using parameter values gathered from the literature. l1(P∗) was found to be
less than zero, which allows us to conclude that a supercritical Hopf bifurcation exists at the critical
dosage and thus the resulting limit cycle is stable. This calculation, combined with the Routh–Hurwitz
criteria, motivates the following conjecture for bounds on the specific range of dosage to guarantee a
stable cancer persistence state:

Let N0 denote the smallest positive root of a3a2a1 = a2
1 + a2

3a0. If N0 < N < δV , then the cancer
persistence state (U∗, I∗, E∗,V∗) is globally asymptotically stable. If N < N0, there exists a globally
stable limit cycle.

While Kim et al. [17] found that the most important factors in controlling short term tumor growth
were the immune response and the virus burst size, our model suggests that the virotherapy dosage
and the infection rate of the virus are key parameters to ensure long term tumor eradication. However,
as treatment was modeled using a constant dosage, future work should include how more realistic
periodic treatment schedules influence the resulting stability analysis. Additionally, since sustained
oscillations of tumor load are not typically clinically observed, finding criteria for the nonexistence of
limit cycles in higher dimensional nonlinear models such as the one presented in this paper will be
useful for building larger feasible parameter spaces.
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