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Abstract: Topological indices are molecular structural descriptors which computationally and
theoretically describe the natures of the underlying connectivity of nanomaterials and chemical
compounds, and hence they provide quicker methods to examine their activities and properties.
Irregularity indices are mainly used to characterize the topological structures of irregular graphs.
Graph irregularity studies are useful not only for quantitative structure-activity relationship (QSAR)
and quantitative structure-property relationship (QSPR) studies, but also for predicting their various
physical and chemical properties, including toxicity, resistance, melting and boiling points, the
enthalpy of evaporation and entropy. In this article, we establish the expressions for the irregularity
indices named as the variance of vertex degrees, σ irregularity index, and the discrepancy index of
subdivision graph, vertex-semi total graph, edge-semi total graph, total graph, line graph, paraline
graph, double graph, strong double graph and extended double cover of a graph.
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1. Introduction

Graph theory has become a significant and essential part of the predictive toxicology and drug
discovery, as it performs a vital role in the analysis of structure-property and structure-activity
relationships. That is, different properties of molecules rely on their structures and therefore,
quantitative structure activity property toxicity relationships (QSAR/QSPR/QSTR) research has
become visible as a productive field of research in the characterization of physico-chemical properties,
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biological and pharmacological activities of materials and chemical compounds. These studies have
been extensively used to toxicology, pharmacokinetics, pharmacodynamics, chemometrics, and so
on [1].

Topological descriptors catch symmetry of compounds and provide the information in the numerical
form about the molecular size, presence of heteroatoms, shape, multiple bonds, and branching.
Topological descriptors have secured appreciable significance, due to the ease of generation and the
speed with which these calculations can be performed. There are many graph-related numerical
descriptors, which have confirmed their importance in theoretical chemistry and nanotechnology.
Thereby, the computation of these topological descriptors is an interesting and attractive line of
research. Some productive classes of topological descriptors of graphs are distance-based, counting-
related, and degree-based; among these, degree-based indices have the most eye-catching position and
can perform the prominent role to characterize the chemical compounds and forecast their different
physicochemical properties like density, molecular weight, boiling and melting points, etc. A valuable
subclass of degree-based topological descriptors are the irregularity indices that tell us about the
irregularity of the graph in question. The topological descriptor T I(Γ) of the graph Γ is said to be
an irregularity index if T I(Γ) ≥ 0 and T I(Γ) = 0, if and only if , it is regular graphics. Prior to
the documentation, I cite [2] that irregularity indices were not considered to play a significant role
in predicting the physicochemical properties of chemical structures. In [2], a regression analysis is
performed to investigate and determine the application of various irregularity indicators to evaluate the
physicochemical properties of octane isomers. They submitted that using the non-uniformity indices,
the properties of octane isomers such as Accentric Factor (AcenFac), Evaporation Enthalpy (HVAP),
Entropy, and Standard Evaporation Enthalpy (DHVAP) can be estimated with a correlation coefficient
greater than 0.9. For the detail discussion of different types of indices and their related results, we refer
the interested reader to [3–18].

Throughout the article, the vertex and edge sets of a graph Γ are represented by V(Γ) and E(Γ)
respectively. We denote the degree of a vertex q of a graph Γ by dΓ(q), and it is defined as the number
of edges incident with q. If in a graph, all its vertices have the same degree, then it said to be a regular
graph, otherwise, it is an irregular graph. Let the order and size of Γ are n and m respectively and with
V(Γ) = {q1, . . . , qn}. A sequence s1, . . . , sn, where si ∈ Z

+ for all i = 1, . . . , n, is said to be a degree
sequence of a graph Γ, and dΓ(ql) = sl. Let ql represents the number of vertices of degree l, where
l = 1, 2, 3, . . . , n−1. Let e = q1q2 ∈ E(Γ), the imbalance of e is described as imb(e) := |dΓ(q1)−dΓ(q2)|.
In 1997, the idea of the irregularity of a graph Γ was given by Albertson [19] in the following way:

irr(Γ) =
∑

e∈E(Γ)

imb(e)

The Zagreb indices have appreciable applications in chemistry. In 1972, Gutman et. al [20]
proposed the first Zagreb index based on the degree of vertices of a graph Γ. The first and second
Zagreb indices of a graph Γ can be defined in the following way:

M1(Γ) =
∑

q∈V(Γ)

d2
Γ(q), M2(Γ) =

∑
q1q2∈E(Γ)

dΓ(q1)dΓ(q2). (1.1)

Inspired by the Zagreb indices, Furtula and Gutman [21] introduced the forgotten index of Γ as
follows:

F(Γ) =
∑

q∈V(Γ)

d3
Γ(q) =

∑
q1q2∈E(Γ)

(d2
Γ(q1) + d2

Γ(q2)). (1.2)
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Recently, Gutman et al. [22] brought in the idea of the σ irregularity index of a graph Γ, which is
defined as:

σ(Γ) =
∑

q1q2∈E(Γ)

(dΓ(q1) − dΓ(q2))2. (1.3)

Different properties of σ irregularity index have been discussed in [23, 24]. If the size and order of
Γ are m and n respectively, then the variance of Γ is defined by [25] in the following way:

Var(Γ) =
1
n

∑
q∈V(Γ)

d2
Γ(q) −

1
n2

 ∑
q∈V(Γ)

dΓ(q)


2

. (1.4)

The irregularity measure discrepancy of a graph Γ was introduced in [26, 27] as follows:

Disc(Γ) =
1
n

∑
q∈V(Γ)

∣∣∣∣∣dΓ(q) −
2m
n

∣∣∣∣∣ . (1.5)

For the comprehensive discussions about these graph descriptors, we refer the readers to [28–33].

2. Derived graphs

Definition 2.1. Subdivision graph: For a graph Γ, its subdivision graph is constructed by adding a
vertex of degree 2 in each edge. Therefore, |V(S(Γ))| = n + m, |E(S(Γ))| = 2m and

dS(Γ)(q) =

{
dΓ(q), if q ∈ V(Γ),
2, if q ∈ E(Γ).

(2.1)

Definition 2.2. Line Graph: For a graph Γ, its line graph denoted by L(Γ) is the graph such that
V(L(Γ)) = E(Γ) and there is an edge between a pair vertices of L(Γ) if and only if the corresponding
edges are incident in Γ. Clearly, |V(L(Γ))| = m and by using hand shaking-lemma one can easily see

that |E(L(Γ))| =
M1(Γ)

2
−m, and for all q = q1q2 ∈ E(Γ), we have

dL(Γ)(q) = dΓ(q1) + dΓ(q2) − 2. (2.2)

Definition 2.3. Semi-total point graph [34]: For a graph Γ, its semi-total point graph is represented by
T1(Γ) and it is formed by inserting a new vertex to each edge of Γ and then joining it to the end vertices
of the corresponding edge. Thus, |V(T1(Γ))| = n + m, |E(T1(Γ))| = |E(S(Γ))| + m = 2m + m = 3m and

dT1(Γ)(q) =

{
2dΓ(q), if q ∈ V(Γ),
2, if q ∈ E(Γ).

(2.3)

Definition 2.4. Semi-total line graph [34]: For a graph Γ, its semi-total line graph is represented as
T2(Γ) and it is formed by placing a new vertex at each edge of Γ, linking those new vertices by edges

whose related edges are incident in Γ. We have |V(T2(Γ))| = n + m, |E(T2(Γ))| = m +
M1(Γ)

2
and

dT2(Γ)(q) =

{
dΓ(q), if q ∈ V(Γ),
dL(Γ)(q) + 2 = dΓ(q1) + dΓ(q2) + 2, if q = q1q2 ∈ E(Γ), q1, q2 ∈ V(Γ).

(2.4)
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Definition 2.5. Total Graph: The union of semi-total point graph and semi-total line graph is called
total graph of a graph Γ. It is denoted by T (Γ). Also, |V(T (Γ))| = n + m, |E(T (Γ))| = m + |E(S(Γ))| +

|E(L(Γ))| = 2m +
M1(Γ)

2
and

dT (Γ)(q) =

{
2dΓ(q), if q ∈ V(Γ),
dL(Γ)(q) + 2 = dΓ(q1) + dΓ(q2) + 2, if q = q1q2 ∈ E(Γ), q1, q2 ∈ V(Γ).

(2.5)

Definition 2.6. Paraline Graph: This graph PL(Γ) is the line graph of subdivision graph represented

by PL(Γ) = L(S(Γ)). Also |V(PL(Γ))| = |E(S(Γ))| = 2m and |E(PL(Γ))| =
M1(S(Γ))

2
− 2m, where

M1(S(Γ)) = M1(Γ) + 4m, therefore |E(PL(Γ))| =
M1(Γ)

2
.

Definition 2.7. Double Graph: Let Γ be a graph with V(Γ) = {q1, q2, . . . , qn}, and the vertex set
of double graph D[Γ] are given by the two sets Γ1 = {x1, x2, . . . , xn} and Γ2 = {y1, y2, . . . , yn}. For
qi ∈ V(Γ), there are two vertices xi and yi in V(D[Γ]). The double graph D[Γ] consists of the original
edge set of every copy of Γ, and for qiq j ∈ E(Γ), two more edges xiy j and x jyi are added.

Definition 2.8. Strong double Graph: Let Γ be a graph with V(Γ) = {q1, q2, . . . , qn}, and the set
V(SD[Γ]) is converted into Γ1 = {x1, x2, . . . , xn} and Γ2 = {y1, y2, . . . , yn} sets. For each qi ∈ V(Γ), there
are xi and yi type vertices in V(SD[Γ]). The strong double graph SD[Γ] consists of the original edge
set of every copy of Γ, and for qiq j ∈ E(Γ), more edges xiy j, x jyi and xiyi are added.

Definition 2.9. Extended double cover: Let Γ be a graph with V(Γ) = {q1, q2, . . . , qn}. The
extended double cover of Γ, represented by Γ∗ is the bipartite graph with bipartition (Γ1,Γ2) where
Γ1 = {x1, x2, . . . , xn} and Γ2 = {y1, y2, . . . , yn} such that xi and y j are linked if and only if either qi and
q j are linked in Γ or i = j.

The different derived graphs of a graph Γ = C6 are illustrated in Figure 1.
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Figure 1. The derived graphs.

3. Main results

In this section, we present our main results. First of all, we deduce the results related to the variance
of derived graphs.

3.1. The variance index of derived graphs

Theorem 3.1. The variance of the subdivision graph S(Γ) of Γ is

Var(S(Γ)) =
M1(Γ) + 4m

n + m
−

16m2

(n + m)2 .
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Proof. By using Eq 2.1 in formula (1.4), we get

Var(S(Γ)) =
1

n + m

∑
q∈V(S(Γ))

d2
S(Γ)(q) −

1
(n + m)2

 ∑
q∈V(S(Γ))

dS(Γ)(q)


2

=
1

n + m

 ∑
q∈V(Γ)

d2
Γ(q) +

∑
q∈E(Γ)

(2)2

 − 1
(n + m)2

 ∑
q∈V(Γ)

dΓ(q) +
∑

q∈E(Γ)

(2)


2

=
M1(Γ) + 4m

n + m
−

(2m + 2m)2

(n + m)2

=
M1(Γ) + 4m

n + m
−

16m2

(n + m)2 .

This finishes the proof. �

Theorem 3.2. The variance of L(Γ) of Γ is

Var(L(Γ)) =
F(Γ) + 2M2(Γ) − 4M1(Γ) + 4m

m
−

(M1(Γ) − 2m)2

m2 .

Proof. By using Eq 2.2 in formula (1.4), we obtain

Var(L(Γ)) =
1
m

∑
q∈V(L(Γ))

d2
L(Γ)(q) −

1
m2

 ∑
q∈V(L(Γ))

dL(Γ)(q)


2

=
1
m

∑
q=q1q2∈E(Γ)

(dΓ(q1) + dΓ(q2) − 2)2 −
1

m2

 ∑
q=q1q2∈E(Γ)

(dΓ(q1) + dΓ(q2) − 2)


2

=
1
m

∑
q=q1q2∈E(Γ)

(
(d2

Γ(q1) + d2
Γ(q2)) + 2dΓ(q1)dΓ(q2) + 4 − 4(dΓ(q1) + dΓ(q2))

)
−

1
m2

 ∑
q=q1q2∈E(Γ)

((dΓ(q1) + dΓ(q2)) − 2)


2

=
F(Γ) + 2M2(Γ) − 4M1(Γ) + 4m

m
−

(M1(Γ) − 2m)2

m2 .

This accomplishes the proof. �

Theorem 3.3. The variance of the semi-total point graph T1(Γ) of Γ is given by

Var(T1(Γ)) =
4M1(Γ) + 4m

n + m
−

36m2

(n + m)2 .
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Proof. By using Eq 2.3 in formula (1.4), we have

Var(T1(Γ)) =
1

n + m

∑
q∈V(T1(Γ))

d2
T1(Γ)(q) −

1
(n + m)2

 ∑
q∈V(T1(Γ))

dT1(Γ)(q)


2

=
1

n + m

 ∑
q∈V(Γ)

(2dΓ(q))2 +
∑

q∈E(Γ)

(2)2

 − 1
(n + m)2

 ∑
q∈V(Γ)

2dΓ(q) +
∑

q∈E(Γ)

(2)


2

=
4M1(Γ) + 4m

n + m
−

(4m + 2m)2

(n + m)2

=
4M1(Γ) + 4m

n + m
−

36m2

(n + m)2 .

This completes the proof. �

Theorem 3.4. The variance of the semi-total line graph T2(Γ) of Γ is

Var(T2(Γ)) =
M1(Γ) + F(Γ) + 2M2(Γ)

n + m
−

(2m + M1(Γ))2

(n + m)2 .

Proof. By using Eq 2.4 in formula (1.4), we get

Var(T2(Γ)) =
1

n + m

∑
q∈V(T2(Γ))

d2
T2(Γ)(q) −

1
(n + m)2

 ∑
q∈V(T2(Γ))

dT2(Γ)(q)


2

=
1

n + m

 ∑
q∈V(Γ)

d2
Γ(q) +

∑
q=q1q2∈E(Γ)

(dΓ(q1) + dΓ(q2))2


−

1
(n + m)2

 ∑
q∈V(Γ)

dΓ(q) +
∑

q∈E(Γ)

(dΓ(q1) + dΓ(q2))


2

=
1

n + m

 ∑
q∈V(Γ)

d2
Γ(q) +

∑
q=q1q2∈E(Γ)

(d2
Γ(q1) + d2

Γ(q2) + 2dΓ(q1)dΓ(q2))


−

1
(n + m)2

 ∑
q∈V(Γ)

dΓ(q) +
∑

q∈E(Γ)

(dΓ(q1) + dΓ(q2))


2

=
M1(Γ) + F(Γ) + 2M2(Γ)

n + m
−

(2m + M1(Γ))2

(n + m)2 .

Thus we obtain the required result. �

Theorem 3.5. The variance of the total graph T (Γ) of Γ is

Var(T (Γ)) =
4M1(Γ) + F(Γ) + 2M2(Γ)

n + m
−

(4m + M1(Γ))2

(n + m)2 .
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Proof. By using Eq 2.5 in formula (1.4), we have

Var(T (Γ)) =
1

n + m

∑
q∈V(T (Γ))

d2
T (Γ)(q) −

1
(n + m)2

 ∑
q∈V(T (Γ))

dT (Γ)(q)


2

=
1

n + m

 ∑
q∈V(Γ)

(2dΓ(q))2 +
∑

q=q1q2∈E(Γ)

(dΓ(q1) + dΓ(q2))2


−

1
(n + m)2

 ∑
q∈V(Γ)

2dΓ(q) +
∑

q∈E(Γ)

(dΓ(q1) + dΓ(q2))


2

=
1

n + m

 ∑
q∈V(Γ)

4d2
Γ(q) +

∑
q=q1q2∈E(Γ)

(d2
Γ(q1) + d2

Γ(q2) + 2dΓ(q1)dΓ(q2))


−

1
(n + m)2

 ∑
q∈V(Γ)

2dΓ(q) +
∑

q∈E(Γ)

(dΓ(q1) + dΓ(q2))


2

=
4M1(Γ) + F(Γ) + 2M2(Γ)

n + m
−

(4m + M1(Γ))2

(n + m)2 .

This finishes the proof. �

Theorem 3.6. The variance of the paraline graph PL(Γ) = L(S(Γ)) of Γ is given by

Var(PL(Γ)) =
2mF(Γ) − (M1(Γ))2

4m2 .

Proof. From Theorem 3.2 and |V(PL(Γ))| = |V(L(S(Γ)))| = 2m, we get

Var(PL(Γ)) = Var(L(S(Γ))) =
F(S(Γ)) + 2M2(S(Γ)) − 4M1(S(Γ)) + 4|E(S(Γ))|

2m

−
(M1(S(Γ)) − 2|E(S(Γ))|)2

(2m)2 .

Since F(S(Γ)) = F(Γ) + 8m, M2(S(Γ)) = 2M1(Γ), M1(S(Γ)) = M1(Γ) + 4m, and |E(S(Γ))| = 2m.
Therefore

Var(PL(Γ)) =
F(Γ) + 8m + 4M1(Γ) − 4M1(Γ) − 16m + 8m

2m
−

(M1(Γ) + 4m − 4m)2

(2m)2

=
F(Γ)
2m
−

(M1(Γ))2

4m2 .

This completes the proof. �

Theorem 3.7. The variance of the double graph D[Γ] of Γ is

Var(D[Γ]) =
4(nM1(Γ) − 4m2)

n2 .
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Proof. By using dD[Γ](q) = 2dΓ(q) in formula (1.4), we get

Var(D[Γ]) =
1

2n

∑
q∈V(D[Γ])

d2
D[Γ](q) −

1
(2n)2

 ∑
q∈V(D[Γ])

dD[Γ](q)


2

=
1

2n

2 ∑
q∈V(Γ)

(2dΓ(q))2

 − 1
4n2

2 ∑
q∈V(Γ)

(2dΓ(q))


2

=
1

2n

8 ∑
q∈V(Γ)

d2
Γ(q)

 − 1
4n2 (4(2m))2

=
8M1(Γ)

2n
−

64m2

4n2

=
4(nM1(Γ) − 4m2)

n2 .

This accomplishes the proof. �

Theorem 3.8. The variance of the strong double graph SD[Γ] of Γ is

Var(SD[Γ]) =
4
n

M1(Γ) −
16m2

n2 .

Proof. By using dSD[Γ](q) = 2dΓ(q) + 1 in formula (1.4), we have

Var(SD[Γ]) =
1

2n

∑
q∈V(SD[Γ])

d2
SD[Γ](q) −

1
(2n)2

 ∑
q∈V(SD[Γ])

dSD[Γ](q)


2

=
1

2n

2 ∑
q∈V(Γ)

(2dΓ(q) + 1)2

 − 1
4n2

2 ∑
q∈V(Γ)

(2dΓ(q) + 1)


2

=
1
n

 ∑
q∈V(Γ)

(4d2
Γ(q) + 4dΓ(q) + 1)

 − 1
n2

 ∑
q∈V(Γ)

(2dΓ(q) + 1)


2

=
1
n

(4M1(Γ) + 8m + n) −
1
n2 (4m + n)2

=
4
n

M1(Γ) +
8m
n

+ 1 −
16m2

n2 − 1 −
8m
n

=
4
n

M1(Γ) −
16m2

n2 .

Thus we have the desired result. �

Theorem 3.9. The variance of extended double cover of Γ∗ of Γ is

Var(Γ∗) =
1
n

M1(Γ) −
4m2

n2 .
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Proof. By using dD[Γ](q) = dΓ(q) + 1 in formula (1.4), we get

Var(Γ∗) =
1

2n

∑
q∈V(Γ∗)

d2
Γ∗(q) −

1
(2n)2

 ∑
q∈V(Γ∗)

dΓ∗(q)


2

=
1

2n

2 ∑
q∈V(Γ)

(dΓ(q) + 1)2

 − 1
4n2

2 ∑
q∈V(Γ)

(dΓ(q) + 1)


2

=
1
n

 ∑
q∈V(Γ)

(d2
Γ(q) + 2dΓ(q) + 1)

 − 1
n2

 ∑
q∈V(Γ)

(dΓ(q) + 1)


2

=
1
n

(M1(Γ) + 4m + n) −
1
n2 (2m + n)2

=
1
n

M1(Γ) +
4m
n

+ 1 −
4m2

n2 − 1 −
4m
n

=
1
n

M1(Γ) −
4m2

n2 .

This finishes the proof. �

3.2. The σ index of the derived graphs

In this part, we present the results related to the σ index of the derived graphs.

Theorem 3.10. The σ index of the subdivision graph S(Γ) of Γ is

σ(S(Γ)) = F(Γ) − 4M1(Γ) + 8m.

Proof. By using Eq 2.1 in formula (1.3), σ index can be computed in the following manner:

σ(S(Γ)) =
∑

q1q2∈E(S(Γ))

(dS(Γ)(q1) − dS(Γ)(q2))2

=
∑

q1q2∈E(S(Γ)),
q1∈V(Γ),q2∈E(Γ)

(dΓ(q1) − 2)2

=
∑

q∈V(Γ)

dΓ(q)(d2
Γ(q) + 4 − 4dΓ(q))

= F(Γ) + 8m − 4M1(Γ).

This accomplishes the proof. �

Theorem 3.11. The σ index of the semi-total point graph T1(Γ) of Γ is

σ(T1(Γ)) = 4σ(Γ) + 4F(Γ) − 8M1(Γ) + 8m.
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Proof. Using Eq 2.2 in formula (1.3), we get

σ(T1(Γ)) =
∑

q1q2∈E(T1(Γ))

(dT1(Γ)(q1) − dT1(Γ)(q2))2

=
∑

q1q2∈E(T1(Γ)),
q1,q2∈V(Γ)

(2dΓ(q1) − 2dΓ(q2))2 +
∑

q1q2∈E(T1(Γ)),
q1∈V(Γ),q2∈E(Γ)

(2dΓ(q1) − 2)2

= 4
∑

q1q2∈E(Γ),
q1,q2∈V(Γ)

(dΓ(q1) − dΓ(q2))2 + 4
∑

q1∈V(Γ),q2∈E(Γ)

(d2
Γ(q1) + 1 − 2dΓ(q2))2

= 4σ(Γ) +
∑

q1∈V(Γ)

dΓ(q1)(d2
Γ(q1) + 1 − 2dΓ(q1))

= 4σ(Γ) + 4F(Γ) − 8M1(Γ) + 8m.

This completes the proof. �

Theorem 3.12. The σ index of the semi-total line graph T2(Γ) of Γ is

σ(T2(Γ)) = σ(L(Γ)) + F(Γ).

Proof. By using Eq 2.3 in formula (1.3), σ index can be computed in the following manner:

σ(T2(Γ)) =
∑

q1q2∈E(T2(Γ))

(dT2(Γ)(q1) − dT2(Γ)(q2))2

=
∑

q1q2∈E(T2(Γ)),
q1,q2∈E(Γ)

(dL(Γ)(q1) + 2 − dL(Γ)(q1) − 2)2 +
∑

q1q2∈E(T2(Γ)),
q1∈V(Γ),q2=q1q3∈E(Γ)

(dΓ(q1) − dΓ(q1) − dΓ(q3))2

=
∑

q1q2∈E(L(Γ))

(dL(Γ)(q1) − dL(Γ)(q2))2 +
∑

q3∈V(Γ)

dΓ(q3)dΓ(q3)

= σ(L(Γ)) + F(Γ).

�

Theorem 3.13. The σ index of the total graph T (Γ) of Γ is

σ(T (Γ)) = 6σ(Γ) + σ(L(Γ)).
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Proof. By using Eq 2.4 in formula (1.3), σ index can be computed in the following manner:

σ(T (Γ)) =
∑

q1q2∈E(T (Γ))

(dT (Γ)(q1) − dT (Γ)(q2))2

=
∑

q1q2∈E(T (Γ)),
q1,q2∈V(Γ)

(2dΓ(q1) − 2dΓ(q2))2 +
∑

q1q2∈E(T (Γ)),
q1,q2∈E(Γ)

(dL(Γ)(q1) + 2 − dL(Γ)(q2) − 2)2

+
∑

q1q2∈E(T (Γ)),
q1∈V(Γ),q2=q1q3∈E(Γ)

(2dΓ(q1) − dΓ(q1) − dΓ(q3))2

= 4
∑

q1q2∈E(Γ),
q1,q2∈V(Γ)

(dΓ(q1) − dΓ(q2))2 +
∑

q1q2∈E(T (Γ)),
q1,q2∈E(Γ)

(dL(Γ)(q1) − dL(Γ)(q2))2

+ 4
∑

q1∈V(Γ),q2=q1q3∈E(Γ)

(dΓ(q1) − dΓ(q3))2

= 6σ(Γ) + σ(L(Γ)).

�

Theorem 3.14. The σ index of the double graph D[Γ] of Γ is

σ(D[Γ]) = 16σ(Γ).

Proof. By the definition of double graph, it is easy to follows that dD[Γ](xi) = dD[Γ](yi) = 2dΓ(qi), where
qi ∈ V(Γ) and xi, yi ∈ V(D[Γ]) are the corresponding clone vertices of qi. Therefore, the σ index of
D[Γ] is

σ(D[Γ]) =
∑

q1q2∈E(D[Γ])

(dD[Γ](q1) − dD[Γ](q2))2

=
∑

xix j∈E(D[Γ])

(dD[Γ](xi) − dD[Γ](x j))2 +
∑

yiy j∈E(D[Γ])

(dD[Γ](yi) − dD[Γ](y j))2

+
∑

xiy j∈E(D[Γ])

(dD[Γ](xi) − dD[Γ](y j))2 +
∑

x jyi∈E(D[Γ])

(dD[Γ](x j) − dD[Γ](yi))2

= 4
∑

qiq j∈E(Γ)

(2dΓ(qi) − 2dΓ(q j))2

= 16
∑

qiq j∈E(Γ)

(dΓ(qi) − dΓ(q j))2

= 16σ(Γ).

�

Theorem 3.15. The σ index of the strong double graph SD[Γ] of Γ is

σ(SD[Γ]) = 16σ(Γ).
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Proof. By the definition of strong double graph, it is easy to see that dSD[Γ](xi) = dSD[Γ](yi) = 2dΓ(qi)+1,
where qi ∈ V(Γ) and xi, yi ∈ V(SD[Γ]) are the corresponding clone vertices of qi. Therefore, theσ index
of SD[Γ] is

σ(SD[Γ]) =
∑

q1q2∈E(SD[Γ])

(dSD[Γ](q1) − dSD[Γ](q2))2

=
∑

xi x j∈E(SD[Γ])

(dSD[Γ](xi) − dSD[Γ](x j))2 +
∑

yiy j∈E(SD[Γ])

(dSD[Γ](yi) − dSD[Γ](y j))2

+
∑

xiy j∈E(SD[Γ])

(dSD[Γ](xi) − dSD[Γ](y j))2 +
∑

x jyi∈E(SD[Γ])

(dSD[Γ](x j) − dSD[Γ](yi))2

+

n∑
i=1

(dSD[Γ](xi) − dSD[Γ](yi))2

= 4
∑

qiq j∈E(Γ)

(2dΓ(qi) + 1 − 2dΓ(q j) − 1)2

= 16
∑

qiq j∈E(Γ)

(dΓ(qi) − dΓ(q j))2

= 16σ(Γ).

�

Theorem 3.16. The σ index of the extended double cover graph Γ∗ of Γ is

σ(Γ∗) = 2σ(Γ).

Proof. By the definition of extended double cover graph, it is easy to observe that dΓ∗(xi) = dΓ∗(yi) =

dΓ(qi) + 1, where qi ∈ V(Γ) and xi, yi ∈ V(Γ∗) are the related clone vertices of qi. Therefore, the σ index
of Γ∗ is

σ(Γ∗) =
∑

q1q2∈E(Γ∗)

(dΓ∗(q1) − dΓ∗(q2))2

=
∑

xiy j∈E(Γ∗)

(dΓ∗(xi) − dΓ∗(y j))2 +
∑

x jyi∈E(Γ∗)

(dΓ∗(x j) − dΓ∗(yi))2

+

n∑
i=1

(dΓ∗(xi) − dΓ∗(yi))2

= 2
∑

qiq j∈E(Γ)

(dΓ(qi) + 1 − dΓ(q j) − 1)2

= 2
∑

qiq j∈E(Γ)

(dΓ(qi) − dΓ(q j))2

= 2σ(Γ).

�
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3.3. The discrepancy of derived graphs

Finally, we give the results related to the discrepancy of derived graphs.

Theorem 3.17. The discrepancy of subdivision graph S(Γ) of Γ is given by

2
(n + m)2

(m(m + n) + 2m|n −m|) ≤ Disc(S(Γ)) ≤
2

(n + m)2
(m(m + 3n) + 2m|n −m|) .

Proof. By using Eq 2.1 in formula (1.5), we get

Disc(S(Γ)) =
1

n + m

∑
q∈V(S(Γ))

∣∣∣∣∣dS(Γ)(q) −
2(2m)
n + m

∣∣∣∣∣
=

1
n + m

 ∑
q∈V(Γ)

∣∣∣∣∣dΓ(q) −
4m

n + m

∣∣∣∣∣ +
∑

q∈E(Γ)

∣∣∣∣∣2 − 4m
n + m

∣∣∣∣∣
 .

Since |a| − |b| ≤ |a − b| ≤ |a| + |b|. Thus we have

Disc(S(Γ)) ≥
1

n + m

 ∑
q∈V(Γ)

|dΓ(q)| −
∑

q∈V(Γ)

∣∣∣∣∣ 4m
n + m

∣∣∣∣∣ + m
|2n + 2m − 4m|

n + m


=

1
n + m

(
2m −

4mn
n + m

)
+

4m|n −m|
(n + m)2

=
1

n + m

(
2m(n + m − 2n)

n + m

)
+

4m|n −m|
(n + m)2

=
2

(n + m)2
(m(m + n) + 2m|n −m|) .

Similarly

Disc(S(Γ)) ≤
1

n + m

 ∑
q∈V(Γ)

|dΓ(q)| +
∑

q∈V(Γ)

∣∣∣∣∣ 4m
n + m

∣∣∣∣∣ + m
|2n + 2m − 4m|

n + m


=

1
n + m

(
2m +

4mn
n + m

)
+

4m|n −m|
(n + m)2

=
1

n + m

(
2m(n + m + 2n)

n + m

)
+

4m|n −m|
(n + m)2

=
2

(n + m)2
(m(m + 3n) + 2m|n −m|) .

This accomplishes the proof. �

Theorem 3.18. The discrepancy of line graph L(Γ) of Γ is

0 ≤ Disc(L(Γ)) ≤
2
m

M1(Γ).
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Proof. By using Eq 2.2 in formula (1.5), we get

Disc(L(Γ)) =
1
m

∑
q∈V(L(Γ))

∣∣∣∣∣dL(Γ)(q) −
2(1/2M1(Γ) −m)

m

∣∣∣∣∣
=

1
m

∑
q=xy∈E(Γ)

∣∣∣∣∣dΓ(x) + dΓ(y) − 2 −
M1(Γ) − 2m

m

∣∣∣∣∣
=

1
m

∑
q=xy∈E(Γ)

∣∣∣∣∣dΓ(x) + dΓ(y) −
M1(Γ)

m

∣∣∣∣∣ .
Since |a| − |b| ≤ |a − b| ≤ |a| + |b|. Thus we have

Disc(L(Γ)) ≥
1
m

 ∑
q=xy∈E(Γ)

|dΓ(x) + dΓ(y)| −
∑

q=xy∈E(Γ)

∣∣∣∣∣M1(Γ)
m

∣∣∣∣∣


=
1
m

(
M1(Γ) −

mM1(Γ)
m

)
= 0.

Similarly

Disc(L(Γ)) ≤
1
m

 ∑
q=xy∈E(Γ)

|dΓ(x) + dΓ(y)| +
∑

q=xy∈E(Γ)

∣∣∣∣∣M1(Γ)
m

∣∣∣∣∣


=
1
m

(
M1(Γ) +

mM1(Γ)
m

)
=

2
m

M1(Γ).

This finishes the proof. �

Theorem 3.19. The discrepancy of semi-total point graph T1(Γ) of Γ is

2m
(n + m)2

(2m − n + |n − 2m|) ≤ Disc(T1(Γ)) ≤
2m

(n + m)2
(2m + 5n + |n − 2m|) .

Proof. By using Eq 2.3 in formula (1.5), we get

Disc(T1(Γ)) =
1

n + m

∑
q∈V(T1(Γ))

∣∣∣∣∣dT1(Γ)(q) −
2(3m)
n + m

∣∣∣∣∣
=

1
n + m

 ∑
q∈V(Γ)

∣∣∣∣∣2dΓ(q) −
6m

n + m

∣∣∣∣∣ +
∑

q∈E(Γ)

∣∣∣∣∣2 − 6m
n + m

∣∣∣∣∣
 .
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Since |a| − |b| ≤ |a − b| ≤ |a| + |b|. Thus we have

Disc(T1(Γ)) ≥
1

n + m

2 ∑
q∈V(Γ)

|dΓ(q)| −
∑

q∈V(Γ)

∣∣∣∣∣ 6m
n + m

∣∣∣∣∣ + 2m
|n + m − 3m|

n + m


=

2
n + m

(
2m −

3mn
n + m

)
+

2m|n − 2m|
(n + m)2

=
2

n + m

(
2mn + 2m2 − 3mn

n + m

)
+

2m|n − 2m|
(n + m)2

=
2m

(n + m)2
(2m − n + |n − 2m|) .

Similarly

Disc(T1(Γ)) ≤
1

n + m

2 ∑
q∈V(Γ)

|dΓ(q)| +
∑

q∈V(Γ)

∣∣∣∣∣ 6m
n + m

∣∣∣∣∣ + 2m
|n + m − 3m|

n + m


=

2
n + m

(
2m +

3mn
n + m

)
+

2m|n −m|
(n + m)2

=
2

n + m

(
2mn + 2m2 + 3mn)

n + m

)
+

2m|n − 2m|
(n + m)2

=
2m

(n + m)2
(2m + 5n + |n − 2m|) .

This accomplishes the proof. �

Theorem 3.20. The discrepancy of semi-total line graph T2(Γ) of Γ is

0 ≤ Disc(T2(Γ)) ≤
2

n + m
(M1(Γ) + 2m) .

Proof. By using Eq 2.4 in formula (1.5), we get

Disc(T2(Γ)) =
1

n + m

∑
q∈V(T2(Γ))

∣∣∣∣∣dT2(Γ)(q) −
2(1/2M1(Γ) + m)

n + m

∣∣∣∣∣
=

1
n + m

 ∑
q∈V(Γ)

∣∣∣∣∣dΓ(q) −
M1(Γ) + 2m

n + m

∣∣∣∣∣ +
∑

q=xy∈E(Γ)

∣∣∣∣∣dΓ(x) + dΓ(y) −
M1(Γ) + 2m

n + m

∣∣∣∣∣
 .

Since |a| − |b| ≤ |a − b| ≤ |a| + |b|. Thus we have

Disc(T2(Γ)) ≥
1

n + m

 ∑
q∈V(Γ)

|dΓ(q)| −
∑

q∈V(Γ)

∣∣∣∣∣M1(Γ) + 2m
n + m

∣∣∣∣∣


+
1

n + m

 ∑
q=xy∈E(Γ)

|dΓ(x) + dΓ(y)| −
∑

q=xy∈E(Γ)

∣∣∣∣∣M1(Γ) + 2m
n + m

∣∣∣∣∣


=
1

n + m

(
2m −

n(M1(Γ) + 2m)
n + m

+ M1(Γ) −
m(M1(Γ) + 2m)

n + m

)
= 0.
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Similarly

Disc(T2(Γ)) ≤
1

n + m

 ∑
q∈V(Γ)

|dΓ(q)| +
∑

q∈V(Γ)

∣∣∣∣∣M1(Γ) + 2m
n + m

∣∣∣∣∣


+
1

n + m

 ∑
q=xy∈E(Γ)

|dΓ(x) + dΓ(y)| +
∑

q=xy∈E(Γ)

∣∣∣∣∣M1(Γ) + 2m
n + m

∣∣∣∣∣


=
1

n + m

(
2m +

n(M1(Γ) + 2m)
n + m

+ M1(Γ) +
m(M1(Γ) + 2m)

n + m

)
=

1
n + m

(
2m +

(n + m)(M1(Γ) + 2m)
n + m

+ M1(Γ)
)

=
2

n + m
(M1(Γ) + 2m) .

This finishes the proof. �

Theorem 3.21. The discrepancy of total graph T (Γ) of Γ is

0 ≤ Disc(T (Γ)) ≤
2

n + m
(M1(Γ) + 4m) .

Proof. By using Eq 2.5 in formula (1.5), we get

Disc(T (Γ)) =
1

n + m

∑
q∈V(T (Γ))

∣∣∣∣∣dT (Γ)(q) −
2(1/2M1(Γ) + 2m)

n + m

∣∣∣∣∣
=

1
n + m

 ∑
q∈V(Γ)

∣∣∣∣∣2dΓ(q) −
M1(Γ) + 4m

n + m

∣∣∣∣∣ +
∑

q=xy∈E(Γ)

∣∣∣∣∣dΓ(x) + dΓ(y) −
M1(Γ) + 4m

n + m

∣∣∣∣∣
 .

Since |a| − |b| ≤ |a − b| ≤ |a| + |b|.

Disc(T (Γ)) ≥
1

n + m

 ∑
q∈V(Γ)

|2dΓ(q)| −
∑

q∈V(Γ)

∣∣∣∣∣M1(Γ) + 4m
n + m

∣∣∣∣∣


+
1

n + m

 ∑
q=xy∈E(Γ)

|dΓ(x) + dΓ(y)| −
∑

q=xy∈E(Γ)

∣∣∣∣∣M1(Γ) + 4m
n + m

∣∣∣∣∣


=
1

n + m

(
4m −

n(M1(Γ) + 4m)
n + m

+ M1(Γ) −
m(M1(Γ) + 4m)

n + m

)
= 0.
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Similarly

Disc(T (Γ)) ≤
1

n + m

 ∑
q∈V(Γ)

|2dΓ(q)| +
∑

q∈V(Γ)

∣∣∣∣∣M1(Γ) + 4m
n + m

∣∣∣∣∣


+
1

n + m

 ∑
q=xy∈E(Γ)

|dΓ(x) + dΓ(y)| +
∑

q=xy∈E(Γ)

∣∣∣∣∣M1(Γ) + 4m
n + m

∣∣∣∣∣


=
1

n + m

(
4m +

n(M1(Γ) + 4m)
n + m

+ M1(Γ) +
m(M1(Γ) + 4m)

n + m

)
=

1
n + m

(
4m +

(n + m)(M1(Γ) + 4m)
n + m

+ M1(Γ)
)

=
2

n + m
(M1(Γ) + 4m) .

This accomplishes the proof. �

Theorem 3.22. The discrepancy of the paraline graph PL(Γ) of Γ is given by

0 ≤ Disc(PL(Γ)) ≤
1

2m
(M1(Γ) + 4m).

Proof. From formula (1.5), we get

Disc(PL(Γ)) =
1

2m

∑
q∈V(PL(Γ))

∣∣∣∣∣dPL(Γ)(v) −
2(1/2M1(S(Γ)) − 2m)

2m

∣∣∣∣∣
=

1
2m

∑
q=xy∈E(S(Γ))

∣∣∣∣∣dS(Γ)(x) + dS(Γ)(y) − 2 −
M1(S(Γ)) − 4m

2m

∣∣∣∣∣
=

1
2m

∑
q=xy∈E(S(Γ))

∣∣∣∣∣dS(Γ)(x) + dS(Γ)(y) −
M1(S(Γ))

2m

∣∣∣∣∣
Since |a| − |b| ≤ |a − b| ≤ |a| + |b|.

Disc(PL(Γ)) ≥
1

2m

 ∑
q=xy∈E(S(Γ))

∣∣∣dS(Γ)(x) + dS(Γ)(y)
∣∣∣ − ∑

q=xy∈E(S(Γ))

∣∣∣∣∣M1(S(Γ))
2m

∣∣∣∣∣


=
1

2m

(
M1(S(Γ)) −

2mM1(S(Γ))
2m

)
= 0.

Similarly

Disc(PL(Γ)) ≤
1

2m

 ∑
q=xy∈E(S(Γ))

∣∣∣dS(Γ)(x) + dS(Γ)(y)
∣∣∣ +

∑
q=xy∈E(S(Γ))

∣∣∣∣∣M1(S(Γ))
2m

∣∣∣∣∣


=
1

2m

(
M1(S(Γ)) +

2mM1(S(Γ))
2m

)
=

1
2m

M1(S(Γ)).
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Since M1(S(Γ)) = M1(Γ) + 4m.

Disc(PL(Γ)) ≤
1

2m
(M1(Γ) + 4m).

This finishes the proof. �

Theorem 3.23. The discrepancy of the double graph D[Γ] of Γ is given by
2m
n
≤ Disc(D[Γ]) ≤

6m
n
.

Proof. From formula (1.5), we get

Disc(D[Γ]) =
1

2n

∑
q∈V(D[Γ])

∣∣∣∣∣dD[Γ](v) −
2(2m)

2n

∣∣∣∣∣
=

2
2n

∑
q∈V(Γ)

∣∣∣∣∣dΓ(q) −
2m
n

∣∣∣∣∣
Since |a| − |b| ≤ |a − b| ≤ |a| + |b|.

Disc(D[Γ]) ≥
1
n

 ∑
q∈V(Γ)

|2dΓ(q)| −
∑

q∈V(Γ)

∣∣∣∣∣2m
n

∣∣∣∣∣


=
1
n

(
4m −

2mn
n

)
=

2m
n
.

Similarly

Disc(D[Γ]) ≤
1
n

 ∑
q∈V(Γ)

|2dΓ(q)| +
∑

q∈V(Γ)

∣∣∣∣∣2m
n

∣∣∣∣∣


=
1
n

(
4m +

2mn
n

)
=

6m
n
.

�

Theorem 3.24. The discrepancy of the strong double graph SD[Γ] of Γ is given by

0 ≤ Disc(SD[Γ]) ≤
8m
n
.

Proof. From formula (1.5), we get

Disc(SD[Γ]) =
1

2n

∑
q∈V(SD[Γ])

∣∣∣∣∣dSD[Γ](v) −
2(4m + n)

2n

∣∣∣∣∣
=

2
2n

∑
q∈V(Γ)

∣∣∣∣∣2dΓ(q) + 1 −
4m + n

n

∣∣∣∣∣
=

1
n

∑
q∈V(Γ)

∣∣∣∣∣2dΓ(q) −
4m
n

∣∣∣∣∣ .
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Since |a| − |b| ≤ |a − b| ≤ |a| + |b|.

Disc(SD[Γ]) ≥
1
n

 ∑
q∈V(Γ)

|2dΓ(q)| −
∑

q∈V(Γ)

∣∣∣∣∣4m
n

∣∣∣∣∣


=
1
n

(
4m −

4mn
n

)
= 0.

Similarly

Disc(SD[Γ]) ≤
1
n

 ∑
q∈V(Γ)

|2dΓ(q)| +
∑

q∈V(Γ)

∣∣∣∣∣4m
n

∣∣∣∣∣


=
1
n

(
4m +

4mn
n

)
=

8m
n
.

This accomplishes the proof. �

Theorem 3.25. The discrepancy of extended double cover graph Γ∗ of Γ is

0 ≤ Disc(Γ∗) ≤
4m
n
.

Proof. From formula (1.5), we get

Disc(Γ∗) =
1

2n

∑
q∈V(Γ∗)

∣∣∣∣∣dΓ∗(v) −
2(2m + n)

2n

∣∣∣∣∣
=

2
2n

∑
q∈V(Γ)

∣∣∣∣∣dΓ(q) + 1 −
2m + n

n

∣∣∣∣∣
=

1
n

∑
q∈V(Γ)

∣∣∣∣∣dΓ(q) −
2m
n

∣∣∣∣∣ .
Since |a| − |b| ≤ |a − b| ≤ |a| + |b|.

Disc(Γ∗) ≥
1
n

 ∑
q∈V(Γ)

|dΓ(q)| −
∑

q∈V(Γ)

∣∣∣∣∣2m
n

∣∣∣∣∣


=
1
n

(
2m −

2mn
n

)
= 0.
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Similarly

Disc(Γ∗) ≤
1
n

 ∑
q∈V(Γ)

|dΓ(q)| +
∑

q∈V(Γ)

∣∣∣∣∣2m
n

∣∣∣∣∣


=
1
n

(
2m +

2mn
n

)
=

4m
n
.

Thus we have the required result. �

4. Conclusions

The analysis of graphs by using numerical graph invariants is a successful strategy, which plays an
appreciable role in predicting the physico-chemical properties of the given chemical structure. Thereby,
the computation of topological descriptors is an interesting and attractive line of research. In this
paper, we have provided the expressions for the variance of vertex degrees, σ irregularity index and
the discrepancy index of subdivision graph, vertex-semi total graph, edge-semi total graph, total graph,
line graph, paraline graph, double graph, strong double graph and extended double cover of a graph.
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20. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total π electron energy of alternant
hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538.

21. A. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190.

22. I. Gutman, M. Togan, A. Yurttas, et al. Inverse problem for σ index, Match Commun. Math.
Comput. Chem., 79 (2018), 491–508.

23. H. Abdo, D. Dimitrov, I. Gutman, Graphs with maximal σ irregularity, Discrete Appl. Math., 250
(2018), 57–64.

24. I. Gutman, Stepwise irregular graphs, Appl. Math. Comput., 325 (2018), 234–238.

25. F. K. Bell, A note on the irregularity of graphs, Linear Algebra Appl., 161 (1992), 45–54.

26. J. Haviland, On irregularity in graphs, Ars Combinatoria, 78 (2006), 283–288.

AIMS Mathematics Volume 5, Issue 5, 4085–4107.



4107

27. C. J. Lawrence, K. Tizzard, J. Haviland, Disease-spread and stochastic graphs, Proc. International
Conference on Social Networks, London, (1995), 143–150.

28. W. Gao, M. Aamir, Z. Iqbal, et al. On irregularity measures of some dendrimers structures,
Mathematics, 7 (2019), 271.

29. Z. Iqbal, A. Aslam, M. Ishaq, et al. Characteristic study of irregularity measures of some
nanotubes, Can. J. Phys., 97 (2019), 1125–1132.

30. D. Zhao, Z. Iqbal, R. Irfan, et al. Comparison of irregularity indices of several dendrimers
structures, Processes, 7 (2019), 662.

31. N. De, A. Pal, S. M. A. Nayeem, The irregularity of some composite graphs, Int. J. Appl. Comput.
Math., 2 (2016), 411–420.

32. M. Tavakoli, F. Rahbarnia, A. R. Ashrafi, Some new results on irregularity of graphs, J. Appl.
Math. Inform., 32 (2014), 675–685.

33. H. Abdo, D. Dimitrov, The total irregularity of some composite graphs, Int. J. Comput. Appl., 122
(2015), 0975–8887.

34. S. M. Hosamani, I. Gutman, Zagreb indices of transformation graphs and total transformation
graphs, Appl. Math. Comput., 247 (2014), 1156–1160.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 5, 4085–4107.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Derived graphs
	Main results
	The variance index of derived graphs
	The  index of the derived graphs
	The discrepancy of derived graphs

	Conclusions

