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Abstract: Argumentation frameworks (AF) play important roles in artificial intelligence. This paper is
an exploration in establishing semantics of fuzzy AFs by fuzzy sets. There are many ways to characterize
the semantics of fuzzy AFs. In this paper, our work is based on the assumption that some inconsistency
of the system is permitted. Firstly, we formalize the conflict-freeness with a consistency degree x and
the acceptability with a consistency degree y. Various types of extensions are then defined in a way
similar to Dung’s approach. The conflict-freeness and acceptability can be seen as an interpretation of
the corresponding notion in Janssen’s work. Formally, we add the conflict-freeness into the admissible
extensions and the preferred extensions. We also introduce the complete extensions and the grounded
extensions. Moreover, some basic properties are proven, such as the Fundamental Lemma, the algorithm
of the grounded extension, etc. At last, it is proven to be consistent with Dung’s original semantics in
crisp AFs.
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1. Introduction

The in-put-out-put problem commonly exists in artificial intelligence and control theory [21, 30].
Dung’s theory of argumentation frameworks [10] gives a method to deal with the information, when the
information is in the form of arguments and there are some attack relations between the arguments. An
argumentation framework (AF) [3, 10] consists of a set of arguments and a set of attacks between the
arguments. Various types of consistent sets of arguments are selected according to the attack relation.
In [10], such sets are called “extensions”. In [7], the sets are characterized by “labelling” functions.
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Dung’s theory has been applied in many fields, such as the mining, games [6], the multi-agent system,
the law and so on. The structure of the arguments [26–28] has been formalized by the classic logic. The
abstract AFs have also been developed in different ways, for example, the preference-based AFs [1], the
bipolar AFs [2, 25], the extended AFs [4, 23, 24], the weighted AFs [5, 11], the possibilistic AFs [15, 18]
and the fuzzy AFs [8, 9, 16, 17, 29]. This paper is an investigation of the semantics of fuzzy AFs.

Fuzziness is an important kind of uncertainty. When the arguments or the attacks in an AF become
fuzzy, the AF comes to a fuzzy AF. The semantics of fuzzy AFs has been represented in many works.
For example, [5, 11, 17]∗ translate a fuzzy AF into a crisp AF by releasing the attacks weaker than a
given budget β, and then seize consistent sets of arguments in the crisp AF as the semantics of the fuzzy
AF. [9] introduces a method to determine the values of the arguments by developing the algorithm of the
probabilities in [18]. [8] introduces an equation to revise the values of the arguments step by step, and
the ultimate values are the required fuzzy degrees of the arguments. [29] introduces the conflict-freeness
and the acceptability between the fuzzy degrees of the arguments by developing the method in [8].
Then a variety of extensions are established based on the conflict-freeness and acceptability in Dung’s
approach, where each extension is a fuzzy set that assigns fuzzy degrees to all the arguments. [16]
introduces x-conflict-free sets, y-admissible extensions, y-preferred extensions and z-stable extensions
by separate equations. These extensions are also fuzzy sets on all the arguments.

In this paper, we develop the methods in [11] and [16] to characterize the semantics of fuzzy AFs.
Distinct to weighted AFs, our discussion lies in the consistency of the degrees of the arguments. Firstly,
we assume that some inconsistency of the system is permitted and the consistency degrees are given, for
example, the conflict-free degree x and the acceptability degree y. These degrees x, y play roles similar
to the budget β in [11]. Our main idea is that “If the conflict-free degree between the degrees of two
arguments is more than x, then we recognize it to be conflict-free; if a fuzzy set of arguments accepts
the degree of an argument in a degree higher than y, then we recognize the fuzzy set accepts the degree
of the argument.” Based on this idea, we introduce the x-conflict-free sets and the y-acceptability. Then
various types of extensions in the form of fuzzy sets are established in Dung’s way.

The contents are arranged as follows: The next section shows the motivation of this article. Then
Section 3 shows some basic notions of fuzzy sets, Dung’s AFs and Janssen’s AFs. In Section 4, the
conflict-freeness and acceptability are discussed. In Section 5, the characteristic function and kinds of
extensions are introduced and some basic properties of them are discussed. In Section 6, comparability
to Dung’s original theory and to the Gödel fuzzy argumentation frameworks in [29] are shown. The last
section is the conclusion of this paper.

2. Motivation

This section consists of two parts. The first part shows that there indeed exists fuzzy arguments and
fuzzy attacks in AFs. And the second part shows the reason to apply our method.

2.1. Fuzziness of arguments and attacks

For the fuzziness in AFs, let’s consider a scenario where two friends are discussing whether or not to
play football.

∗The weight of the attacks in weighted AFs can be seen as a special fuzzy degree of the attacks.
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A: Let’s go to play football.

B: It is raining now.

C: Yes. But the weather forecast says the rain is stopping soon.

In this scenario, there are three arguments A, B and C. Argument C attacks argument B and argument
B attacks argument A. It can be simply characterized by a Dung’s AF in the following graph, where
A, B, C are arguments and→ stands for attacks.

C → B→ A.

As we know, the weather forecast is not always accurate. When they make a decision, the forecast
can not be fully trusted. For example, generally, it is right, and the argument C can be associated with
a truth degree 0.8. At the same time, different rains will have different influences on playing football.
We associate a truth degree to the argument B to show the strength of the rain. For example, if it rains
heavily, then the degree of B is 0.9; if it rains light, then B’s degree is with 0.2.

When we associated B, C with some truth degrees, the AF becomes a fuzzy AF, where the arguments
become fuzzy arguments. If the truth degree of B is 0.9, the truth degree of C is 0.8, and we suppose the
truth degree of A is 1, then the fuzzy AF in the scenario is the following graph, where the numbers are
the truth degrees of the arguments.

C B A
0.8 0.9 1

Also, the attacks between the arguments can be fuzzified. There are still some persons play football
in the rain, although most people don’t. Hence, the attack between “the rain” and “playing football” is
generally of a high degree, for example, 0.9.

Let the truth degree of C → B be 1, and the truth degree of B→ A be 0.9, then the fuzzy AF in the
scenario becomes the following graph, where the numbers are the truth degrees of the corresponding
arguments and attacks.

C B A
0.8 0.9 11 0.9

For convenience, an argument A with a fuzzy degree a is denoted by a tuple (A, a). And it is called a
fuzzy argument (A, a).

2.2. Consistency degrees

When we build the semantics of fuzzy AFs, there are kinds of ways. In [11], they release the attacks
whose weights are less than the given budget β. In [16], for a fuzzy set of arguments, its conflict-free
degree must be no less than x, the admissible degree must be no less than y, and the stable degree
must be no less than z. In other words, there may exist some attacks whose weights are less than β
between the arguments they selected in [11]; there may exist some weak conflict (less than 1 − x), weak
inadmissibility (less than 1− y) and weak instability (less than 1− z) of the selected fuzzy sets in [16]. In
some sense, these are inconsistencies in their semantics. But these inconsistencies are weak and can be
tolerated by a rational agent. Therefore, in the papers, the authors build semantics by neglecting them.
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In this paper, we will follow and develop the methods in [11] and [16]. Similar to them, we permit or
tolerate some weak inconsistencies when building the semantics. Different from the two works, a weak
conflict between the degrees of arguments and a weak unacceptability are permitted here. Formally, if
the conflict-free degree between the fuzzy degrees of two arguments are no less than x, then we say the
two arguments with the fuzzy degrees are x-conflict-free; and if a fuzzy set of arguments accepts the
fuzzy degree of an argument with a high degree, for example, no less than y, then we recognize that
the fuzzy set of arguments y-accepts the fuzzy degree of the argument. In this paper, they are called
x-conflict-freeness and y-acceptability in fuzzy AFs. Then a semantics system is established based on
the two in Dung’s way.

Next, in this part, we will show the motivation that we introduce the two consistency degrees from
the football scenario.

In the scenario, (A, 1) stands for “playing football”, and (B, 0.5) stands for “moderate rain”. If
the match is very important, like a professional match, then a high conflict between “the moderate
rain” and “playing football” is permitted. In other words, a low conflict-free degree between the two is
permitted. For example, let the conflict-free degree x be 0.1. Because a moderate rain can not prevent a
professional match in general, (A, 1) and (B, 0.5) are 0.1-conflict-free. On the other hand, if the match
is just for fitness, moderate rain can cancel it. In this case, the conflict-free degree should be very high,
for instance, x = 0.9. (A, 1) and (B, 0.5) are not 0.9-conflict-free. In a word, for different circumstances,
different conflict-free degrees are permitted and different degrees x are selected. The formal definition
of x-conflict-freeness will appear in Section 4.

Similarly, let’s talk about the acceptability. (C, 0.8) can not fully accept or defend (A, 1). Instead,
(C, 0.8) accepts (A, 1) within some degree. However, commonly, we acknowledge the acceptability and
make a decision according to it. Suppose the degree that (C, 0.8) accepts (A, 1) is y. Mathematically, if
the acceptability degree is no less than y, we acknowledge the acceptability, and call it y-acceptability.
For example, (C, 0.8) 0.6-accepts (A, 1). But (C, 0.8) doesn’t 0.999-accept (A, 1). The formal definition
of y-acceptability will appear in Section 4.

3. Basic notions

In this part, we recall some basic notions of fuzzy sets and Dung’s abstract AFs.

3.1. Fuzzy sets

In this part, we only recall some basic notions of fuzzy set theory, which will appear in this paper.
For more fuzzy theory, please read professional works.

Let U be the universe set. Given a set S ⊆ U, its characteristic function χS is a mapping from U to
{0, 1}, where for any x ∈ U,

χS (x) =

1, if x ∈ S ,

0, if x < S .

A fuzzy set on the universe set U is a function S : U −→ [0, 1]. For example, let U = Args, which
is the set of all the arguments. S : Args→ [0, 1] is a fuzzy set of arguments that determine the fuzzy
degree of each argument A ∈ Args; and 9 : Args × Args −→ [0, 1] is a fuzzy set of attacks that
determine fuzzy degree of each attack between arguments.
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For any set S ⊆ U, we call S a regular set or a crisp set. And χS is a fuzzy set on U, which is the
fuzzy form of S .

A fuzzy set S is a subset of another fuzzy set S′, denoted by S ⊆ S′, if ∀x ∈ U, S(x) ≤ S′(x).
Given a fuzzy set S, the set S = {A ∈ U : S(A) , 0} is called the support of S. A fuzzy point is a

special fuzzy set S, whose support is a single element set {A}, i.e., S(A) , 0 and S(B) = 0, ∀B ∈ U \ {A}.
Generally, a fuzzy point is denoted by (A, a), where a = S(A) , 0. In fuzzy AFs, a fuzzy point (A, a),
where A ∈ Args = U, is called a fuzzy argument. Moreover, (A, a) ⊆ S is in general denoted by
(A, a) ∈ S.

Some operators on [0, 1] are also useful. We list the operators appearing in this paper as follows.

Standard negation: ¬x = 1 − x, for any x ∈ [0, 1].

Gödel t-norm: x ∧ y = min{x, y}, ∀x, y ∈ [0, 1].

S-implication: x{ y = max{1 − x, y}, ∀x, y ∈ [0, 1].

3.2. Dung’s argumentation frameworks

A Dung’s argumentation framework [3, 10] is a pair (Args, Atts), where Args is a set of arguments
and Atts ⊆ Args × Args is a set of attacks.

The extension semantics are built on the following two concepts:

1. (Acceptability:) An argument A ∈ Args is acceptable to a set S ⊆ Args, if for every B ∈ Args s.t.
(B, A) ∈ Atts, there is some C ∈ S s.t. (C, B) ∈ Atts.

2. (Conflict-freeness:) A set S ∈ Args is conflict-free if there are no arguments A, B ∈ S such that
(A, B) ∈ Atts.

The acceptability is also called that S accepts or defends A.
The characteristic function of an AF (Args, Atts) is a function F : 2Args → 2Args, where ∀S ⊆ Args,

F(S ) = {A : S defends A}.
Then a conflict-free set is called

• Admissible if S ⊆ F(S ).
• Grounded if it is the least fixed point of F.
• Complete if S = F(S ).
• Preferred if is a maximal admissible set w.r.t. set inclusion.
• Stable if it attacks each argument in Args \ S .

4. Conflict-freeness and acceptability

In different papers, the definition of fuzzy AFs are different. For example, a fuzzy AF in [8] includes
fuzzy arguments and crisp attacks; a fuzzy AF in [11, 16] covers crisp arguments and fuzzy attacks; a
fuzzy AFs in [29] consists of fuzzy arguments and fuzzy attacks. In this paper, we will build a semantics
for fuzzy AFs with both fuzzy arguments and fuzzy attacks.

Definition 1. Let Args be a finite set of arguments. A fuzzy AF is a tuple (AR, ρ), whereAR : Args→
[0, 1] is a fuzzy set of the arguments and ρ : Args × Args→ [0, 1] is a fuzzy set of attacks.
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For convenience, ρ((A, B)) is represented by ρ(A, B). The set Args is always supposed to be finite
in this paper.

4.1. Conflict-free sets

Firstly, let’s consider the conflict-freeness between two fuzzy arguments. Suppose the conflict-free
degree x ∈ [0, 1] is given. Then the conflict degree is 1 − x. Take the football scenario for example.

If ρ(B, A) ≤ 1− x, then the conflict between the two fuzzy arguments is weak enough to be tolerated.
And we acknowledge the conflict degree between the two arguments with any degrees. In other words,
∀a, b ∈ [0, 1], (A, a) and (B, b) are x-conflict-free.

Suppose ρ(B, A) > 1 − x. Then one will accept the fact with a degree 1 − x that, either the rain is
very light such that b ≤ 1 − x or the football match will be held at a very low degree such that a ≤ 1 − x.

In other words, at least one of the three values a, b or ρ(B, A) should be no more than 1 − x. It can
be shown by the following equation

min{a, b, ρ(B, A)} ≤ 1 − x.

Then the conflict-free sets are introduced by this equation.

Definition 2. Given a fuzzy AF (AR, ρ) and a conflict-free degree x ∈ [0, 1], a fuzzy set S ⊆ AR is
x-conflict-free, if for any (A, a), (B, b) ∈ S,

min{a, b, ρ(B, A)} ≤ 1 − x.

Example 1. Consider the fuzzy AF in the football scenario, the fuzzy set S1 = {(A, 1), (B, 0.3),
(C, 0.8)} is not 0.8-conflict-free, because min{0.8, 1, 0.3} = 0.3 > 1 − 0.8 = 0.2, i.e., (C, 0.8) is not
0.8-conflict-free with (B, 0.2). But S1 is 0.7-conflict-free, for min{0.8, 1, 0.3} = 0.3 ≤ 1 − 0.7 = 0.3
and min{0.32, 0.9, 1} = 0.3 ≤ 1 − 0.7 = 0.3.

On the other hand, S2 = {(A, 1), (B, 0.2), (C, 0.8)} is 0.8-conflict-free, because min{0.8, 1, 0.2} =

0.2 ≤ 1 − 0.8 = 0.2 and min{0.2, 0.9, 1} = 0.2 ≤ 1 − 0.8 = 0.2.

Obviously, the following proposition is valid.

Proposition 1. Given two values x1 ≤ x2 ∈ [0, 1], if a fuzzy set S in a fuzzy AF is x2-conflict-free, then
it is x1-conflict-free.

The x-conflict-freeness can be represented in the following form.

Proposition 2. Let S ⊆ AR be a fuzzy set of arguments in a fuzzy AF. S is x-conflict-free if and only if

sup
A, B∈Args

min{S(A), S(B), ρ(A, B)} ≤ 1 − x.

Proof. (Sufficiency:) supA, B∈Args min{S(A), S(B), ρ(A, B)} ≤ 1 − x means that

min{S(A), S(B), ρ(A, B)} ≤ 1 − x, ∀A, B ∈ Args.

It equals that for any a ≤ S(A) and b ≤ S(B), min{a, b, ρ(A, B)} ≤ 1 − x.
(Necessity:) It can be got by reversing the above process. �
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For the absolutely conflict-free sets, i.e., 1-conflict-free sets, we have the following result.

Corollary 1. Suppose S a 1-conflict-free set. For any A, B ∈ Args, min{S(A), S(B), ρ(A, B)} = 0, i.e.,
either A doesn’t attacks B or at least one of A, B is totally out of the set S.

Proof. It is directly from Proposition 2. �

4.2. Acceptability and the characteristic functions

In the football scenario, the fact that “the forecast says the rain is going to stop soon” defends or
accepts “going to play football”, i.e., C defends A.

But in the scenario, we know that the forecast is not so trustworthy. In other words, it only can be
trusted to some degree, for example, 0.8. Then can it defend (A, 1)? Or more exactly, what degree it
can defend (A, 1) in? It equals another problem: Given y ∈ [0, 1], does (C, 0, 8) defend (A, 1) in a
degree no less than y? A more general question is:

Suppose the system permits or tolerates the acceptability that a fuzzy set S of arguments
defends a fuzzy argument (A, a) in a degree no less than y ∈ [0, 1], but rejects the acceptability
that S defends (A, a) in a degree strictly less than y. How can we define such acceptability?

One case is that (A, a) doesn’t need defence, i.e., 1 − a ≥ y or 1 − ρ(B, A) ≤ y. Otherwise, (A, a)
should be defended by (C, c). In this case, c and ρ(C, B) should be high enough, for example, c ≥ y
and ρ(C, B) ≥ y. Put these two cases in an equation, we have

max{1 − a, 1 − ρ(B, A), min{c, ρ(C, B)}} ≥ y. (4.1)

Then we apply Eq (4.1) to define the y-acceptability.

Definition 3. Given a fuzzy AF (AR, ρ), a fuzzy set S ⊆ AR y-defends or y-accepts a fuzzy argument
(A, a), if and only if for any B ∈ Args, there exists some (C, c) ∈ S, such that Eq (4.1) is valid.

Moreover, a fuzzy set C ⊆ AR y-defends another fuzzy setA ⊆ AR, if and only if it y-defends every
fuzzy argument (A, a) ∈ A

Example 2. Consider the fuzzy AF in the football scenario, the fuzzy set (C, 0.8) does not 1-defend
(A, 1), because max{1 − 1, 1 − 0.9, min{0.8, 1}} = 0.8 < 1.

On the other hand, we have (C, 0.8) 0.8-defends (A, 1), because max{1− 1, 1− 0.9, min{0.8, 1}} =

0.8 ≥ 0.8.
Similarly, (B, 0.2) is 0.8-defended by the empty set ∅ = {(A, 0), (B, 0), (C, 0)}, because max{1 −

0.2, 1 − 1, min{0, 0}} = 0.8 ≥ 0.8, where the last 0 can be seen as the fuzzy degree of the imaginary
attack from A to C.

The y-acceptability can be briefly represented by the S -implication.

Proposition 3. LetA, C ⊆ AR be two fuzzy sets of arguments in a fuzzy AF (AR, ρ). C y-defendsA,
if and only if

inf
B∈Args

( sup
A∈Args

min{A(A), ρ(B, A)}{ sup
C∈Args

min{C(C), ρ(C, B)}) ≥ y.
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Proof. (Necessity:) Because C y-defends A, then ∀(A, a) ∈ A, ∀B ∈ Args, ∃(C, c) ∈ C, such that
max{1 − a, 1 − ρ(B, A), min{c, ρ(C, B)}} ≥ y, i.e.,

max{1 −min{a, ρ(B, A)}, min{c, ρ(C, B)}} ≥ y.

Particularly, this equation is valid for a = A(A) and c = C(C), i.e., ∀A ∈ Args, ∀B ∈ Args, ∃C ∈ Args,
s.t.

max{1 −min{A(A), ρ(B, A)}, min{C(C), ρ(C, B)}} ≥ y.

Because for any C ∈ Args, min{C(C), ρ(C, B)} ≤ supC∈Args min{C(C), ρ(C, B)}, we have ∀A ∈
Args, ∀B ∈ Args, s.t.

max{1 −min{A(A), ρ(B, A)}, sup
C∈Args

min{C(C), ρ(C, B)}} ≥ y.

If for any A ∈ Args, 1 −min{A(A), ρ(B, A)} ≥ y, then

y ≤ inf
A∈Args

{1 −min{A(A), ρ(B, A)}} = 1 − sup
A∈Args

min{A(A), ρ(B, A)}.

Transferring the order of ∀A ∈ Args, ∀B ∈ Args, we have ∀B ∈ Args,

max{1 − sup
A∈Args

min{A(A), ρ(B, A)}, sup
C∈Args

min{C(C), ρ(C, B)}} ≥ y.

Representing it by the S -implication, we have ∀B ∈ Args,

sup
A∈Args

min{A(A), ρ(B, A)}{ sup
C∈Args

min{C(C), ρ(C, B)} ≥ y.

It equals
inf

B∈Args
( sup

A∈Args
min{A(A), ρ(B, A)}{ sup

C∈Args
min{C(C), ρ(C, B)}) ≥ y.

(Sufficiency:) Reverse the proof of necessity. �

The next corollary is obvious from Proposition 3.

Corollary 2. Let S be a fuzzy set and (A, a0) be a fuzzy argument in a fuzzy AF. If for any a < a0, (A, a)
is y-defended by S, then (A, a0) is y-defended by S.

The following two propositions show the monotonicity of y-acceptability. They can be directly
obtained from the definition of the y-acceptability.

Proposition 4. Given a fuzzy AF and two values y1 ≤ y2 ∈ [0, 1], if a fuzzy set S y2-defends another
fuzzy S′, then S y1-defends S′.

Proof. Suppose S y2-defends (A, a). We have for any B ∈ Args, there exists some (C, c) ∈ S, such that
max{1 − a, 1 − ρ(B, A), min{c, ρ(C, B)}} ≥ y2 ≥ y1. Hence, S y1-defends (A, a). �

Proposition 5. Given a fuzzy AF, suppose S ⊆ S′ are two fuzzy sets of arguments and (A, a) is a fuzzy
argument. If S y-defends (A, a), then S′ y-defends (A, a).
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Proof. For S y-defends (A, a), we have for any B ∈ Args, there exists some (C, c) ∈ S, such that
Equation (4.1) is valid. Because S ⊆ S′, we have (C, c) ∈ S′. Hence, S′ y-defends (A, a). �

The characteristic function can be introduced similar to Dung’s work. A little difference is that
the characteristic function here will depend on the acceptability degree y ∈ [0, 1], and is called
y-characteristic function.

Definition 4. Let (AR, ρ) be a fuzzy AF. Given a number y ∈ [0, 1], the function Fy : [0, 1]Args −→

[0, 1]Args is called the y-characteristic function if for any fuzzy set S ⊆ AR,

Fy(S) = {(A, a) : (A, a) is y-defended by S}.

From Corollary 2, Fy(S) is well defined.
From Proposition 5, we can get the monotonicity of Fy.

Lemma 1. Given two fuzzy sets S ⊆ S′ ⊆ AR, ∀y ∈ [0, 1], Fy(S) ⊆ Fy(S′).

Proof. From Proposition 5, if (A, a) is in F(S), i.e., S y-defends (A, a), then S′ y-defends (A, a), i.e.
(A, a) ∈ F(S′). �

5. Semantics in the form of extensions

In this section, we will introduce the semantics in Dung’s way, including the admissible extension,
the preferred extensions, the complete extensions, the grounded extensions, and the stable extensions.

5.1. Admissible extensions and preferred extensions

Similar to Dung’s work, the admissibility is defined by the x-conflict-freeness and y-acceptability.

Definition 5. Suppose x, y ∈ [0, 1] and (AR, ρ) is a fuzzy AF. An x-conflict-free set E ⊆ AR is
(x, y)-admissible if and only if E y-defends every fuzzy argument (A, a) in it, i.e., E ⊆ Fy(E).

Example 3. Consider the fuzzy AF in the football scenario, the fuzzy set S1 = {(A, 1), (B, 0.3), (C, 0.8)}
is not (0.7, 0.8)-admissible, because (B, 0.3) can not 0.8-defended by S1.

On the other hand, the fuzzy set S2 = {(A, 1), (B, 0.2), (C, 0.8)} is (0.8, 0.8)-admissible.

From Propositions 1 and 4, we can get the following proposition.

Proposition 6. Suppose x1 ≤ x2 and y1 ≤ y2. In a fuzzy AF, if a fuzzy set S is (x2, y2)-admissible, then
it is (x1, y1)-admissible.

Proof. By Proposition 1, S is x1-conflict-free. By Proposition 4, S y2-defends every element in it.
Hence, S is (x1, y1)-admissible. �

From this proposition, the fuzzy set S2 in Example 4 is (0.8, y)-admissible for all y ≤ 0.8.

Lemma 2 (Fundamental Lemma). Let (AR, ρ) be a fuzzy AF and two values x, y ∈ [0, 1] satisfy
1 − y < x ≤ y. Suppose S ⊆ AR is (x, y)-admissible. If S y-defends (A, a) ∈ AR, then

1. S′ = S ∪ (A, a) is x-conflict-free.
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2. S′ y-defends (A, a), i.e., S′ is (x, y)-admissible.

Proof. (1) Let’s show S′ is x-conflict-free. For S is x-conflict-free, it is only necessary to show that for
any (B, b) ∈ S,

1 −min{a, b, ρ(A, B)} ≥ x and 1 −min{a, b, ρ(B, A)} ≥ x.

(a) Suppose there is some (B, b) ∈ S, such that

1 −min{a, b, ρ(B, A)} < x. (5.1)

For (A, a) is y-defended by S, we have ∃C ∈ Args s.t.

max{1 − a, 1 − ρ(B, A), min{S(C), ρ(C, B)}} ≥ y.

By Equation (5.1) and x ≤ y, we have 1 −min{a, ρ(B, A)} < x ≤ y. Hence, 1 − a < y, 1 − ρ(B, A) < y.
Then we have, min{S(C), ρ(C, B)} ≥ y, i.e.

1 −min{S(C), ρ(C, B)} ≤ 1 − y < x.

On the other hand, we can get 1 − b < x from Equation (5.1). Therefore,

1 −min{b, S(C), ρ(C, B)} < x.

Contradict to the x-conflict-freeness of S.
(b) Suppose there is some (B, b) ∈ S, such that

1 −min{a, ρ(A, B), b} < x. (5.2)

By the y-admissibility of S, similar to Case (a), we can get that there is some D ∈ Args, s.t.

1 −min{S(D), ρ(D, A), a} < x.

It comes back to Case (a) and contradicts to the x-conflict-freeness of S.
2. It is obvious from Proposition 5. �

Note, for x > y, the Fundamental Lemma and this proposition are not valid. In other words, it means
that the conflict-freeness in a higher degree x can not be kept by the acceptability in a lower degree y. In
other words, weak acceptability can not keep strong conflict-freeness.

When we consider the admissibility, commonly we only care about the sets whose conflict-free
degrees and acceptability degrees are not too week, for example, higher than 0.5. Then the condition
1 − y < x ≤ y can be refined to 0.5 < x ≤ y (particular x = y > 0.5). In other words, the lemma is
suitable for 0.5 < x ≤ y (particular x = y > 0.5), which covers most cases in the application.

By the Fundamental Lemma, the following result is obvious.

Proposition 7. Let S ⊆ AR be an (x, y)-admissible set with 1 − y < x ≤ y. Then Fy(S) is also
(x, y)-admissible.

Obviously, the empty set is the least (x, y)-admissible extension. For the maximal (x, y)-admissible
extensions, we have the following definition.
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Definition 6. An (x, y)-preferred extension is a maximal (x, y)-admissible extension w.r.t. set inclusion.

In the fuzzy AF in the football scenario, the fuzzy set S2 = {(A, 1), (B, 0.2), (C, 0.8)} is (0.8, 0.8)-
preferred.

By the Fundamental Lemma, the next proposition is valid.

Proposition 8. In a fuzzy AF, suppose the fuzzy set S ⊆ AR is (x, y)-admissible. Then there exists some
(x, y)-preferred extension S′ ⊆ AR s.t. S ⊆ S′.

Because the empty set is always (x, y)-admissible, we have the following result.

Proposition 9. Given a fuzzy AF, there always exists some preferred extension.

5.2. Complete extensions and grounded extensions

The fixed points of the characteristic function are called complete extensions.

Definition 7. Given a fuzzy AF (AR, ρ) and two numbers x, y ∈ [0, 1], an (x, y)-admissible set E ⊆ AR
is (x, y)-complete, if and only if it includes every fuzzy argument that it defends, i.e., E = Fy(E).

Definition 8. Given a fuzzy AF, the (x, y)-grounded extension is the least (x, y)-complete extension.

Example 4. In the football scenario, the unique complete (0.8, 0.8)-complete extension is
{(A, 0.1), (B, 0.2), (C, 0.8)}, which is also (0.8, 0.8)-grounded.

Example 5. Consider the fuzzy AF ({(A, 1), (B, 1)}, {(A → B, 1), ((B→ A, 1))}), i.e., the classical
AF: A� B. It is not difficult to check that the empty set ∅ is (1, 1)-grounded and (1, 1)-complete. But it
is not (1, 1)-preferred.
{(A, 1), (B, 0.2)} is (0.8, 0.8)-preferred extensions and (0.8, 0.8)-complete, but it is not (0.8, 0.8)-

grounded.

The relation between preferred extensions and complete extensions follows from Lemma 2.

Proposition 10. Suppose 1−y < x ≤ y. In a fuzzy AF, each (x, y)-preferred extension is (x, y)-complete.
But not vice versa.

Proof. Suppose E is an (x, y)-preferred extension and E y-defends (A, a) ∈ AR. Let’s show (A, a) ∈ E,
which shows the (x, y)-completeness of E.

If (A, a) < E, then From Lemma 2, we have E′ = E ∪ (A, a) is (x, y)-admissible and E ( E′.
Contradicts to the maximum of E. �

Given a fuzzy set S, denote S by F0
y (S), Fy(S) by F1

y (S), and Fy(Fn
y (S)) by Fn+1

y (S) for n ∈ N.

Lemma 3. Given an (x, y)-admissible set S, S ⊆ Fn
y (S) ⊆ Fn+1

y (S), ∀n ∈ N.
Particularly, for the empty set ∅, we have

∅ ⊆ Fy(∅) ⊆ ... ⊆ Fn
y (∅) ⊆ Fn+1

y (∅) ⊆ ...

Proof. Because S is (x, y)-admissible, S ⊆ Fy(S). From the monotonicity of Fy, we have Fy(S) ⊆
F2

y (S). Similarly, F2
y (S) ⊆ F3

y (S),..., Fn
y (S) ⊆ Fn+1

y (S),... Therefore, S ⊆ Fn
y (S) ⊆ Fn+1

y (S), ∀n ∈ N. �
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Proposition 11. Suppose 1 − y < x ≤ y. In a fuzzy AF, the fuzzy set GE = ∪n∈NFn
y (∅) is the (x, y)-

grounded extension.

Proof. Firstly, let’s show GE is a fixed point of Fy. Suppose GE y-defends (A, a). Then from Lemma 3,
there is some n ∈ N s.t. (A, a) is y-defended by Fn

y (∅). Therefore, (A, a) ∈ Fn+1
y (∅) ⊆ GE.

Now let’s show GE is the least fixed point, i.e., for any fixed point S of Fy, GE ⊆ Fy(S).
For ∅ ⊆ S, we have Fy(∅) ⊆ Fy(S) = S. Inductively, we can get

Fn
y (∅) ⊆ Fy(S) = S, ∀n ∈ N.

Therefore, ∪n∈NFn
y (∅) ⊆ S. �

If there is some n0 ∈ N s.t. Fn0
y (∅) = Fn0+1

y (∅), then by Lemma 3, the grounded extension is
GE = ∪n∈NFn

y (∅) = Fn0
y (∅).

Proposition 11 provides us a way to calculate the grounded extensions in fuzzy AFs. Now, let’s
calculate the (0.6, 0.7)-grounded extension of the fuzzy AF in the football scenario.

Example 6. By the definition of y-acceptability, the empty set ∅ 0.7-defends S1 = {(A, 0.3), (B, 0.3),
(C, 0.8)} and any fuzzy arguments out of S1 are not 0.7-defended by ∅. Therefore,

F0.7(∅) = {(0.3), (B, 0.3), (C, 0.8)}.

Similarly, we have
F2

0.7(∅) = {(A, 1), (B, 0.3), (C, 0.8)},

F3
0.7(∅) = {(A, 1), (B, 0.3), (C, 0.8)}.

Because F2(∅) = F3(∅), the (0.6, 0.7)-grounded extension of the fuzzy AF is

F2(∅) = {(A, 1), (B, 0.3), (C, 0.8)}.

Similarly, it is not difficult to calculate that {(A, 0.2), (B, 0.2)} is the (0.8, 0.8)-grounded extension
of the fuzzy AF in Example 5.

5.3. Stable extensions

A stable extension in Dung’s theory is a set of arguments, which is conflict-free inside and attacks
every argument outside. Here, we introduce a similar notion. We first introduce the notion called
“x-sufficient attack”.

Definition 9. Suppose (A, a) and (B, b) are two fuzzy arguments in a fuzzy AF. If min{a, b, ρ(B, A)} >
1 − x, then we say (B, b) x-sufficiently attacks (A, a),

Note, the y-acceptability should not be in the following form:

A fuzzy set S y-defends a fuzzy argument (A, a), if for any (B, b) ∈ AR which y-
sufficiently attacks (A, a), there is some (C, c) ∈ S s.t. (C, c) y-sufficiently attacks (B, b).
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Example 7. Consider the fuzzy AF in the football scenario. For any (B, b), if (B, b) 0.8-sufficiently
attacks (A, 1), then b > 0.2 because min{a, b, ρ(B, A)} = min{1, b, 0.9} > 1 − 0.8. (C, 0.3)
0.8-sufficiently attacks (B, b), because min{c, b, ρ(C, B)} = min{0.3, b, 1} > 1 − 0.8.

On the other hand, by Definition 3, (C, 0.3) doesn’t 0.8-defend (A, 1). Therefore, the y-acceptability
in Definition 3 can not be defined by the y-sufficient attacks.

Here, we use the y-sufficient attacks to define the stable extensions.

Definition 10. In a fuzzy AF, a fuzzy set S of arguments is called (x, y)-stable, if it is x-conflict-free
and it is not y-conflict-free with any fuzzy argument not in it.

The following example shows an (x, y)-stable extension may not be (x, y)-admissible.

Example 8. Consider the fuzzy AF in the football scenario. The fuzzy set S = {(A, 1), (B, 0.3), (C, 0.8)}
is (0.7, 0.8)-stable.

But it is not (0.7, 0.8)-admissible, because (B, 0.3) ∈ S is not 0.8-defended by S. As a result, it is
not (0.7, 0.8)-complete or (0.7, 0.8)-preferred.

The AF in the following example is very common in Dung’s AFs. Let’s check the extensions in it.

Example 9. Consider the fuzzy AF in the following graph, where the fuzzy degrees of all the attacks are
1 and the fuzzy degrees of the arguments are the number next to the argument.

A B C

D

E
1

1 1
1

1

1
0.8 0.9 1

0.8

0.7

The empty set ∅ is (0.8, 0.8)-admissible, but it is not (0.8, 0.8)-complete.
From Proposition 11, the (0.8, 0.8)-grounded extension is

S1 = F1
0.8(∅) = F2

0.8(∅) = {(A, 0.2), (B, 0.2), (C, 0.2), (D, 0.2), (E, 0.2)}.

It is also (0.8, 0.8)-complete and (0.8, 0.8)-admissible, but not (0.8, 0.8)-preferred.
It is not difficult to check that S2 = {(A, 0.8), (B, 0.2), (C, 0.2), (D, 0.2), (E, 0.2)} is (0.8, 0.8)-

preferred, thus (0.8, 0.8)-complete and (0.8, 0.8)-admissible. But it is not (0.8, 0.8)-stable, because
(D, 0.3) is not 0.8-sufficiently attacked by any fuzzy argument in S2.

On the other hand, the fuzzy set S3 = {(A, 0.2), (B, 0.9), (C, 0.2), (D, 1), (E, 0.2)} is both
(0.8, 0.8)-preferred and (0.8, 0.8)-stable. Note, in S3, the fuzzy argument (D, 1) is 0.8-defended by
(B, 0.9).

The fuzzy set S2 in this example shows that an (x, y)-preferred extension may not be (x, y)-stable.
The relation between the extensions can be shown in the following graph. A minor difference to

Dung’s theory is that the (x, y)-stable extensions may not be (x, y)-preferred.

(x, y)-Preferred (x, y)-Complete (x, y)-Admissible

(x, y)-Grounded (x, y)-Stable x-Conflict-free
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6. Related works

There are many papers about fuzzy AFs. Some, like [12–14], characterize crisp AFs by fuzzy
method. Some, like [11] and its following works, look for crisp semantics for fuzzy AFs. Some,
like [8, 9], concentrate on the algorithm to calculate concrete fuzzy degrees for each argument. And
some, like [16,29], establish semantics similar to Dung’s work by fuzzy sets. This paper follows the last
way.

In this section, we firstly show our semantics is compatible with Dung’s semantics. Then we compare
our semantics to the semantics in [16, 29]. For convenience, denote our semantics by WSL, Dung’s
semantics by DUNG, the semantics in [16] by JDV, and the semantics in [29] by WLON.

6.1. Comparability to Dung’s argumentation frameworks

A Dung’s AF (Args, Atts) can be seen as a special fuzzy AF (AR, ρ), where AR = χArgs and

ρ(A, B) = χAtts(A, B) =

{
1, if (A, B) ∈ Atts,
0, otherwise.

The next theorem shows the conflict-freeness in WSL is compatible with the conflict-freeness in
DUNG.

Theorem 1. In a Dung’s AF, a set of arguments S ⊆ Args is conflict-free in DUNG, if and only if
χS ⊆ χArgs is 1-conflict-free in WSL.

Proof. (⇒) Suppose S is conflict-free in DUNG. Then ∀A, B ∈ S , (A, B) < Atts, i.e., ρ(A, B) = 0. It
equals

min{χS (A), χS (B), ρ(A, B)} = ρ(A, B) = 0,∀A, B ∈ S .

Together with ∀A < S , χS (A) = 0, we have

min{χS (A), χS (B), ρ(A, B)} = 0 ≤ 1 − 1,∀A, B ∈ Args.

Hence, χS is 1-conflict-free in WSL.
(⇐) Suppose χS is 1-conflict-free in WSL, i.e., ∀A, B ∈ Args, min{χS (A), χS (B), ρ(A, B)} ≤ 1−1 =

0. Then for any A, B ∈ S , because χS (A) = χS (B) = 1, we have ρ(A, B) = 0, i.e., (A, B) < Atts. �

The next theorem shows the acceptabilities in DUNG and WSL are compatible.

Theorem 2. In a Dung’s AF, S ⊆ Args defends an argument A ∈ Args in DUNG, if and only if
χS ⊆ χArgs 1-defends the fuzzy argument (A, a) with a > 0 in WSL.

Proof. (Necessity:) Suppose S defends A in DUNG. Then for any B ∈ Args with (B, A) ∈ Atts, there
exists C ∈ S s.t. (C, B) ∈ Atts, i.e., χS (C) = 1 ρ(B, A) = ρ(C, B) = 1. Then

max{1 − a, 1 − ρ(B, A), min{χS (C), ρ(C, B)}} ≥ 1.

Hence, χS 1-defends (A, 1).
(Sufficiency:) Suppose χS 1-defends (A, a) with a > 0 in WSL. For any B ∈ Args with (B, A) ∈ Atts,

∃(C, c) ∈ χS s.t.
max{1 − a, 1 − ρ(B, A), min{c, ρ(C, B)}} ≥ 1.

Because a > 0 and ρ(B, A) = 1, we have 1 − a < 1 and 1 − ρ(B, A) = 0 < 1. Hence, c = 1 and
ρ(C, B) = 1, i.e., C ∈ S and (C, B) ∈ Atts. Then we can get that S defends A in DUNG. �

AIMS Mathematics Volume 5, Issue 4, 4045–4064.



4059

From Theorem 2, the next corollary is directly obtained by the definition of the characteristic
function.

Corollary 3. Given a Dung’s AF, suppose F is the characteristic function of DUNG and F1 is the
1-characteristic function of WSL. Then χF(S ) = F1(χS ).

Because the conflict-freeness and the acceptability are equivalent in DUNG and WSL, we can get
the next theorem. It shows the our semantics WSL is compatible with Dung’s original semantics DUNG
in Dung’s AFs.

Theorem 3. In a Dung’s AF, S ⊆ Args is admissible, complete, preferred, stable or grounded in DUNG,
if and only if χS is (1, 1)-admissible, (1, 1)-complete, (1, 1)-preferred, (1, 1)-stable or (1, 1)-grounded
in WSL, correspondingly.

Proof. The stable case is obvious. The admissible, complete and grounded case can be got by Corollary
3 easily. Let’s show the preferred case.

(Sufficiency:) It is direct from Theorem 2.
(Necessity:) Suppose S is a preferred extension in DUNG. By Theorem 1, χS is 1-conflict-free in

WSL.
Assume χS is not a maximal (1, 1)-admissible extension in WSL w.r.t. set inclusion. There exists

some (1, 1)-admissible set E ⊆ AR s.t. χS ( E. We can get ∃A ∈ Args s.t. E(A) > 0 and χS (A) = 0.
On the other hand, from the above part of this theorem, S ′ = {A ∈ Args : E(A) > 0} is an admissible
extension in DUNG and S ( S ′. It is contradicting to S is preferred in DUNG.

Therefore, χS is (1, 1)-preferred in WSL. �

6.2. Comparability to semantics of Janssen et al.

Firstly, let’s remind the JDV. In [16], the fuzzy degrees of arguments and attacks are drawn from a
complete lattice L, with a partial order ≤L. And the fuzzy AFs are defined with crisp arguments and
fuzzy attacks.

Definition 11. [Definition 3 in [16]] Given a set of arguments Args, a JAF is a tuple (Args, 9), where
9 : Args × Args −→ L is a fuzzy relation over Args.

Suppose A, B ∈ Args are arguments andA, B ⊆ Args are fuzzy sets. 9 is extended to represent
the degrees to which fuzzy sets of arguments attack each other as follows:

A9 B = sup
A∈Args

(A(A) ∧ (A9 B)),

B9 A = sup
A∈Args

(A(A) ∧ (B9 A)),

A9 B = sup
B∈Args

(B(B) ∧ (A9 B)).

Then the extensions in the form of fuzzy sets are defined in the following definition.

Definition 12 (Definition 4 in [16]). Let (AR, 9) be a JAF. Then

A fuzzy set E ⊆ AR is x-conflict-free, x ∈ L, iff (¬(E9 E)) ≥L x.
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A fuzzy set E over Args is y-admissible, if it defends itself well enough against all attacks, i.e.,

inf
B∈Args

((B9 E){ (E9 B)) ≥L y.

A y-preferred extension, y ∈ L, is a maximal y-admissible extension.

A z-stable extension, z ∈ L, is a fuzzy set E, that sufficiently attacks all external arguments, i.e.

inf
B∈Args

(¬E(B){ (E9 B)) ≥L z.

Comparing the semantics in JDV and WSL, there are three obvious but critical distinctions between
them. First, the conflict-free sets, the admissible sets and the stable sets are defined independently in
JDV. And the admissible sets and the stable sets in WSL include the conflict-free condition. This makes
that all our semantics are conflict-free. Second, each fuzzy extension is an integral fuzzy set and the
fuzzy degrees of the arguments can not be discussed separately in JDV. But in WSL, the fuzzy degrees
of a single argument can be explored, like in the acceptability. Then the growing up of the admissible
sets (the characteristic function) can be introduced in WSL. Last, the WSL is established based on the
acceptability and the conflict-free sets. This is similar to Dung’s original way in [10]. Then all the
semantics in Dung’s theory can be introduced in Dung’s way, for example, the grounded extensions and
the complete extensions are introduced. But the JDV failed to introduce the ground extensions and the
complete extensions.

Next, let’s compare the admissible extensions in JDV and WSL. Note that the symbol 9 in
Definition 11 is the same as ρ in Definition 1, and Args is a special case ofAR in Definition 1, where
Args = χ(Args). We can get the next proposition, where the y-admissible sets in JDV is defined by the
y-defence in WSL.

Proposition 12. Given a JAF (AR, 9), a fuzzy set E ⊆ AR is a y-admissible extensions, if and only if
it y-defends each element in it, i.e., for any (A, a) ∈ E, there exists (C, c) ∈ E, s.t.

max{1 −min{B9 A, a}, min{c, C 9 B}} ≥ y.

It is a direct corollary of Proposition 3.
Also, the y-admissible set can be characterized by the y-characteristic function.

Proposition 13. Let Fy be a characteristic function. S ⊆ AR is y-admissible, if and only if S ⊆ Fy(S).

Proof. From Corollary 12, S is y-admissible, iff for any (A, a) ∈ S, S y-defends it. From the definition
of Fy, (A, a) ∈ Fy(S), i.e., S ⊆ Fy(S). �

It is not difficult to find that there is no restriction of the conflict-freeness in the definition of the
y-admissible sets. It makes the notion not so natural.

Example 10. Consider the JAF ({A, B}, {(A→ B, 1), ((B→ A, 1))}), i.e., the classic AF: A� B.
It is not difficult to check by Corollary 12 that S = {(A, 1), (B, 1)} is y-admissible for any y ∈ [0, 1].
However, from Proposition 2, S is not x-conflict-free for any x , 0.
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Then the set {(A, 1), (B, 1)} in Example 5 is not (x, y)-admissible for any x > 0.
The (x, y)-stable extensions have nothing to do with the z-stable extensions in JAFs. As we know,

the z-stable extensions E are defined by the following function:

inf
B∈Args

(¬E(B){ (E9 B)) ≥L z.

If the t-norm is the Gödel t-norm, it is the following equation.

inf
B∈Args

max{1 − (1 − E(B)), sup
A∈Args

{E(A), A9 B}} ≥ z.

It is ∀B ∈ Args, ∃A ∈ Args s.t. max{E(B), sup{E(A), A9 B}} ≥ z, i.e.,

max{E(B), E(A), A9 B} ≥ z.

If the AF is in the form of a cycle, for example, A � B, the empty set ∅ is z-stable in JAF for all
z ∈ [0, 1]. Therefore, we introduce a totally new definition of stable extensions.

6.3. Comparability to Gödel fuzzy argumentation frameworks

Given a set of arguments Args, a GFAF [29] is a pair (A, ρ), where A ⊆ χArgs is a fuzzy set of
arguments and ρ : Args × Args is a fuzzy set of attacks.

A fuzzy set S ⊆ A is conflict-free in GFAF, if for any (A, a), (B, b) ∈ S,

min{a, B9 A} + b ≤ 1.

A fuzzy set S weakening defends a fuzzy argument (A, a), if for any (B, b) ∈ A there exists some
(C, c) ∈ S s.t.

min{1 − min{c, ρ(C, B)}, b} + a ≤ 1. (6.1)

Then the characteristic function and the admissible, complete, preferred, grounded extensions are
introduced in Dung’s way.

In [29], given a fuzzy AF, the semantics is uniquely defined. But in our work, the semantics differ
when different consistency degrees x, y ∈ [0, 1] are given. In other words, the semantics here depends
on how much inconsistency the system permits.

In the following, we discuss the conflict-free sets and the acceptability.
First, the conflict-freeness is different. Suppose S is 1-conflict-free in JAF, i.e., ¬(S 9 S) ≥ 1. It

equals that for any A, B ∈ Args, min{S(A), S(B), A 9 B} ≤ 0. It concludes S(A) = 0, S(B) = 0 or
A9 B = 0. Then we can get S is conflict-free in GFAF. But in general, a conflict-free set in GFAF is
not a 1-conflict-free set in JAF. For example, suppose S(A) = S(B) = 0.5 = A9 B. Then (A, 0.5) does
not sufficiently attack (B, 0.5) in GFAF; but (A, 0.5) does not sufficiently attack (B, 0.5) in JAF.

Moreover, the acceptability in the two fuzzy AFs are distinct. From Proposition 3, for two fuzzy sets
A, C ⊆ AR, C 1-defendsA, if and only if for any (A, a) ∈ A and for any B ∈ Args, there exists some
(C, c) ∈ C s.t.

max{1 −min{B9 A, a}, min{c, C 9 B}} ≥ 1.

It is distinct to Eq 6.1. Thus the 1-defence in JAF is distinct to the weakening defence in GFAF.
As a result, in the two fuzzy AFs, the characteristic function and the extensions (including the

admissible extensions, the complete extensions, the grounded extensions, and the preferred extensions)
are different. In a word, the two semantics are distinct.
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7. Conclusion

Dung’s theory of AFs plays an increasingly important role in artificial intelligence. This paper is an
exploration of its fuzzy case. In other words, we discuss the semantics of the AFs where arguments and
attacks can be associated with fuzzy degrees.

Many works study the semantics of fuzzy AFs, such as [8, 9, 16, 29], etc. In this paper, the semantics
is built on the assumption that some inconsistency is permitted in a fuzzy system and the degree of
consistency is already known. For example, if the inconsistency of the conflict-freeness is permitted
to be no more than the degree 1 − x,† then we introduce the x-conflict-free sets. Concretely, in the
football scenario, if the conflict-free is permitted to be in a degree no less than 0.8, then light rain
and playing football can be accepted at the same time in a conflict-free semantics. In our semantics
system, it is the 0.8-conflict-freeness of the set {(B, 0.2), (A, 1)}. Similarly, when S defends (A, a) in a
degree no less than y, we say that S y-defends or y-accepts (A, a). Various types of extensions are then
introduced in Dung’s way, for instance, the (x, y)-admissible extensions, the (x, y)-preferred extensions,
the (x, y)-complete extensions, the (x, y)-grounded extensions and the (x, y)-stable extension. The
relation between these extensions is the same as the relation of them in Dung’s theory, except that the
(x, y)-stable extensions may not be (x, y)-preferred.

In some sense, the semantics in this paper can be seen as an improvement of Janssen’s work, because
the conflict-freeness and the acceptability are the same as the corresponding notions in JAFs. A minor
difference is that the numbers x, y mean the degree of the consistency here and there is no illustration of
them in JAFs. In some sense, it is an illustration of the x, y in the semantics of JAFs. Formally, the y-
admissible sets and the preferred extensions are developed to (x, y)-admissible sets and (x, y)-preferred
sets, by adding the x-conflict-freeness to the sets. The y-characteristic function, the (x, y)-complete
extensions, the (x, y)-grounded extensions and the (x, y)-stable extensions are introduced. Moreover,
some basic properties are discussed in this paper. For example, the existence of the (x, y)-preferred
extensions, the Fundamental Lemma and the algorithm of the (x, y)-grounded extensions.

In [7], the labeling theory of Dung’s AF shows the algorithm of the other extensions, such as the
complete extensions, etc. In the future, similar works of the fuzzy AFs can be studied. On the other
hand, methods in graph theory [22], rough sets theory [32] can be borrowed to study the AFs, and
applications in control theory [19, 20, 31] can be explored.
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