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Abstract: In this paper, we use elementary methods, properties of Gauss sums and estimates for
character sums to study a problem related to primitive roots, and prove the following result. Let p
be a large enough odd prime. Then for any two distinct integers a, b ∈ {1, 2, · · · , p − 1}, there exist
three primitive roots α, β and γ modulo p such that the congruence equations α + γ ≡ a mod p and
β + γ ≡ b mod p hold.
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1. Introduction

Let p be an odd prime, A(p) denotes the set of all primitive roots g modulo p with 1 ≤ g ≤ p − 1.
The Golomb conjecture (see [1]) in a reduced residue system modulo p is whether there exist two
primitive roots α and β ∈ A(p) such that the congruence

α + β ≡ 1 mod p holds ? (1.1)

This conjecture has been basically solved in the finite field Fq. Interested readers can refer to the
references [2–13]. In fact, people have proved versions of the above result. Here, we simply describe
one of them as follows: Let p be an odd prime large enough. Then for any integers a, b and c with
abc coprime to p (i.e., (abc, p) = 1), there are at least two primitive roots α and β mod p such that the
congruence aα + bβ ≡ c mod p holds. See Qi Sun [3].

In this paper, we continue to work on this problem, because we find that the Golomb conjecture can
be further strengthened. To make our problem more general, we will describe it in a finite field. Let Fq

be a finite field of q elements with characteristic p. Our problem in Fq can be summarized as follows:
For any two non-zero elements a , b ∈ Fq, do there exist three primitive elements α, β and γ ∈ Fq

such that the equations α + γ = a and β + γ = b hold?

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020252


3900

Obviously, if this problem is correct, then the Golomb conjecture must be true. The converse is not
necessarily true. So, our problem can be seen as a further generalization and extension of the Golomb
conjecture.

In this paper, we use elementary methods, properties of Gauss sums and estimates for character
sums to give an affirmative answer to the above problem. To better describe our results, we use the
counting function N(α, β; p), which denotes the number of all primitive roots u, v and w ∈ A(p) such
that the equations u + w ≡ α mod p and v + w ≡ β mod p hold. Then we have the following result:
Theorem. Let p be an odd prime. Then for any integers 1 ≤ α , β ≤ p − 1, we have the asymptotic
formula

N(α, β; p) =
φ3(p − 1)

p2 + O
(
φ3(p − 1)
p2 ·
√

p
· 8ω(p−1)

)
,

where as usual, φ(n) denotes the Euler function, and ω(n) denotes the number of all distinct prime
divisors of n.

Obviously, our conclusion can also be generalized to the finite field Fq. From our theorem we may
immediately deduce the following:
Corollary. Let p be an odd prime large enough. Then for any integers 1 ≤ a , b ≤ p − 1, there exist
three primitive roots α, β and γ mod p such that the congruence equations

α + γ ≡ a mod p and β + γ ≡ b mod p hold.

Obviously one can ask: Can the Golomb conjecture be extended further? Specifically, for three
pairwise distinct nonzero elements α, β and γ ∈ Fq, do there exist four primitive elements a, b, c and
d ∈ Fq such that the equations

a + d = α, b + d = β and c + d = γ are satisfied ?

We leave this as an open problem.

2. Several lemmas

To complete the proof of our main result, we need following three simple lemmas. For the sake of
simplicity, we do not repeat some elementary number theory and analytic number theory results, which
can be found in references [14] and [15]. First, we have the following:
Lemma 1. Let p be an odd prime. Then for any integer a with (a, p) = 1, we have the identity

φ(p − 1)
p − 1

∑
k|p−1

µ(k)
φ(k)

k∑
r=1

′ e
(
r · ind(a)

k

)
=

{
1 if a is a primitive root mod p;
0 if a is not a primitive root mod p,

where e(y) = e2πiy,
∑k

r=1
′ denotes the summation over all integers 1 ≤ r ≤ k such that r is coprime to

k, µ(n) is the Möbius function, and ind(a) denotes the index of a relative to some fixed primitive root
g mod p.
Proof. See Proposition 2.2 in [16].
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Lemma 2. Let p be a prime. Then for any integer h with (h, p) = 1, we have the identity

∑
a∈A(p)

e
(
ha
p

)
=
φ(p − 1)

p − 1

∑
k|p−1

µ(k)
φ(k)

k∑
r=1

′ χr,k(h) · τ
(
χr,k

)
,

where χ denotes a Dirichlet character modulo p, and τ(χ) =

p−1∑
a=1

χ(a)e
(

a
p

)
denotes the classical Gauss

sums corresponding to χ.
Proof. For integers 1 ≤ r ≤ k ≤ p − 1 with k | p − 1 and (r, k) = 1, we write e

(
r·ind(a)

k

)
= χr,k(a), and

χr,k(a) = 0, if p | a. It is clear that χr,k(a) is a Dirichlet character modulo p. Note that by the properties
of the classical Gauss sums we have

p−1∑
a=1

χ(a)e
(
ha
p

)
= χ(h)

p−1∑
a=1

χ(a)e
(

a
p

)
= χ(h) · τ(χ).

Applying the above with χ := χr,k and using Lemma 1, we immediately deduce the identity

∑
a∈A(p)

e
(
ha
p

)
=
φ(p − 1)

p − 1

∑
k|p−1

µ(k)
φ(k)

k∑
r=1

′

p−1∑
a=1

χr,k(a) e
(
ha
p

)

=
φ(p − 1)

p − 1

∑
k|p−1

µ(k)
φ(k)

k∑
r=1

′ χr,k(h) · τ
(
χr,k

)
.

This proves Lemma 2.
Lemma 3. Let p be an odd prime, χ1, ..., χr be Dirichlet characters modulo p, at least one of which is
non-principal character. Let f (x) be an integral coefficient polynomial of degree d. Then for pairwise
distinct integers a1, ..., ar, we have the estimate

p−1∑
a=1

χ1 (a + a1) χ2 (a + a2) · · · χr (a + ar) e
(

f (a)
p

)
≤ (r + d) · p

1
2 .

Proof. This is Lemma 17 in [17]. Some related work can also be found in [18].
Lemma 4. Let p be a prime. Then for any integer d with (d, p) = 1, we have the estimate

p−1∑
u=1

e
(
−ud

p

) ∑
a∈A(p)

e
(
ua
p

) ∑
c∈A(p)

e
(
uc
p

)
= O

(
φ2(p − 1)
√

p
· 4ω(p−1)

)
.

Proof. Note that |τ(χ)| =
√

p, if χ is any non-principal character modulo p, and |τ(χ)| = 1, if χ is the
principal character modulo p. From the identity

∑
k|p−1

|µ(k)| =
∏

qα‖p−1

∑
d|qα
|µ(d)|

 =
∏

qα‖p−1

2 = 2ω(p−1)
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and Lemma 2, we have

p−1∑
u=1

e
(
−ud

p

) ∑
a∈A(p)

e
(
ua
p

) ∑
c∈A(p)

e
(
uc
p

)

=
φ2(p − 1)
(p − 1)2

p−1∑
u=1

e
(
−ud

p

) ∑
k|p−1

∑
h|p−1

µ(k)µ(h)
φ(k)φ(h)

k∑
r=1

′ χr,k(u) · τ
(
χr,k

)
×

h∑
s=1

′ χs,h(u) · τ
(
χs,h

)
=

φ2(p − 1)
(p − 1)2

∑
k|p−1

∑
h|p−1

µ(k)µ(h)
φ(k)φ(h)

k∑
r=1

′

h∑
s=1

′ τ
(
χr,k

)
τ
(
χs,h

)
×

p−1∑
u=1

χr,k(u)χs,h(u)e
(
−ud

p

)

=
φ2(p − 1)
(p − 1)2

∑
k|p−1

∑
h|p−1

µ(k)µ(h)
φ(k)φ(h)

k∑
r=1

′

h∑
s=1

′ χr,k(−d)χs,h(−d)

×τ
(
χr,k

)
τ
(
χs,h

)
τ
(
χr,kχs,h

)
= O

φ2(p − 1)
(p − 1)2 · p

3
2 ·

∑
k|p−1

|µ(k)|


2 = O

(
φ2(p − 1)
√

p
· 4ω(p−1)

)
.

This proves Lemma 4.
Lemma 5. Let p be a prime. Then for any integers 1 ≤ α , β ≤ p − 1, we have the estimate

p−1∑
u=1

p−1∑
v=1

e
(
−uα − vβ

p

) ∑
a∈A(p)

e
(
ua
p

) ∑
b∈A(p)

e
(
vb
p

) ∑
c∈A(p)

e
(
(u + v)c

p

)
= O

(
φ3(p − 1)
√

p
· 8ω(p−1)

)
.

Proof. Note that |τ(χ)| = 1, if χ is the principal character modulo p. And if (v, p) = 1, u pass through
a reduced residue system modulo p, then uv also pass through a reduced residue system modulo p. So
from Lemma 2, Lemma 3 and the methods of proving Lemma 4 we have

p−1∑
u=1

p−1∑
v=1

e
(
−uα − vβ

p

) ∑
a∈A(p)

e
(
ua
p

) ∑
b∈A(p)

e
(
vb
p

) ∑
c∈A(p)

e
(
(u + v)c

p

)

=
φ3(p − 1)
(p − 1)3

p−1∑
u=1

e
(
−uα

p

) p−1∑
v=1

e
(
−vβ

p

)

×
∑
k|p−1

µ(k)
φ(k)

k∑
r=1

′
∑
h|p−1

µ(h)
φ(h)

h∑
s=1

′
∑
j|p−1

µ( j)
φ( j)

j∑
t=1

′ χr,k(u) · τ
(
χr,k

)
×χs,h(v) · τ

(
χs,h

)
χt, j(u + v) · τ

(
χt, j

)
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=
φ3(p − 1)
(p − 1)3

∑
k|p−1

µ(k)
φ(k)

k∑
r=1

′
∑
h|p−1

µ(h)
φ(h)

h∑
s=1

′
∑
j|p−1

µ( j)
φ( j)

j∑
t=1

′

×τ
(
χr,k

)
τ
(
χs,h

)
τ
(
χt, j

) p−1∑
u=1

p−1∑
v=1

χr,k(u)χs,h(v)χt, j(u + v)e
(
−uα − vβ

p

)

=
φ3(p − 1)
(p − 1)3

∑
k|p−1

µ(k)
φ(k)

k∑
r=1

′
∑
h|p−1

µ(h)
φ(h)

h∑
s=1

′
∑
j|p−1

µ( j)
φ( j)

j∑
t=1

′

×τ
(
χr,k

)
τ
(
χs,h

)
τ
(
χt, j

) p−1∑
u=1

χr,k(u)χt, j(u + 1)

×

p−1∑
v=1

χs,h(v)χr,k(v)χt, j(v)e
(
−v(uα + β)

p

)

=
φ3(p − 1)
(p − 1)3

∑
k|p−1

µ(k)
φ(k)

k∑
r=1

′
∑
h|p−1

µ(h)
φ(h)

h∑
s=1

′
∑
j|p−1

µ( j)
φ( j)

j∑
t=1

′

×τ
(
χr,k

)
τ
(
χs,h

)
τ
(
χt, j

)
τ
(
χr,kχs,hχt, j

) p−1∑
u=1

χr,k(u)χt, j(u + 1)

×χs,hχr,kχt, j (−uα − β)

= O

φ3(p − 1)
p3 · p

5
2 ·

∑
k|p−1

|µ(k)|


3 = O

(
φ3(p − 1)
√

p
· 8ω(p−1)

)
.

This proves Lemma 5.

3. Proof of the theorem

In this section, we shall complete the proof of our main result. For any integers 1 ≤ α , β ≤ p − 1,
note that the trigonometric identity

p−1∑
r=0

e
(
nr
p

)
=

{
p, if p | n;
0, if p - n

and ∑
a∈A(p)

1 = φ(p − 1).

Thus, from Lemma 4 and Lemma 5 we have

N(α, β; p) =
1
p2

∑
a∈A(p)

∑
b∈A(p)

∑
c∈A(p)

p−1∑
u=0

e
(
u(a + c − α)

p

) p−1∑
v=0

e
(
v(b + c − β)

p

)

=
1
p2

p−1∑
u=1

e
(
−uα

p

) p−1∑
v=1

e
(
−vβ

p

) ∑
a∈A(p)

e
(
ua
p

) ∑
b∈A(p)

e
(
vb
p

)
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×
∑

c∈A(p)

e
(
(u + v)c

p

)
+

1
p2

p−1∑
u=1

e
(
−uα

p

) ∑
a∈A(p)

e
(
ua
p

) ∑
c∈A(p)

e
(
uc
p

)

+
1
p2

p−1∑
v=1

e
(
−vβ

p

) ∑
b∈A(p)

e
(
vb
p

) ∑
c∈A(p)

e
(
vc
p

)
+
φ3(p − 1)

p2

=
φ3(p − 1)

p2 + O
(
φ3(p − 1)
p2 ·
√

p
· 8ω(p−1)

)
+ O

(
φ2(p − 1)
p2 ·
√

p
· 4ω(p−1)

)
=

φ3(p − 1)
p2 + O

φ3(p − 1)

p
5
2

· 8ω(p−1)

 .
This completes the proof of our theorem.

4. Conclusion

The main result of this paper is a theorem, which is closely related to the Golomb conjecture. It
describes that when the prime p is large enough, for any integers 1 ≤ α , β ≤ p − 1, there exist three
primitive roots u, v and w ∈ A(p) such that the congruence equations u + w ≡ α mod p and v + w ≡
β mod p hold. At the same time, we also give a sharp asymptotic formula for the counting function of
all such solutions (u, v,w). Of course, our conclusion can also be generalized to the finite field Fq. In
order to further study the content related to the Golomb conjecture, we also proposed an open problem.
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