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1. Introduction

It is prudential to say that mathematical modeling with delay differential equations have drawn
clear significance because of their potential applications in diverse fields, which includes biological
sciences, physical sciences, gas and fluid mechanics, signal processing, robotics and traffic system,
engineering, population dynamics, medicine and the like (see for example [9,16,17]). It is now realized
that the oscillation and asymptotic solutions of various classes of differential equation are an important
field of investigation and its theory is a lot richer than the qualitative theory of differential equations
(see for example [8, 10, 22]). The problem of oscillatory and nonoscillatory of solutions of various
classes of second/third order differential equations with delayed and mixed arguments has been widely
investigated in the literature (see for example [2,4-7, 11,12, 18,23-34]). Various types of techniques
appeared for investigations of such equations.

The purpose of this work, we are concerned with third-order neutral differential equations with
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discrete and distributed delay

(ax0[(@@®)]) + qoy'a - o) + g0y + o) =0, (E)

and

@mﬂmmmﬂW+f%m@ﬂha%+f%m@ﬂwaﬁza (E»)

where z(t) = y(t) + p1(O)y(t — 1) + p2(t)y(t + 72), ¢ < d and 1 > 1. Now onwards, we assume that,
a;(1), pi(t) € C([ty, +0)), a;(t) > 0, p;(t) > 0 fori = 1,2 and 0 < p;(t) < w;, w1 + uo < 1 where y; are
constants, g; € C([to, +o0), R"), Gi(t,€) € C([ty, +o0) X [c,d], R*) for i = 1,2, and not identically zero
on [t,,+00) X [c,d], t. > t, constants 7; > 0, for i = 1,2, and the integral of (E,) is take in the sense of
Riemann-Stieltjes.

Let us recall that, a solution y(¢) € C([Ty, o), R) of (E;) (or (E3)) is a non-trivial or y(t) # 0 with
T, > ty, if the functions z € C'([Ty, ©),R), a7’ € C*([Ty, ), R) and az[(a;2’)']* € C([T,, =), R) for
certain T, > f, which satisfies (E;) (or (E3)). Our attention is restricted to those solutions of (E;) (or
(E»)) which exist on half-line [T, co) and the condition sup{|y(?)| : t > T.} > O satisfies for any T, > 1,.
A solution of (E) (or (E,)), which is nontrivial (proper) for all large ¢, is called oscillatory if it has no
last zero, otherwise, termed nonoscillatory.

We define the operators,

A
M=z Lz=z, [Pz=(@LVy, [Pz=a|l?], L¥z=@Py.

We shall consider the two cases,

! t
nl[to,t]:fagw(s)ds, ﬂz[to,t]:faf](s)ds.
1o

fo

T [IO’ t] = 0o, ﬂz[to, l] =ooast — oo, (11)
and
m1lto, t] < 00, mlty,t] = co ast — oo, (1.2)

Recently, Candan [24] investigated the oscillatory behavior of solutions of (E£;) and (E,) by using
the Riccati substitution techniques, he presented some new oscillation criteria for (£) and (E;) by the
assumption of condition (1.1). We notice that in [24], no criteria were found for (E;) (or (E;)) to be
oscillatory for the assumption of condition (1.2). It would be interesting to improve and extend them
in the condition (1.2).

However, the corresponding result for (E;) (or (E;)) under (1.2) is still missing. In this work, we
fill up this gap, also we strengthen and extend the main results of Candan [24] under the condition
(1.1) and (1.2) respectively. We present several oscillatory criteria for (E;) and (E;), by applying three
Riccati substitution techniques, integral averaging techniques and comparison principles. We present
two examples in order to illustrate the main results at the end.
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2. Preliminary

In this section, we present some basic Lemmas for helping to prove the main results. We use
throughout this paper the following notations for convenience and for shortening the equations:

V2t =zt+0), LYz =Z@t+0), LP20) = (ait+0)Z (1 +0)),

LI20) = axt + O[LP20)]', 1920 = (LP20) s Aw) = f AL
0w a(s)
Lemma 2.1. Let A > 1, assume u > 0. Then
(U1 + up + uz)* < 341 (uf + ué + ugl) 2.1)
Lemma 2.2. Let A < 1, assume u > 0. Then
(uy + 10+ uz)" < (u] +ud +uj). (2.2)

Lemma 2.3. If 1> 0and X,Y > 0, then

s A1 y'+

Yv—-Xv 1t < mv (23)

Lemma 2.4. Assume that (1.1) holds. Furthermore, assume that y is an eventually positive solution of
(E1) (or (E,)). Then z for t| € [ty, 00) satisfies, eventually of the following cases:

(C): L% >0, LMz()>0, and L2z > 0;

(Cy) : L% >0, LWz1)<0, and L%z > 0;
and if (1.2) holds, then also

(C3): L) >0, LMz >0, and L*z1) <O.
Lemma 2.5. Assume that z satisfies (Cy) for t > ty. Then

L[3] 1/4
Z,(t) > %ﬂ'l[l‘o, t] (24)

and

2 = (L)' AQ). (2.5)

Proof. Since L'Yz(¢) < 0, LP'z(¢) is nondecreasing. Then we have

t gl ()L
a1 (D2 () Z a\ (N2 (1) — ar(10)Z' (to) = f % (IL72ls)

1 ds > a*(OLPz(1) 7110, 7).
/A 2
fo a2 (S

Again integrate, we get

2(1) = (LP'z()'* f Mds:(Lmz(t))WA(t).
fo a(s)

O

AIMS Mathematics Volume 5, Issue 4, 3851-3874.



3854

Lemma 2.6 (See [24]). Assume that z is a solution of (E,) which satisfies (C,) in Lemma 2.4.

Furthermore,
o0 o - 1/4
f a;'v) f a;””w)( f (ql(s)+qz<s>)ds) dudv = . (2.6)

Then, there is lim,_,, z(t) = 0.

Lemma 2.7 (See [24]). Assume that 7 is a solution of (E,) which satisfies (C,) in Lemma 2.4.
Furthermore,

00 00 00 b 1/4
f ai' ) f a?“(u)( f f <q1<s,f>+q~z<s,§>>d§ds) dudy = oo, 27

Then, there is lim,_,, z(t) = 0.
3. Oscillation results for (E))

In this section, we will establish several oscillation criteria for (E;). The following notations for
convenience and for shortening the equations:

P() = min{q(?), q1(t — 71), q:(t + T2)},
P>(1) = min{g (1), g2(t — 71), q2(t + 72)},

T %
P(1) = Pi(1) + Po(1), B(t) = f -

fo a(s)

ds.

Let So = {(t,s) :a < s <t <400}, S ={(t,5) : a < s <t < +oo} the continuous function H(t, s),
H : S — R belongs to the class function R

(i) H(t,t) =0fort >ty and H(zt,s) > O for (¢, 5) € Sy,

(i1) % <0, (¢, s) € Sy and some locally integrable function A(z, s) such that

m'(s) _ h(t, $)(H(t, $) 71
m(s) m(s)

0
—aH(t, s)— H(t,s) for all (z, s) € Sy.

Theorem 3.1. Let (1.1) hold and oy > 7. If there exists an m(t) € C'([ty, o), R") such that (2.6) and

. L P(s) 1+ +u(hit, (s =o', _
P H ) f [H(” IMOFE T A (m(s)m[zo, s— cn]) ]ds - G-b

then every solution y(t) of (E,) is either oscillatory or tends to O.

Proof. Suppose that (E;) has a nonoscillatory solution y. Without loss of generality, we may take
y() >0,y —11) > 0,y(t+12)>0,y(t—-01)>0and y(t + o) >0 fort > t; > ;. Since y(¢) > 0 for
all ¢ > 11, in view of (E;), we have

LY%(1) = —qi(0y'(t = 1) = a(0)y'(t + 01) < 0. (3.2)
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Assumption of (1.1), by Lemma 2.4 there exists two cases (C;) and (C»). If (C,) holds, then by Lemma
2.6, lim,_,, z(t) = 0. If (C) holds.

L¥7(0) + g ()Y (t = o)) + ()Y (¢ + o)
L8 2(6) + plqi(t = )Yt = 71 — o) + priga(t — 1)Y= 1 + )
HOLYZ(t) + 15 q1(t + 1Yt + T2 — 01) + gt + )Y+ T2 + 0p) = (3.3)

Furthermore, from Lemma 2.1, we get

GOyt — o)) + piqi(t =Tyt =11 = 0y)

gt + )Yt + Ty — o)) >

— 7'(t — 0y). (3.4)
Similarly, we get

@OVt + 1) + 5ot — 1)Y= 11 + 0y)

G+ T+ Ty 4 o) 2 32( )+ o). (3.5)
Substituting (3.4), (3.5) into (3.3), we have
55l L L[‘” t P . LelOM t <0 3.6
20 + it L, 20) + 48 LE20) + 57 20— o) + Sy 2+ o) <0, (3.6)
Using the fact of L!!z(f) > 0, we obtain
P(1)
L¥%(t) + pf L) 20 + pg LW2(0) + ey -0y <0. (3.7)
Define
JIE
2(?)
1) = m(t 3.8
wilt) = ()A(-(m (3.8)
We obtain w;(¢) > 0, then
LB7(7) L™z(7) LBlz(0)Z (1 — oy)
() = m' () ———— f)—————— — Am(t ) 3.9
wi(1) m()zﬂ(t_o_l) m()zﬁ(t_o_l) m(r) (o) (3.9)

2l
By Lemma (2.5), one gets 7/(t — o) > #_ff])m [to,t — o1] L'*7(#). Therefore

) L LB L¥z(5) ; (O [t, 1 — o ILPz(0)Z (t — o)
WO <m0 o= s 4 mD) e s = Ami) TG o o) (3.10)
Using (3.8) in (3.10), we obtain
(M) L¥z(r) Wi(0) T [t t — o]
M= =g O S S T o = o) ©-11)
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Next, define

= ms L[_3T]1z(t) 312
wa(t) = m(o) 7 (3.12)
We obtain w, () > 0, then
, o L) LY 2(1) L 202 (t = o)
wall) = m'(O) o=+ mD) e s = Am()— (3.13)
By Lemma (2.5), one gets 7' (t — o) > lfl/z:::ll))m [to, t — 0] L[_ZT]1 z(t) and using (3.12) in (3.13), we have
() LE 2ty (na(@0) T mlte = o]
WO = T OO ey T o e o G
Finally, define
LPz(1)
ws(t) = m(t)z/l(t o) (3.15)
We obtain ws(7) > 0, then
N 2 () Lz(1) LYz(0Z (1 — o)
Wa(D) = m'(O) P s b ml) P s = Am() = (3.16)
By Lemma 2.5, one gets 7'(t — 07y) > %nl [to,t — 0] L%]z(t) and using (3.15) in (3.16), we get
o (@) LEz(0) (w3(0) T mi[to, 1 — 1]
0= T OO ey T o i = G
From (3.8), (3.10) and (3.15), we have
, , , L¥z(0) + p{ L 2(0) + i L'(0)
wi(B) + wiwh(t) + awi(t) < m(t)[ ;A(l cs 2 ]
(' (1)) Wi ()T i1, 1 — 1]
+[ ) O T o Ran— o) ]
J @) @) Tl = o]
’ 1[ n@ "0 T ) Pay — o) ]
J @) @) T mlto,t — o]
# 2[ 0 T ) Pan — o) ] G-18)
Using (3.7) in (3.18), we have
, , , P(t)  [(m'(0)). Wi(0) T milto, 1 — 1]
Wi () + uiwh(@) + awi(t) < —m(1) i + [ oo wi(t) — A4 (;(t))l//l;l((; - 0_1)1 ]
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o (m(1) "y (t — ory)

ol D (w3()) T milty, t — 1]
o Ty ™ (m(D) ar(t = o)

+ﬂf[(m’<r)>+w (1) — 2 (2O Tl 1 = 0'1]]

3.19)
that is,

(t)% < WD) = pwh (D) — pywi(0) + o m(( )))+ 1(0)
my[to, 1 — 0r1]

oy ayi = o O

A (@) _ mlto, 1 — 071] 1
i 1[ 2O~ A g = oy ) ]

(m )+ milto, t — oq] 241
- )| 3.20
i 2[ O oy iaa— oy ] G20
Multiply H(t, s) and integrate (3.20) from #; to ¢, one can get that

f H(t, s)m(s) f H(t, s)w'(s)ds —,ulf H(t, s)wy(s)ds

. f H(t, s)w)(s)ds + f H(, )(’"(()))+ (s) ds
Ami[t, s — o1] :
f H(t ) o () ds

o)
(m'(s))+ Am[ty, s — 071]
+1 f H(t,s) (s) wa(s)ds — f H(t, s )( (s)l)l/oﬁal( _0_1)(w (s)) Tds

(m’ ()4 Ami[ty, s — o1 o}
fH(l‘ s) (s) ws(s)ds — ,uzf H(t,s )(m(s))l//lal(s—0'1)(W3(S)) Tds. (3.21)

Thus, we obtain

fH(t s)m(s)—ds < H(t,t5)wi(t3) + p H(t, 3)wa(t3) + ps H(t, 13)ws(13)

t

N t3[ (%H(t s) — H(z, S)m(S)]Wl(S)ds

m(s)

Amy [to, =011 4l
—LH(I, ) Gy Mooy W1(8)) T ds

- ft;[ mH(t s) — H(z, s)m(s)]wz(s)ds

m(s)

A Am [to,5—-01] el
i [T H(t, ) B (s () T ds

—115 ft[ ayH(t s) — H(t, s)':;((s))]m(s)ds

1! Ary[tg,s—01] A+l
_#2 Jt; H(t’ S) (m(s))l//la|(s—0'1)(W3(S)) 4 dS. (322)
AIMS Mathematics

Volume 5, Issue 4, 3851-3874.



3858

Then
’ P(s) ) )
f H(t, S)M(S)Fds < H(t, t3)wi(t3) + ui H(t, t3)wa(t3) + p5 H(t, t3)ws(3)
3
t A
|h(z, $)|(H(2, 5)) Ami[ty, s — o] a1
- H L, T \d
+‘£[ m(s) )= S)(m(s))””al(s - 01)(W1(S)) ] '
t A
A |h(z, $)|(H(2, 5)) 71 Ami[ty, s — 0] a1
— H(t d
o ‘f’;[ m(s) W) = ) (m(s)V1a, (s - 0'1)(W2(S)) L
| Ve, ICH S))ﬁl Amylt, s — 0] a1
+ Af|:| 2 > wals —H t,s ) wals & ds. 323
M f m(s) 3( ) ( )(m(s))l//lal(s_o_l)( 3( )) ( )
A
Setting Y = W, X = % and u = wi(t) for i = 1,2, 3. By using the Lemma 2.3, we

conclude that

o P(s)  1+ut+ i (1, s)lay(s — o) ) ; )
H, 1‘3)L [H(t’ I T~y e (m(s)m[to,s—m]) ]ds = Wilis) - iwalis) + pawss)

(3.24)
which contradicts condition (3.20). O

Theorem 3.2. Let (1.1) hold and T, > o. If there exists an m(t) € C'([ty, 00), R*) such that (2.6) and

. 1 f P(s) 1+pl+pd (I, Dla(s—)\'],
fim sup == f, [H(t’ IS TT Ty e (m(s)nl[to, 5 71]) ]ds = ©% (3.25)

then every solution y(t) of (E)) is either oscillatory or tends to 0.

Proof. Suppose that (E;) has a nonoscillatory solution y. Without loss of generality, we may take
y(@) > 0,y(t—11) > 0, y(t+72) >0, y(t—0) >0and y(t+0;) > 0fort > #; > t9. Assumption of (1.1),
by Lemma 2.4 there exists two cases (C;) and (C3). If (C,) holds, then by Lemma 2.6, lim,_,, z(¢) = 0.
We only consider (C), by using the fact that z’(#) > 0 and 7; > oy, we obtain that Using the fact of
LMz(#) > 0, we obtain

PO

4 174 A74
L¥2(0) + pi L 20 + g LW 2() + o £ =) <0, (3.26)
. . LB2(1) L5 =) JS0)
Next, we categorize the functions as wy () = m(t)m, wy(t) = m(t)zl(t_m and ws(?) = m(t)zﬂ(t_m
respectively. The rest of the proof is similar to that of Theorem 3.1, therefore, it is omitted. O

Theorem 3.3. Let (1.2) hold and oy > 1. If there exists an m(t) € C'([ty, ), R") such that (2.6),

[P ()N as - V]
j; m(s) 3 (1+y1+y2)((ﬂ+1)) (m(s)m[to’s_m]) ds = oo, (3.27)

and

J; m[”i(swz)@( )

3/1_1 5] al(u)

AIMS Mathematics Volume 5, Issue 4, 3851-3874.
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1+ (] % 4
_( i ) (1 + pax(s) + prax(s + 72 + 01) ds = oo, (3.28)

1
t+a ay " ()mh(s + 1)
where (m' (1)), = max{0,m'(¢)}, n.(t) = f:m agw(s)ds, then every solution y(t) of (E)) is either
oscillatory or tends to 0.

Proof. Suppose that (E;) has a nonoscillatory solution y. Without loss of generality, we may take
y@) >0, yt—11) >0,y +71)>0,y(t—0)>0and y(t + 01) > 0fort > t; > ty. Since y(¢) > 0
for all # > ;. Assumption of (1.2), by Lemma 2.4 there exists three cases (C;), (C,) and (C3). If case
(C1) and (C3) holds, using the similar proof of ( [24], Theorem 2.1) by using Lemma 2.1, we get the
conclusion of Theorem 3.3.

If case (C3) holds, 7/(t — o) < 0 for ¢ > ¢#,. The facts that z/(#) < 0, c + d > 0 and (3.6), we obtain

P(1)
D20 + iy L5 2(0) + 413 L 2(0) + 335 20+ o) 0. (3.29)
Define
LBz(1)
L) = . 3.30
O T o r o) 530
We obtain w,(t) < O for ¢ > t,. Noting that LP'z(¢) is decreasing, we obtain
A A
ax ()| LP2(5)|" < @) LP2(0)] (3.31)
for s > t > t,. Dividing (3.31) by a»(s) and integrating from ¢t + oy to [ (I > t), we get
I
a1 (D (D) < ay(t + o) (¢ + o) + ay ()| L?2(1)| f a,'"(s)ds.
1+0
letting [ — oo, we get
ay (0| L 2(0)]
- (1), 3.32
- al(t+0'1)z’(t+0'1)7r ® ( )
for t > t,. From (3.30), we have
—1 < w,(Hr'(r) <0. (3.33)
By (3.2) we have a;(t + 01)7'(t + 01) < a,(t)Z'(¢). Differentiating (3.30) gives,
(LBz(p)y LP7(1) 41
(1) < — Aay(t 3.34
W) = (ar(t+ o)z (t + o))t o )[al(f+0'1)Z'(t+0'1)] (-39
Using (3.30) in (3.34), we have
1
L¥2%(1) wy (D)
wi(t) < - . (3.35
® (a1t + o)zt + o)) a;//l(t) )

AIMS Mathematics Volume 5, Issue 4, 3851-3874.
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Again, we define

LB 21
(a\(t + o)z (t+ o)t

W.(f) =
We obtain w,..(f) < 0 and w,.(t) > w.(¢) for r > t,. By (3.33), we obtain
—1 < w,.(Hr'(1) <0.

By (3.2) we have a(t + 01)7'(t + 01) < a,(t — 71)Z'(t — 71). Differentiating (3.36) gives,

s (L5 20y . L2 2(r) .
‘%ﬂLWmU+mkﬂ+0mﬂ_amﬂm0+mkﬂ+0ﬂ

Using (3.36) in (3.38), we have

1
< LY =) R0
T (ot o))t a )

Finally, we define a function

3
LEz(r)
(ait+T+o0)DZE+10+ 0t

Waw(t) =

We obtain w...(f) < 0 and w.,..(t) = w.(t + 1) for t > ,. By (3.33), we obtain

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

By (3.2) we have a;(t + 7, + 071)Z/(t + 7, + 01) < ay(t + 12)Z'(¢ + 7). Differentiating (3.40) gives,

, (L z(0)y
Weeell) < (a1t + o) (t + o)

Using (3.40) in (3.42), we have

Lg]z(t) ]/l+1

— Aay(t
a2( )[Cl](l+T2 +0'1)Z'(I+T2 +0'])

1
I+3

LY z(t) Warl (1)

W***(t) < (Cll(t + 0'1)1'([ + 0'1))/1 - a;/ﬁ(t) .

From (3.35), (3.39), (3.43) and (3.29) which implies

P(1) 2+ o)

31 (ay(t + 0 )Z (1 + o)

1+1 1+4 1+1
W, A(l.) _ A W**A(l) _ A W***A(t)

H 7
a0 gl T 4l

WD) + W (0) + oW, (1) <

-A

In case (C5), (a1(1)Z'(¢))’ < 0 we seen that

1

al(s)ds'

(1) 2 al(t)Z'(t)f

AIMS Mathematics Volume 5, Issue 4,
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Using (3.45) in (3.44), we get

. (3.46)

1+1 1+1 1+1
Py, (77 ds v owe (@) wa (D) Wi (1)
Wi (1) + Wl (0 + oWl () < == - —u Y
1 ? 310, al(s)) ad’ T dle) al (1)

Multiplying 7*(t + 7,) and integrating from ;3 (t; > t,) to ¢, yields
(1 + T)W () = Tt + To)Wa(t3) + (1 + ) 1 wan(1)
— (13 + T2) 1} War(13) + TL(E + T2) 1 Wana (1) = T4 (13 + T2) fy W (13)
1 ’[”i-%s F )W) T+ T (m(s)
f3 aé/ﬂ(s +73) aé/ﬂ(s)

A t[ﬂf_l(SWLTz)(—W**(S)) (s + T2)(—Was(s5)) H1 ]
Y f _

ds

ds

12 12
az/ (s +12) 612/ (s)

A t[ﬂf_l(s + TZ)(_W***(S)) ﬂ'il(s + TZ)(_W***(S))I-F% ]
Al f _

ds
/1 1/2
az/ (s+T12) az/ (s)

! P(S) S+01 dl/l 1
1
+ft; (s + 7'2)—31_1 ( . al(u)) ds < 0. (3.47)

Applying Lemma 2.3, we conclude that

f’[ﬂi(sﬂz)f’(s) T du )a_( A )‘” (L+ phar(s) + (s + o+ )|
5]

341 a,(u) 1+2

5]

1+1
a, " ($)mi(s + 12)

< =7t + TW ) + il + TIW () + T+ TIWen (0] (3.48)

Using the fact of 7(¢ + 15) < 7*(¢) in (3.33), (3.37), (3.41) and (3.48) imply that
! P(S) S+071 du 1
(s + 1) —
\ft;|: ? 3/1_1( t al(u))
( A AT A+ pay(s) + pras(s + T2 + o)
IV /l)

ds < 1+p!+ 5. (3.49)

a;r%(s)ﬂf(s +75)

a contradiction to (3.28). |
Finally, we establish new comparison theorems for (E) under the case when (1.2) holds.

Theorem 3.4. Let (1.2), (2.6) hold and oy > 1y, 01 > T3. If the first-order differential inequality

P ANt -
WD+ Sﬁ) 1 fflf fl)gw(r —o+T) <0 (3.50)

for t > ty, has no positive nonincreasing solution and the first-order differential inequality

Pz([) B/l(t + 0'1) 1//
KL R TAR T,

(1) — (t—-714+01)20 (3.51)

for t > ty, has no positive nondecreasing solution. Then Eq. (E1) oscillatory.
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Proof. Suppose that (E;) has a nonoscillatory solution y. Without loss of generality, we may take
y(@&)>0,yt—11)>0,y(t+712) >0, y(t—01)>0and y(t+ o0y) >0 fort >t >ty Since y(¢) > 0 for
all # > #;. Assumption of (1.2), by Lemma 2.4, there exists three cases (Cy), (C;) and (C3). If case (C,)
hold, the proof is follows from Lemma 2.6.

If case (C;) holds, we have L'?'z(¢) > 0, from (3.6), we obtain

1()/1

3L Z(t—oy) L0 (3.52)

L¥%(t) + pf L) 2(0) + pg LW2(0) + —=-

-7

By Lemma 2.5, one gets z(t — 01) > (L") z(#))'/*A(t — o)) and using in (3.52), we have

(LP2(0) + g L 20) + 3 L2(0)) + 3;( 1) LB 2nAY - o)) < 0. (3.53)

Now, set
w(t) = LB2(0) + it L) 2(t) + i LPz(0).
Then y(f) > 0 and the fact that LB'z(¢) is nonincreasing, we have

w() < L8 2)(1+ pf + ). (3.54)

Using (3.54) and (3.53), we see that ¥(¢) is a nonincreasing positive solution of the first order
differential inequality

Pi(t) ANt — o)

O+ ST A+M¢(t—m+ﬁ)<0 (3.55)

which is contradiction to (3.50).
If case (C3) holds, we have L?'z(r) < 0, from (3.6), we obtain

2()/1

37 <o) <0, (3.56)

L¥%(t) + pf L) 2(0) + pg L2(0) + =
Since LP'z(¢) is nondecreasing . Then we get
LP%(s) < LPl2(r)  forall s>t>1 > 1.
Integrating above inequality from ¢ to /, we get

La) (L2(r)
a,"(s)

Y
a (7' (1) + (L[S]Z(s))w f 1is(s)

A

a(DZ() < al(t)Z’(t)+f

IA

Letting [ — oo, we get

ds

—a,(D7(t) < (Lmz(s))w f )
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Again integrating, we get

> du
th T
28) > —(LP (1) f L2 W s = ~(LP7(0) 1 B(r). (3.57)
to al(s)
From 3.57, one gets z(t + 01) > —(L?l]z(t))l“B(t + 071) and using in (3.56), we have
r Pyt
(L2(e) + g L) () + i3 L2(0)) - 3j—(1) LE'Z2(n)BY(t + o) < 0. (3.58)

Now, set
w(t) = L3200 + it L2 2(t) + i LP2(0).

Then y(f) > 0, ¥’(t) > 0 and the fact that LP®'z(¢) is nondecreasing, we have

() < LEz0)(1 + pf + 113). (3.59)
Using (3.59) and (3.58), we see that ¥(¢) is a nonincreasing positive solution of the first order
differential inequality
Py(1) BM(t +01) ’
KL R TAR T

which is contradiction to (3.51). O

W) - (t—Ty+0)>0 (3.60)

Corollary 3.5. Let (1.2), (2.6) hold and oy > 11, 0y > 1. If

! 3/1—1
lim inf f Py(s)A'(s — o) ds > —————— (3.61)
N e(l+uj +u5)
and
t 3/1—1
lim ll'lff Pz(S)B/l(S + O'l)ds > — 1 (362)
t—00 =Ty 40y e(l + [ +,le)

hold, then Eq. (E)) oscillatory.
Proof. The proof follows from Theorem 3.4 and ( [10], Theorem 2.1.1), and the details are omitted. O

Example 3.6. Consider the third order differential equation

-2 VYV e s 3% 5
((([p0+ o2+ e n] | )+ 256202+ 35 ¥ e 2 = 0069

_ 3 /n\3/2
Compared with (E,), we can see that a\(t) = a,(t) = 1, p1(t) = %, pa(t) = 63—1, q:(t) = %(%) ,

3 /n\3/2
q2(t) = %(%) ,A=3/2, 71 =2, 1= 1 and oy = 2. By taking m(t) = 1, H(t, s) = (t — 5)*, we obtain
h(t,s) = B3s—1t)(t—s)"'°. It is easy to verify that all conditions of Theorem 3.1 are satisfied. Therefore,
all the solutions of (3.63) is either oscillates or tends to 0 and y(t) = e™" is a such solution of (3.63).

Example 3.7. Consider the third order differential equation
[P + kiy(t = 1) + koy(t + 1)) | + kst = o) + hkayt + ) =0, 1> 1. (3.64)

Compared with (E,), we can see that a,(t) = 1, a(t) = 12, p1(t) = ki, pr(t) = ko, q1(t) = kst, q>(t) = kg,
A = 1andky, ko, k3, ky are nonnegative constants. It is easy to verify that all conditions of Corollary
3.5 are satisfied and hence all solutions of equation (3.64) are oscillatory.
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4. Oscillation results for (E»)

In this section, we will establish several oscillation criteria for (E,). For convenience, we define,

01(t,8€) = min{g,(t,£), Gt — 71,8), §1(t + 72,6},
O5(t,&) = min{gy (2, &), Go(t — 71, 8), Go(t + 12,6},
0,8 = 01(1,6) + Os(t,8).

Theorem 4.1. Let (1.1) holds and ¢ +d > 0, b > 7,. If there exists an m(t) € C'([ty, 00), R*) such that

2.7) and
d
. s Jo Q&) dE 1+l + ik (e, lan(s - D',
fim sup H(t,@)jt;[H(t’ R R P (m(s)m[to,s—d]) ]ds_oo’ “.1

then every solution y(t) of (E,) is either oscillatory or tends to 0.

Proof. Suppose that (E,) has a nonoscillatory solution y. Without loss of generality, we may take
y@) >0, y(t—11)>0,y(t+71)>0,yt—-&) >0and y(t + &) > 0fort > 1, >ty and € € [c,d]. Since
y(t) > 0 for all # > ¢, in view of (E>), we have

d d
LM7(1) = —f q1(t, Y1 — £) dé ~ f go(t, E)y'(1 + £) d€ < 0. (4.2)

Assumption of (1.1), by Lemma 2.4 there exists two cases (C;) and (C»). If (C,) holds, then by Lemma
2.7, lim,_, z(t) = 0. If (Cy) holds.

L¥z(0) + fd Gi(6,E)Y' (1 — &) de + f a6y + £ d
+ LY 2(0) + g f Gi(t =11, EYNt — 71 — £) dE
+uf f d 4ot = 71, )Y (1 — T + &) dé + 3 L1 (1)
+115 f T Y+ -

d
+ﬂ§f h(t+ 12, Oy (1 + 12 + &) dé = 0. (4.3)
Furthermore, from Lemma 2.1, we have

NEY (= E + i it =11, E) Y (1 — 71 = &)

T )] (4.4)

Similarly, we get
Dt E Yt +E) + ph ot — 71, E) Yt — 71 + &)
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Qz( f) 2

i G+ T2, O Y+ T+ E) > (1 +§). 4.5)
Substituting (4.4), (4.5) into (4.3), we have
d
,E)d.
L¥2(0) + py L] 2(0) + pg LEz(0) + M Y- &)+ % i+ <0, (4.6)
Using the fact of L!'z(f) > 0 and ¢ + d > 0, we have
L2(0) + it L 20) + pd L1200 + %& At —d) <0. @.7)
Define a function
B LBlz(1)
wilt) =m0 <= (4.8)
We obtain w(¢) > 0, then
N LF () L) L2071 = d)
Wl(l) =m (t)z/l(t —d) + m(t)z/l([ —d - ﬂm(t)m 4.9)
By Lemma (2.5), one gets 7/(t — d) > az(t (Z)m [to,t — d] L'™'z(¢). Therefore
, BN L¥2(r) a;%‘l (D[t 1 — d)LP2(0)Z (1 — d)
wi(t) <m (t)zﬂ(t ~0 + m(t) ———— —d) — Am(t) G dai—d) . (4.10)
Using (4.8) in (4.10), we have
(m' (1)), L%ty @) T mlto,t = d]
B e o e A @1h
Next, define
[3]
wa(t) = m(o) ET‘Z( )) 4.12)
We obtain w,(¢) > 0, then
[3] [4] [3] ’
, ,2(0) L7 z(1) L= z(0)Z (1 — d)
WA(D) = () () 2 = ()= (4.13)
By Lemma (2.5), one gets 7'(t — d) > aa ((; ;)1) 1o, t — d] Lm ,2(#) and using (4.12) in (4.13), we have
Lo (D), LYz )T mlto.t = d]
20 =y O MO T oy P —d) (19
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Finally, define

— (e L220 4.15
ws(t) = m(n) 2 (4.15)
We obtain w;(7) > 0, then
N 25 () L0 L2207 (t - d)
W3(l) =m (I)Z/l([ — d) + m(t)z/l(t — d) - /lm(l')m (416)
aéM(H‘rz)

By Lemma 2.5, one gets 7'(t — d) > oo (20,1 — d] L%]z(t) and using (4.15) in (4.16), we have

w0 < () + ) Z’;?f(z) - (W(jg()t)))uf;f?;f l “.17)
From (4.8), (4.10) and (4.15), we have
w0+ i i) < o L “%]Z(t)]
e e
s
TR o S
Using (4.7) in (4.18), we have
Wi () + () + pawi() - < —m(t)w
e e
o G
& Rt T S
that is,
AL O < i) - st~ i + D

T [t()a r— d] A+l
ooy haya—a '
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( ,( ))+ m[to, t 1;1
[ w0 Gy art - @wm»:
(' (1) milto, £ - d] i
+2[m0 O~ A oy e -a } “20
Multiply both sides H(t, s) and integrate (4.51) from #; to ¢, one can get that
fH(t s)m(s )f Q?’(A :f) i s < —f H(t, s)W|(s)ds —ui | H(t, s)wh(s)ds
! f H(t, s)W,(s)ds + f H(, )(m(( )))+ (s)ds
Ami[ty, s — d] 1
f3 H(t, s )(m(s))l/ﬂa G- )(WI(S)) ds
’ (m' () Ay [to, s — d] 2
+,uf‘fz3 H(t,s) (s) wz(s)ds—,uf‘ft3 H(t, S)(m(s)l)l/(la( )(wz(s)) Tds
' (m'(5))+ f Ay (1o, s — d]
ﬂéLfmJ)mm m@ﬂvaEH@>m“9&” fm@»‘w 4.21)

Thus, we obtain

(s, &) dé
fH(f s)m (S)f 3T dS <H(t,t)w1(t3) + p{H(t, t3)wa(t3) + ps H(t, 3)ws(83)

T 8 m’(s)
_f[—a—H(t s) — H(t, s) (s)]wl(s)ds

Amy[to, s — d] a1
~[H0)<uwwm ") Tds
' (s)

,U1f[_ﬁH(t s)— H(,s) m(s)

Amilty, s — d] dsl
—ulj‘Ha ) gy =g e s

m’(s)
m(s)

o Ami[to, s — d] 1
%LH“WmmMMwwWM”d& (4.2

]wz(s)ds

,uzf[—ﬁH(t s)— H(t,s) ]w3(s)ds

Then

Q( &) dé
f H(t, sym(s)~——17— 301 S —ds < H(t, t5)wi(t3) + uy H(t, t3)wa(t3) + pa H(t, 13)w3(23)

+f[|h(t,S)|(H(t,S))M Ami[t, s — d] wi () |ds

m) B e — @)
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i A
2 Az, )|(H(2, s)) @ Ary[to, s — d] a5
— H(t, T \d
+y j;[ (s) wa(s) — H(z, s) (o) ar(s —d) (wa(s)) * |ds
/ A
A [, 9ICH(2, )% Am[tg, s — d] a5
—H(t T |ds. 4.23
4 f [ )~ HO S T () [ds. (423)
Setting Y = W, X = %m and u = w;(r) for i = 1,2,3. By using the Lemma 2.3, we
conclude that
Q(s,)dE 1+ pi +p3 (I, ~d)\'
H(Z NN i+ (e (s = DY
H(t 13) 34-1 A+ DY \m(s)m[to, s — d]
<wi(z) + ,Ufwz(f?)) + #§W3(l‘3) (4.24)
which contradicts condition (4.51). O

Theorem 4.2. Let (1.1) holds and ¢ +d > 0, —c > 1. If there exists an m(t) € C'([ty, o), R*) such that

(2.7) and
. [0t &)de 1+l vl s+ o\,
fim sup H(, 3) [H(t )T A+ D (m(S)m [ro,s+c]) ]ds“"” (425)

then every solution y(t) of (E,) is either oscillatory or tends to 0.

Proof. Suppose that (E,) has a nonoscillatory solution y. Without loss of generality, we may take
yi) > 0, yt—11) >0, yt+71) >0, y(t—-& >0and y(t+ &) > Ofort >t > tpand € € [c,d].
Assumption of (1.1), by Lemma 2.4 there exists two cases (C;) and (C,). If (C5) holds, then by Lemma
2.7, lim,, z(#) = 0. We only consider (C;), by using the fact that z'(r) > 0 and —c > 7, we obtain that
Using the fact of L!z(f) > 0, we obtain

f 0(t,6) d¢
L¥2(0) + g LY 2(0) + i LB2(0) + My (t+c)<0. (4.26)
l3J
Next, we categorize the functions as wy(f) = m(t)zﬁ([i(g, wa(t) = m(t) ;(Tll+()) and ws(7) = (t)zj(zli(g
respectively. The rest of the proof is similar to that of Theorem 4.1, therefore, it is omitted.
]

Theorem 4.3. Let (1.2) holds and b > t, (or b < ;). If there exists an m(t) € C'([ty, ), R*) such that

(2.7),
= ["0s.&)dé CoN@ONT as—d) !
L [m(s) 31 _(1+”‘+“2)( (/l+1)) (m(s)m[to,s—d])

ds = oo, 4.27)

and

. [fosode, pra qu
jt; [ﬂ:(S+T2)—31_1 (jt; al(u))
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_( A )1” (1 + uDax(s) + psax(s + 7, + d) s =

1
t+d @y (5)B(s +72)

where () = ft : a, Y4(5)ds, then every solution y(t) of (E,) is either oscillatory or tends to 0.

(4.28)

Proof. Suppose that (E;) has a nonoscillatory solution y. Without loss of generality, we may take
yi) >0, y(t—11)>0,y(t+71) >0,y —-&) >0and y(t + &) > 0fort > t; >ty and € € [c,d]. Since
y(t) > 0 forall # > #;. Assumption of (1.2), by Lemma 2.4 there exists three cases (C), (C») and (C3).
If case (C;) and (C;) holds, using the similar proof of ( [24], Theorem 2.3) by using Lemma 2.1, we

get the conclusion of Theorem 4.3

If case (C3) holds, 7/(t — d) < O for ¢ > ;. The facts that z’(r) < 0, ¢ + d > 0 and (4.6), we obtain

d
L&) d
L¥2(0) + pi L2 2(0) + i LA2(0) + % Ar+d)<0.
Define
~ LP%(r)
) = (a1t +d)z' (1 + d)*

We obtain w, () < 0 for ¢t > t,. Noting that LP'z(¢) is decreasing, we obtain

ax(9)[L7)]" < axd[L?z0]'

for s > t > t,. Dividing (4.31) by a,(s) and integrating from ¢ + d to I(l > 1), we get

l
ai(DZ (D) < ay(t + A2 (t + d) + a) (O] L?z(0)| f a,"(s)ds.

t+d

letting [ — oo, we get

&, (0| P 2(1)
< T
T a(t+d)Z(t+d)

M, t=2t.
From (4.30), we have
-1 <w,()B(1) <0.

By (4.2) we have a;(t + d)7'(t + d) < a;()Z'(¢). Differentiating (4.30) gives,

, LBz LP17(1) A+1
W) < e ) MZ(’)[al(r +d)7 (i + d)]
Using (4.30) in (4.34), we have
o < L0 W

(@@+dz+d) " g

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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Next, we define

LB 2()

-7

(ai(t +d)z (t + d))*

Wes(1) =
We obtain w.,.(f) < 0 and w..(t) > w.(¢) for t > t,. By (4.33), we obtain
—1 < w..()BY 1) < 0.

By (3.2) we have a,(t + d)7'(t + d) < a,(t — 71)7'(t — 71). Differentiating (4.36) gives,

, (LS 2(0) L2 ) e
W, (0) < GGt dard) —Aaz(t)[al(Hd)Z,(Hd)]
Using (4.36) in (4.38), we have
W () < LY z(t) w0

(@t+dyzt+d)t " g @)
Finally, We define a function

L2z
(ait+1+ 7@ +1+d))Y

Waw(t) =

We obtain w,..(f) < 0 and w,..(t) = w.(t + ;) for t > t,. By (4.33), we obtain

—1 < wo (Bt +12) <0.

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

By (4.2) we have a;(t + 7, + d)7'(t + 7, + d) < a,(t + 12)7'(¢ + 7). Differentiating (4.40) gives,

(LY ()Y
+d)7(t+d)Y

Using (4.40) in (4.42), we have

L[é]z(t) ]/1+1

’1“2“)[611(; Tt dGr Tt d)

W, (1) < @

Ve L0 wilio
T T @+ D+ D) @

From (4.35), (4.39), (4.43) and (4.29) which implies

[fowerde  2¢+a
3 (gt + D)7t + d))

1+1 1+1 1+1
W* A(t) _ A W**A(l) _ A W***A(t)

AT — 1
a0 gl T alo

WD) + W (1) + oW, (1) <
-A

In case (C5), (a1(1)Z'(¢))’ < 0 we seen that

' d
(1) = a ()7 (©) f ” (Ss).
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Using (4.45) in (4.44), we get

W(0) + W () + iwl, (1) <

_fcd o, &) d¢ ( f”d ds )ﬂ_

31-1 a(s)

1+1 1+1
Wi 1) W (D)

o e

Multiplying 84(t + 1) and integrating from #; (3 > 1) to t, yields

—uja

Bt + Ta)wa(t) — Bt + )W (t3) + Bt + T2) 1] W
—BNts + 1) } Wan(t3) + Bt + T2) 3 Was(£) = Btz + T2) 13 W (

f[ﬁﬂ s+ 1)(wa(s) B+ 1)(= —w.(s)*7 ]
13 (S +1,) 1M(S)

A ft[ﬁﬂ_l(s + T)(=wa(5)) s + )= —wa(s)) ]

1 s a;/’l(s + 1) I/A(s) _

_/llJ/l ft[ﬁ/l_l(s + TZ)(_W***(S)) _ ﬁﬂ(s + Tz)( ‘/1}**>|<(_§~))1"'/1l ]
2 " 1//1(S + 1) l/ﬂ(s)

wi )
a1y

(?)
f3)

ds
ds

ds

d s+d
L R

341 ai(u)

Applying Lemma 2.3, we conclude that

, [fos.ede, ot gy
f [ﬁﬂ(s et f )

_ ( Pl )1” (1 + u)ax(s) + psax(s + 15 + d) s
4 ay 1 (5) B(s + 1)

B+ TW.(0) + B + TIW(0) + 13BN + T (D)

Using the fact of Bt + 75) < () in (4.33), (4.37), (4.41) and (4.48) imply that

' f O(s,&)dé , [s+d du
A
ﬂﬁ G f )

~ ( A )H/l (1 + pax(s) + pjar(s + 7, + d)

1
I+ ay (5)BA(s + 1)

a contradiction to (4.28).

Example 4.4. Consider a third-order differential equation

1 n\ d 3 (™
(E(y(t)+(1/3)y(r—7r/4)+(2/3)y(r+7r/2)) ) + j; y(r—f)d§+§ fo y(t +&)dé =0,

ds <1+l +us.

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

AIMS Mathematics Volume 5, Issue 4, 3851-3874.



3872

Compared with (E,), we can see that c = 0, d = «, a1(t) = 1/2, ax,(t) = 1, pi(t) = % pa(t) = %
g1, &) =q.(t,6) =1, A=1, 7y =n/4 and T, = n/2. By taking m(t) = 1, we obtain

1 00 (oo} (oo}
—f f f 2rndsdudy = oo
2 14 % u

and we take H(t, s) = (t — s)* then h(t, s) = 3s — t)(t — 5)"° and 0 < u; + up < 1, we see that

ft[27r (t—s) - 1+ +M2((3s — 1)t —s)" 13 )A]ds o @sh)

8 S—T—1

lim su
t—00 P (t - t3)2

Since all the conditions of Theorem 4.1 hold, (4.50) is either oscillates or tends to O.
5. Conclusion

In this paper, we have used Riccati substitution techniques, integral averaging technique and some
new oscillation and asymptotic theorems for (E;) and (E,) under the conditions (1.1) and (1.2) have
been established. Additionally, we established new comparison theorem that permit to study properties
of (E;) regardless under the conditions (1.2). The results obtained indicated that it improved theorems
reported by Candan [24]. Similar results can be presented under the assumption that 4 < 1. In this
case, using Lemma 2.2, one has to simply replace 3*~! by 1 and proceed as above. In literature, very
few works has been paid in the research activities related to qualitative behavior of solutions of various
types of stochastic differential equations, see the recent works [1,3,13-15,19-21]. The results of this
paper could be extended to the stochastic differential equations with time delay in further research.
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