Mathematics
http://www.aimspress.com/journal/Math

Research article

Uniqueness and multiplicity of positive solutions for one-dimensional prescribed mean curvature equation in Minkowski space

Zhiqian $\mathrm{He}^{1, *}$ and Liangying Miao ${ }^{2}$

${ }^{1}$ Department of Basic Teaching and Research, Qinghai University, Xining 810016, P. R. China
${ }^{2}$ School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, P. R. China

* Correspondence: Email: zhiqianhe1987@163.com.

Abstract: In this paper, we study the uniqueness and multiplicity of positive solutions of onedimensional prescribed mean curvature equation

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}=\lambda f(u), \\
u(x)>0,-1<x<1 \\
u(-1)=u(1)=0
\end{array}\right.
$$

where λ is a positive parameter. The main tool is the fixed point index in cones.
Keywords: mean curvature equation; positive solutions; multiplicity; uniqueness; cone
Mathematics Subject Classification: 34B18, 34C23, 35J60

1. Introduction

In this paper, we are concerned with the uniqueness and multiplicity of positive solutions for the quasilinear two-point boundary value problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}=\lambda f(u), \tag{1.1}\\
u(x)>0, \quad-1<x<1, \\
u(-1)=u(1)=0
\end{array}\right.
$$

where $\lambda>0$ is a parameter, $f: \mathbb{R} \rightarrow[0, \infty)$. This is the one-dimensional version of the Dirichlet problem associated with the prescribed mean curvature equation in Minkowski space

$$
\begin{cases}-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right)=\lambda f(x, u) & \text { in } \Omega \tag{1.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

The study of spacelike submanifolds of codimension one in the flat Minkowski space \mathbb{L}^{N+1} with prescribed mean extrinsic curvature can lead to the type of problems (1.2), where

$$
\mathbb{L}^{N+1}:=\left\{(x, t): x \in \mathbb{R}^{N}, t \in \mathbb{R}\right\}
$$

endowed with the Lorentzian metric

$$
\sum_{i=1}^{N}\left(d x_{i}\right)^{2}-(d t)^{2}
$$

and (x, t) is the canonical coordinate in \mathbb{R}^{N+1} (see [1]). Problem (1.1) is also related to classical relativity [2], the Born-Infeld model in the theory of nonlinear electrodynamics [3,4] and cosmology [5,6].

In 1934, in order to combine Maxwell's equation with the quantum theory, Born [7] proposed a modified energy function

$$
L(a)=\frac{\sqrt{1+a^{2}\left(H^{2}-E^{2}\right)}-1}{a^{2}}
$$

where a is a constant of the dimensions r_{0}^{2} / e with $e=$ charge, $r_{0}=$ radius of the electron, H is the magnetic field and E is the electric field. Then, it is easy to verify that $\lim _{a \rightarrow 0} L(a)=L=\frac{1}{2}\left(H^{2}-E^{2}\right)$. Here L is the Lagrangian of Maxwell's equation. When $H=0$ and $a=1$, the Poisson equation of $L(a)$ is

$$
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^{2}}}\right)=\rho,
$$

where ρ denotes the charge density and $\nabla u=E$. This is closely related to the first equation of problem (1.2). See $[7,8]$ for more details.

The existence/ multiplicity of positive solutions for this kind of problems have been extensively studied by using the method of lower and upper solutions, variational methods, fixed point theorem in cones as well as the bifurcation theory, see [9-14] and the references therein.

Recently, the authors of [9] obtained some existence results for positive radial solutions of problem (1.2) without parameter λ. In another paper, they [10] established some nonexistence, existence and multiplicity results for positive radial solutions of problem (1.2) with $\lambda f(|x|, s)=\lambda \mu(|x|) s^{q}$, where $q>1, \mu:[0, \infty) \rightarrow \mathbb{R}$ is continuous, strictly positive on $(0, \infty)$. In [11], under some assumptions on f, the authors proved that problem (1.2) has infinitely many radial solutions. In [12], Coelho et al. discussed the existence of either one, or two, or three, or infinitely many positive solutions of the quasilinear two-point boundary value problem (1.1).

However, as far as we know, there are few works on the uniqueness of positive solutions of problem (1.1). Very recently, Zhang and Feng [13] discussed the exactness of positive solutions (1.1) under some special cases of f. For example, $f(u)=u^{p}(p>0), u^{p}+u^{q}(0<p<q \leq 1)$.

Let us briefly recall their main results.

Theorem A. Assume that $f(u)=u^{p}$ with $p<1$, then for any $\lambda>0$ (1.1) has exactly one positive solution.
Theorem B. Assume that $f(u)=u^{p}+u^{q}$ with $0<p<q \leq 1$, then for any $\lambda>0$ (1.1) has exactly one positive solution.

Motivated on these studies, we are interested in investigating a general class of f, and we point out $f(u)=u^{p}$ with $0<p<1, f(u)=u^{p}+u^{q}$ with $0<p<q \leq 1$ as the special case. In addition, we consider the case where f has n zeros and obtain the existences of arbitrarily many positive solutions of the problem (1.1).

Throughout this paper, we assume that
(H1): $f: \mathbb{R} \rightarrow[0, \infty)$ is continuous function, and f is not identical to zero.
If Ω is an open bounded subset in a Banach space E and $T: \bar{\Omega} \rightarrow E$ is compact, with $0 \notin(I-T)(\partial \Omega)$, then $i(T, \Omega, E)$ is the fixed point index of T on Ω with respect to E. For the definition and properties of the fixed point index we refer the reader to e.g., [15].

The rest of the paper is organized as follows. In section 2, we give some preliminary results. In section 3 , under some assumptions on f, we prove the uniqueness of positive solutions for problem (1.1). In section 4, we prove the existence of arbitrarily many positive solutions for problem (1.1).

2. Preliminaries

Below, let X be the Banach space $C[0,1]$ endowed with the norm $\|v\|=\sup _{t \in[0,1]}|v(t)|$. Let $P=\{v \in$ $X: v(t)$ is decreasing in $t, v(1)=0$, and $v(t) \geq\|v\|(1-t)$ for all $t \in[0,1]\}$, then P is a cone in X, and the corresponding open ball of center 0 and radius $r>0$ will be denoted by B_{r}.

By an argument similar to that of Lemma 2.4 of [14], we have the following
Lemma 2.1. Let (λ, u) be a positive solution of the problem (1.1) with $\|u\|=\rho_{1}$ and $\lambda>0$. Let $x_{0} \in(-1,1)$ be such that $u^{\prime}\left(x_{0}\right)=0$. Then
(i) $x_{0}=0$;
(ii) x_{0} is the unique point on which u attains its maximum;
(iii) $u^{\prime}(t)>0, t \in(-1,0)$ and $u^{\prime}(t)<0, t \in(0,1)$.

By a solution of problem (1.1), we understand that it is a function which belongs to $C^{1}[0,1]$ with $\left\|u^{\prime}\right\|<1$, such that $u^{\prime} / \sqrt{1-u^{\prime 2}}$ is differentiable and problem (1.1) is satisfied.

By Lemma 2.1, (λ, u) is a positive solution of (1.1) if and only if (λ, u) is a positive solution of the mixed boundary value problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}=\lambda f(u), \tag{2.1}\\
u^{\prime}(0)=0, u(1)=0
\end{array}\right.
$$

Now we treat positive classical solutions of (2.1). The following well-known result of the fixed point index is crucial in our arguments.
Lemma 2.2. [15-17] Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=K \cap B_{r}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T x \neq x$ for $x \in \partial K_{r}=\{x \in K:\|x\|=r\}$.
(i) If $\|T x\| \geq\|x\|$ for $x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=0$.
(ii) If $\|T x\| \leq\|x\|$ for $x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=1$.

Now we define a nonlinear operator T_{λ} on $P \cap B_{1}$ as follows:

$$
\left(T_{\lambda} u\right)(t)=\int_{t}^{1} \phi^{-1}\left(\int_{0}^{s} \lambda f(u(\tau)) d \tau\right) d s, \quad u \in P \cap B_{1}
$$

where $\phi(s)=s / \sqrt{1-s^{2}}$.
We point out that u is a positive solution of problem (2.1) if $u \in P \cap B_{1}$ is a fixed point of the nonlinear operator T_{λ}.

Next, we give an important Lemma which will be used later.
Lemma 2.3. Let $v \in X$ with $v(t) \geq 0$ for $t \in[0,1]$. If v concave on [0,1$]$, then

$$
v(t) \geq \min \{t, 1-t\}\|\nu\|, \quad t \in[0,1] .
$$

In particular, for any pair $0<\alpha<\beta<1$ we have

$$
\begin{equation*}
\min _{\alpha \leq \leq \leq \beta} v(t) \geq \min \{\alpha, 1-\beta\}\|v\| . \tag{2.2}
\end{equation*}
$$

Furthermore, if $v(0)=\|v\|$, then we have

$$
\begin{equation*}
v(t) \geq\|v\|(1-t) \text { for all } t \in[0,1] . \tag{2.3}
\end{equation*}
$$

Proof. It is an immediate consequence of the fact that u is concave down in $[0,1]$.
Lemma 2.4. $T_{\lambda}\left(P \cap B_{1}\right) \subset P$ and the map $T_{\lambda}: P \cap B_{\rho} \rightarrow P$ for all $\rho \in(0,1)$ is completely continuous. Proof. From the condition (H1) one can easily see that $T_{\lambda} v \in X$ with $T_{\lambda} v(1)=0$, and for $v \in P$, a simple computation shows that

$$
\left(T_{\lambda} v\right)^{\prime}(t)=-\lambda \phi^{-1}\left(\int_{0}^{s} f(u(\tau)) d \tau\right) d s
$$

So $T_{\lambda} v(t)$ is decreasing on $[0,1]$, which implies that

$$
T_{\lambda} v(t) \geq T_{\lambda} v(1)=0, \text { for } t \in[0,1]
$$

Moreover, it is easy to see that $\left(T_{\lambda} v\right)^{\prime}$ decreasing in $[0,1]$, then it follows from Lemma 2.3 that

$$
v(t) \geq\|v\|(1-t) \text { for all } t \in[0,1] .
$$

Therefore, we obtain that $T_{\lambda}\left(P \cap B_{1}\right) \subset P$. Moreover, the operator T_{λ} is compact on $P \cap \bar{B}_{\rho}$ is an immediate consequence of [9, Lemma 2].

Simple computations leads lead to the following lemma.
Lemma 2.5. Let $\phi(s):=s / \sqrt{1-s^{2}}$. Then $\phi^{-1}(s)=s / \sqrt{1+s^{2}}$ and

$$
\phi^{-1}\left(s_{1}\right) \phi^{-1}\left(s_{2}\right) \leq \phi^{-1}\left(s_{1} s_{2}\right) \leq s_{1} s_{2}, \quad \forall s_{1}, s_{2} \in[0, \infty) .
$$

In particular, for $0<s_{1} \leq 1$ we have

$$
\phi^{-1}\left(s_{1} s_{2}\right) \geq s_{1} \phi^{-1}\left(s_{2}\right) .
$$

3. Uniqueness results

In this section, we are going to study the positive solution of problem (1.1). Results to be proved in this section are true for any positive parameter λ. So, we may assume $\lambda=1$ for simplicity and therefore consider

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}=f(u), \tag{3.1}\\
u^{\prime}(0)=0, u(1)=0
\end{array}\right.
$$

and the corresponding operator

$$
\begin{equation*}
\left(T_{1} u\right)(t)=\int_{t}^{1} \phi^{-1}\left(\int_{0}^{s} f(u(\tau)) d \tau\right) d s, \quad t \in[0,1], \tag{3.2}
\end{equation*}
$$

defined on $P \cap B_{1}$.
Now, we present the main results of this section as follows.
Theorem 3.1. Assume (H1), and f is increasing, such that for any $u>0$ and $t \in(0,1)$ there always exists some $\xi>1$ such that

$$
\begin{equation*}
f(t u) \geq(1+\xi) t f(u) \tag{3.3}
\end{equation*}
$$

Then problem (3.1) can have at most one positive solution.
Remark 3.1. Since f is increasing, condition (3.3) implies that $f(u)>0$ when $u>0$, and can be replaced by the following simpler condition:

$$
f(t u)>t f(u) .
$$

Remark 3.2. To compare with the Theorem 3.1 and Theorem 3.4 in [13], ours in this section cover a very broad class of functions of f. For example, $f(u)=\sum_{i=1}^{i=m} u^{p_{i}}$ with $0<p_{i}<1$ or $f(u)=1+\sqrt{u}$.

Theorem 3.1 is proved via a sequence of Lemmas. But we need to have a definition first.
Definition 3.1. [16, 17] Let K be a cone in real Banach space Y and \leq be the partial ordering defined by K. Let $A: K \rightarrow K$ and $u_{0}>\theta$, where θ denotes the zero element Y.
(a) for any $x>\theta$, there exist $\alpha, \beta>0$ such that

$$
\alpha u_{0} \leq A(x) \leq \beta u_{0}
$$

(b) for any $\alpha u_{0} \leq x \leq \beta u_{0}$ and $t \in(0,1)$, there exists some $\eta>0$ such that

$$
A(t x) \geq(1+\eta) t A x .
$$

Then A is called u_{0}-sublinear
Lemma 3.2. Suppose that f satisfies the conditions of Theorem 3.1. Then the operator T_{1}, defined by 3.2, is u_{0}-sublinear with $u_{0}=1-t$.

Proof. We divide the proof into two steps.

Step 1. We check condition (a) of Definition 3.1. First, we show that for any $u>0$ from $P \cap B_{1}$, there exist $\alpha, \beta>0$ such that

$$
\begin{equation*}
\alpha u_{0} \leq T_{1}(u) \leq \beta u_{0} . \tag{3.4}
\end{equation*}
$$

Let $M=\max _{t \in[0,1]}\{f(u(t))\}$. It follows from Lemma 2.5, we have

$$
\left(T_{1} u\right)(t) \leq \int_{t}^{1} \phi^{-1}\left(\int_{0}^{s} M d \tau\right) d s \leq \frac{1}{2} M\left(1-t^{2}\right) \leq M(1-t)
$$

So, we may take $\beta=M$.
Notice that $\left(T_{1} u\right)(t)$ is strictly decreasing in t and vanishes at $t=1$. Choose any $c \in(0,1)$ and set

$$
m=\int_{0}^{c} f(u(t)) d t .
$$

Then for all $t \in[c, 1]$, we have

$$
\left(T_{1} u\right)(t) \geq \int_{t}^{1} \phi^{-1}(m) d s=\frac{m}{\sqrt{1+m^{2}}}(1-t) .
$$

Since $\left(T_{1} u\right)(t) \geq\left(T_{1} u\right)(c)=\frac{m}{\sqrt{1+m^{2}}}(1-c)$ for all $t \in[0, c]$, we have

$$
\left(T_{1} u\right)(t) \geq \frac{m}{\sqrt{1+m^{2}}}(1-c)(1-t)
$$

for all $t \in[0,1]$. So, we may choose $\alpha=\frac{m}{\sqrt{1+m^{2}}}(1-c)$ and (3.4) is proved.
Step 2. We check condition (b) of Definition 3.1. We need to show that for any $\alpha u_{0} \leq u \leq \beta u_{0}$ and $\xi \in(0,1)$, there exists some $\eta>0$ such that

$$
T_{1}(\xi u) \geq(1+\eta) \xi T_{1} u .
$$

To this end, due to the conditions satisfied by f, there exists an $\eta>0$ such that

$$
f(\xi u) \geq[(1+\eta) \xi] f(u) .
$$

It follows from Lemma 2.5 that

$$
\begin{aligned}
\left(T_{1}(\xi u)\right)(t) & =\int_{t}^{1} \phi^{-1}\left(\int_{0}^{s} f(\xi u) d \tau\right) d s \\
& \geq \int_{t}^{1} \phi^{-1}\left[\int_{0}^{s}(1+\eta) \xi f(u) d \tau\right] d s \\
& \geq(1+\eta) \xi \int_{t}^{1} \phi^{-1}\left(\int_{0}^{s} f(u) d \tau\right) d s
\end{aligned}
$$

Thus we have

$$
T_{1}((\xi u))(t) \geq[(1+\eta) \xi]\left(T_{1} u\right)(t) .
$$

Therefore, the proof is complete.

Proof of Theorem 3.1. Let f be from Theorem 3.1. From Lemma 3.2, we know that the operator T_{1} is increasing and u_{0}-sublinear with $u_{0}=1-t$.

Next, we show that T_{1} can have at most one positive fixed point. Assume to the contrary that there exist two positive fixed points u and x^{*}. Now, we claim that there exists $c>0$ such that $u \geq c x^{*}$. By (3.2), we know that

$$
\begin{aligned}
x^{*}(t) & =\int_{t}^{1} \phi^{-1}\left(\int_{0}^{s} f\left(x^{*}(\tau)\right) d \tau\right) d s, \quad t \in[0,1], \\
u(t) & =\int_{t}^{1} \phi^{-1}\left(\int_{0}^{s} f(u(\tau)) d \tau\right) d s, \quad t \in[0,1],
\end{aligned}
$$

So, $x^{*}(t)$ is strictly decreasing in t and vanishes at $t=1$. There exist $\sigma_{1}, \sigma_{2} \in(0, \infty)$ such that

$$
\sigma_{1}(1-t) \leq x^{*}(t) \leq \sigma_{2}(1-t), \quad t \in[0,1] .
$$

Using the same method, there exist $\delta_{1}, \delta_{2} \in(0, \infty)$ such that

$$
\delta_{1}(1-t) \leq u(t) \leq \delta_{2}(1-t) \quad t \in[0,1] .
$$

Therefore, $\forall t \in[0,1]$

$$
\begin{aligned}
u(t) \geq \delta_{1}(1-t) & =\frac{\delta_{1}}{\sigma_{2}} \cdot \sigma_{2}(1-t) \\
& \geq \frac{\delta_{1}}{\sigma_{2}} \cdot x^{*}(t)
\end{aligned}
$$

So, we can choose $c=\frac{\delta_{1}}{\sigma_{2}}$. Set $c^{*}=\sup \left\{t \mid u \geq t x^{*}\right\}$. We claim that

$$
c^{*} \geq 1
$$

If not, then there exists some $\xi>0$ such that $T_{1}\left(c^{*} x^{*}\right) \geq(1+\xi) c^{*} T_{1} x^{*}$. This combine the fact that T_{1} is increasing imply that

$$
u=T_{1} u \geq T_{1}\left(c^{*} x^{*}\right) \geq(1+\xi) c^{*} T_{1} x^{*}=(1+\xi) c^{*} x^{*},
$$

which is a contraction since $(1+\xi) c^{*}>c^{*}$. So, $u \geq x^{*}$ and similarly we can show that $x^{*} \geq u$. Now with the above lemmas in place, Theorem 3.1 follows readily. Therefore, the proof is complete.

Example 3.1. Let us consider the problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}=\sqrt{u}, \tag{3.5}\\
u^{\prime}(0)=0, u(1)=0 .
\end{array}\right.
$$

By using Theorem 3.1, we know that the problem (3.5) has a unique positive solution, this is just the conclusion of [13, Theorem 3.1].

4. Multiplicity solutions

In this section, we shall investigate the positive solutions of problem (1.1). Furthermore, we are going to examine how the number of zeros of f may have a huge impact on the number of solutions of (1.1). Here is the main result of this section.

Theorem 4.1. Assume (H1), and there exist two sequences of positive numbers a_{i} and b_{i}, satisfying

$$
a_{i}<b_{i} \leq a_{i+1}<b_{i+1},
$$

and such that $f\left(a_{i}\right)=0$ and $f\left(b_{i}\right)=0$, and $f(u)>0$ on $\left(a_{i}, b_{i}\right)$, for all $i=1, \cdots, n(n \in \mathbb{N}=$ $\{1,2, \cdots\})$. Then there exists λ_{0} such that for all $\lambda \geq \lambda_{0}$ the problem (1.1) has n distinct positive solutions, $u_{1}, u_{2}, \cdots, u_{n}$, such that

$$
a_{i}<\left\|u_{i}\right\| \leq b_{i}
$$

for each $i=1, \cdots, n$.
Remark 4.1. Note that f will satisfy the conditions in the theorem if there exist numbers $a_{n}>a_{n-1}>$ $\cdots>a_{1}>a_{0}=0$ such that $f\left(a_{i}\right)=0$ for $i=1, \cdots, n$, and $f(u)>0$ for $a_{i-1}<u<a_{i}, i=1, \cdots, n$.

Now we define a nonlinear operator $T_{\lambda}^{i}, i=1, \cdots n$ as follows:

$$
\begin{equation*}
T_{\lambda}^{i} u(t)=\int_{t}^{1} \phi^{-1}\left(\int_{0}^{s} \lambda f_{i}(u(r)) d r\right) d s, \quad u \in P \cap B_{1} \tag{4.1}
\end{equation*}
$$

In order to prove the main result, we define f_{i} by

$$
f_{i}(u)=\left\{\begin{array}{cl}
f(u), & 0 \leq u \leq b_{i}, \\
0, & b_{i} \leq u
\end{array}\right.
$$

For any $0<r<1$, define O_{r} by

$$
O_{r}=P \cap B_{r} .
$$

Note that $\partial O_{r}=\{u \in P:\|u\|=r\}$. Similar to T_{1}, it is easy to verify that T_{λ}^{i} is compact on $P \cap B_{r}$ for all $r \in(0,1)$.

In order to prove the theorem, we need the following two Lemmas.
Lemma 4.2. Suppose that f satisfies the conditions of Theorem 4.1. If $v \in P \cap B_{1}$ is a positive fixed point of (4.1), i.e. $T_{\lambda}^{i} v=v$, then v is a solution of (2.1) such that

$$
\sup _{t \in[0,1]} v(t) \leq b_{i}
$$

Proof. Notice that v satisfies

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}=\lambda f_{i}(u), \\
u^{\prime}(0)=0, u(1)=0
\end{array}\right.
$$

If on the contrary that $\sup _{t \in[0,1]} v(t)=v(0)>b_{i}$, then there exists a $t_{0} \in(0,1)$ such that $v(t)>b_{i}$ for $t \in\left[0, t_{0}\right)$ and $v\left(t_{0}\right)=b_{i}$. It follows that

$$
-\left(\frac{v^{\prime}}{\sqrt{1-v^{\prime 2}}}\right)^{\prime}=0 \text { for } t \in\left(0, t_{0}\right] .
$$

Thus, $-\left(\frac{v^{\prime}}{\sqrt{1-v^{\prime 2}}}\right)$ is constant on $\left[0, t_{0}\right]$. Since $v^{\prime}(0)=0$, it follows that $v^{\prime}(t)=0$ for $t \in\left[0, t_{0}\right]$. Consequently, $v(t)$ is a constant on $\left[0, t_{0}\right]$. This is a contradiction. Therefore, $\sup _{t \in[0,1]} v(t) \leq b_{i}$. On the other hand, since $f(v) \equiv f_{i}(v)$ for $0 \leq v \leq b_{i}, v$ is a solution of (2.1).

Choose any ζ such that

$$
\max \left\{\frac{a_{i}}{b_{i}}: 1 \leq i \leq n\right\}<\zeta<1 .
$$

Lemma 4.3. Let the conditions of Theorem 4.1 be satisfied. For any $i \in\{1, \cdots, n\}$, there exists r_{i} such that $\left[\zeta r_{i}, r_{i}\right] \subset\left(a_{i}, b_{i}\right)$. Furthermore, for any $v \in \partial O_{r_{i}}$ we have

$$
\left\|T_{\lambda}^{i} v\right\| \geq \frac{1}{2}(1-\zeta)^{2} \phi^{-1}\left(\lambda \omega_{r_{i}}\right)
$$

where $\omega_{r_{i}}=\min _{\left\langle r_{i} \leq v \leq r_{i}\right.}\left\{f_{i}(v)\right\}>0$.
Proof. Based on the choice of ζ, the existence of r_{i} with $\left[\zeta r_{i}, r_{i}\right] \subset\left(a_{i}, b_{i}\right)$ is obvious. Notice that for any $v \in P$ we have that $v(t) \geq v(0)(1-t)$ for all $t \in[0,1]$. In particular, we have $\zeta v(0) \leq v(t) \leq v(0)$ for all $t \in[0,1-\zeta]$. Let $v \in \partial O_{r_{i}}$, then $f_{i}(v(t)) \geq \omega_{r_{i}}$ for $t \in[0,1-\zeta]$. It follows that

$$
\begin{aligned}
\left\|T_{\lambda}^{i} \nu\right\| & \geq \int_{0}^{1-\zeta} \phi^{-1}\left(\int_{0}^{t} \lambda f_{i}(v(\tau)) d \tau\right) d t \\
& \geq \int_{0}^{1-\zeta} \phi^{-1}\left(\int_{0}^{t} \lambda w_{r_{i}} d \tau\right) d t \\
& \geq \int_{0}^{1-\zeta} t \phi^{-1}\left(\lambda w_{r_{i}}\right) d t \\
& =\frac{1}{2}(1-\zeta)^{2} \phi^{-1}\left(\lambda \omega_{r_{i}}\right)
\end{aligned}
$$

Proof of Theorem 4.1. Define λ_{0} by

$$
\lambda_{0}=\max \left\{\phi\left(\frac{2 r_{i}}{(1-\zeta)^{2}}\right) / w_{r_{i}}: i=1,2, \cdots, n\right\} .
$$

For each $i=1, \cdots, n$ and $\lambda>\lambda_{0}$, by Lemma 4.3 we infer that

$$
\left\|T_{\lambda}^{i} \nu\right\|>\|\nu\| \text { for } v \in \partial O_{r_{i}}
$$

On the other hand, for each fixed $\lambda>\lambda_{0}$, since $f_{i}(v)$ is bounded, this combine the fact that the rage of ϕ^{-1} is $(-1,1)$ imply that there is an $R_{i}>r_{i}$ such that

$$
\left\|T_{\lambda}^{i} \nu\right\|<\|\nu\| \text { for } v \in \partial O_{R_{i}}
$$

It follows from Lemma 2.2 that

$$
i\left(T_{\lambda}^{i}, O_{r_{i}}, P\right)=0, \quad i\left(T_{\lambda}^{i}, O_{R_{i}}, P\right)=1,
$$

and hence

$$
i\left(T_{\lambda}^{i}, O_{R_{i}} \backslash \bar{O}_{r_{i}}, P\right)=1
$$

Thus, T_{λ}^{i} has a fixed point v_{i}^{*} in $O_{R_{i}} \backslash \bar{O}_{r_{i}}$. Lemma 4.2 implies that the fixed point v_{i}^{*} is a solution of (2.1) such that

$$
a_{i}<r_{i} \leq\left\|v_{i}^{*}\right\| \leq b_{i} .
$$

Consequently, (2.1) has n positive solutions, $v_{1}, v_{2}, \cdots, v_{n}$ for each $\lambda>\lambda_{0}$, such that

$$
a_{i}<\sup _{t \in[0,1]} v_{i}(t) \leq b_{i} .
$$

Therefore, the proof is complete.
Remark 4.1. It is interesting to compare our main result(Theorem 4.1) to Candito et al. [18]. In [18], the authors showed the existence of three classical solutions of the one dimensional prescribed mean curvature equation in Euclid space by using a variational approach.

Example 4.1. Let us consider the problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1-u^{\prime 2}}}\right)^{\prime}=\lambda g(u), \tag{4.2}\\
u^{\prime}(0)=0, u(1)=0
\end{array}\right.
$$

where $g(u)=\sin 8 \pi u+1$.
Let $a_{1}=\frac{3}{16}, a_{2}=\frac{7}{16}, a_{3}=\frac{11}{16}, a_{4}=\frac{15}{16}$, we can easily check that $g\left(a_{i}\right)=0$, and $g(u)>0$ for $a_{i}<u<a_{i+1}, i=1,2,3$.

From Theorem 4.1, the problem (4.2) has at least three positive solutions u_{1}, u_{2}, u_{3} with $a_{j}<\sup _{r \in[0,1]} u_{j}(r) \leq a_{j+1}, j=1,2,3$ provided that λ is large enough.

Acknowledgments

The authors are very grateful to the anonymous referees for their valuable suggestions.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. S. Y. Cheng, S. T. Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. Math., 104 (1976), 407-419.
2. R. Bartnik, L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys., 87 (1982), 131-152.
3. A. Azzollini, On a prescribed mean curvature equation in Lorentz-Minkowski space, J. Math. Pure. Appl., 106 (2016), 1122-1140.
4. M. Born, L. Infeld, Foundations of the new field theory, Proc. R. Soc. Lond., A, 144 (1934), 425451.
5. C. Bereanu, D. de la Fuente, A. Romero, et al. Existence and multiplicity of entire radial space like graphs with prescribed mean curvature function in certain Friedmann-Lemaître- Robertson-Walker space times, Commun. Contemp. Math., 19 (2017), 1-18.
6. J. Mawhin, P. J. Torres, Prescribed mean curvature graphs with Neumann boundary conditions in some FLRW spacetimes, J. Differ. Equ., 261 (2016), 7145-7156.
7. M. Born, Modified field equations with a finite radius of the electron, Nature, 132 (1933), 282.
8. G. W. Dai, Global structure of one-sign solutions for problem with mean curvature operator, Nonlinearity, 31 (2018), 5309-5328.
9. C. Bereanu, P. Jebelean, P. J. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal., 264 (2013), 270-287.
10. C. Bereanu, P. Jebelean, P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 265 (2013), 644-659.
11. M. H. Pei, L. B. Wang, Multiplicity of positive radial solutions of a singular mean curvature equations in Minkowski space, Appl. Math. Lett., 60 (2016), 50-55.
12. I. Coelho, C. Corsato, F. Obersnel, et al. Positive solutions of the Dirichlet problem for the onedimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012) 621-638.
13. X. M. Zhang, M. Q. Feng, Bifurcation diagrams and exact multiplicity of positive solutions of onedimensional prescribed mean curvature equation in Minkowski space, Commun. Contemp. Math., 21 (2019), 1850003.
14. R. Y. Ma, Y. Q. Lu, Multiplicity of Positive Solutions for Second Order Nonlinear Dirichlet Problem with One-dimension Minkowski-Curvature Operator, Adv. Nonlinear Stud., 15 (2015), 789-803.
15. K. Deimling, Nonlinear Functional Analysis, Berlin: Springer, 1985.
16. S. C. Hu, H. Y. Wang, Convex Solutions of boundary value problems arising from Monge-Ampère equation, Discrete Cont. Dyn. S., 16 (2006) 705-720.
17. D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract cones, Academic press, 1988.
18. P. Candito, R. Livrea, J. Mawhin, Three solutions for a two-point boundary value problem with the prescribed mean curvature equation, Differ. Integral Equ., 28 (2015), 989-1010.

AIMS Press
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

