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Abstract: In this paper, the constraint impulsive consensus problem of nonlinear multi-agent systems
in directed network is discussed. Impulsive time windows are designed for solving consensus problem
of multi-agent systems. Different from the traditional impulsive protocol with fixed impulsive intervals,
the impulsive protocol with impulsive time windows, where the impulsive instants can be changed
randomly, is more effective and flexible. In addition, saturation impulse is also considered to restrict
the jumping value of impulse beyond the threshold. Based on algebraic graph theory, matrix theory, and
convex combination analysis, some novel conditions of impulsive consensus have been proposed. Our
main results indicate that constraint impulsive consensus of the multi-agent systems via impulsive time
windows can be achieved if the nonlinear systems satisfy suitable conditions. Numerical simulations
are presented to validate the effectiveness of theoretical results.
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1. Introduction

Recently, distributed control of multi-agent systems has been substantial investigated in various
fields, such as flocking, rendezvous, coordination, complex networks and so on [1–3]. Motivated by
the advantage of strong robustness, high efficiency and low cost, many researchers pay more attentions
on the applications of distributed multi-agent systems. However, there are still many unsolved issues
that confuse people many years. In all of the issues, consensus problems of multi-agent systems have
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aroused wide concerns. To achieve consensus, designers usually devise the distributed control protocol
of information exchanging only based on the local relative information [4–6].

Generally, there exist two classes of consensus problems: Leaderless consensus problems and
leader-following consensus tracking problems. For leaderless consensus, all of the agents eventually
achieve to an uncertain common value [7–9]. For leader-following consensus, the leader is preset and
all of the other agents in networks converge to the value of the leader [10–12]. This is the advantage
of leader-following consensus. By using the Lyapunov stability and graph theory, distributed
leader-following consensus problem of second-order multi-agent systems with fixed directed topology
and coupling delay was studied in [13]. In paper [14], the author established fractional order tracking
consensus of nonlinear multi-agent systems with hybrid time-varying delay by using a heterogeneous
impulsive method. In paper [15], the leader-following consensus problem was researched by an
observer-based control protocol, which indicated that relative output measurements based on
neighboring agents made an important influence for information exchange.

Meanwhile, impulsive control systems have sparked the interest of many researchers in recently
years due to their widely applications on the consensus and cooperation problems of complex
networks [16–20]. Compared with traditional method solving consensus problem, such as feedback
control [21], event-triggered control [22] and adaptive control [23], impulsive control can decrease the
redundancy between information exchanging and increase the robustness of distributed dynamic
systems. Paper [24] only used the position information with time delays via impulsive protocol to
achieve second-order consensus of multi-agent systems. In [25], second-order consensus with
aperiodic impulsive protocol and time-varying delays was considered based on relative state
measurements between the agent and the neighbors at a few discrete times.

The mentioned articles with impulsive protocol above are mostly described with fixed impulsive
intervals, which means the impulsive instants have been required to design in advance. Due to the
restriction of practical application and perturbation of external environment in real world, it is difficult
to guarantee the precise impulsive input instants and we often need to choose variable instants in limit
time intervals. Therefor, we propose the impulsive time windows in which the impulsive input
instants can be changed randomly. The variable impulsive control protocol with impulsive time
windows are effective and flexible which obtain larger control domain. However, there also exist
some disadvantages. For example, impulsive time windows make the condition of system
convergence more complicated and more conservative. If the impulsive intervals are more dense, it
makes the impulsive time windows smaller which will be more difficult to implement. In past few
years, stability and synchronization problems of neural networks have been studied intensely [26–30].
In paper [26], the problem of input-to-state stability of impulsive stochastic Cohen-Grossberg
networks which contained mixed delays was investigated. A hybrid pinning impulsive control method
with nonlinearly coupling function was considered in paper [29] for achieving synchronization of
networks. Meanwhile, impulsive time windows have been widely concerned in stability,
synchronization and consensus [31–33]. Since the impulsive instants could not be predicted in
advance, the author analyzed the robust stability of neural networks with stochastic fuzzy delays
in [34]. In [35], the impulsive control systems of periodically multiple state-jumps was studied in
limited small time intervals. Paper [36] proposed variable impulsive protocol for first-order consensus
of nonlinear multi-agent systems. For the advantage of impulsive time windows, it is interesting and
practical to investigate the consensus problem with impulsive time windows.
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In this paper, constraint impulsive protocol is also considered to prevent the jumping value beyond
the secure setting. In all of the constraint methods, saturation is the most widely applied one. Because
of saturation constraint, system with saturation impulse will increase the complexity of system
structure and the difficulty of consensus problem analysis. However, it can protect the system
avoiding too large impulsive jumping amplitude, which may destroy the system. Currently, there
mainly exist three methods to disintegrate saturation function including method of combination
convex, method of sector region and method of saturability. Compared with the last two methods,
method of combination convex is easier and maturer. Through the introduction of the auxiliary matrix
H, the saturated impulse input was transformed into a convex polyhedron which ensured stabilisation
of time-varying structures dynamical systems in literature [37]. In paper [38], exponential
stabilization for nonlinear delayed dynamic systems was investigated with a state-constraint impulsive
control strategy. Compared with article [33], the constraint impulsive considered in this paper is more
in line with the actual industrial application. Moreover, we use the central distance of the impulsive
time windows to replace the impulsive interval through the whole paper, such that the constraint on
the impulsive instant is reduced, so it is more meaningful.

The organization of this paper is introduced as follows. Fundamental preliminaries of notations and
graph theory are introduced in section 2. Problem formulation of the nonlinear multi-agent systems
and constraint impulsive protocol are given in section 3. Constraint impulsive consensus of multi-agent
systems with impulsive time windows is analyzed in section 4, where the centre distance of adjacent or
non-adjacent impulsive time windows is an important parameter for system convergence. Numerical
examples that strongly support the effectiveness of the theoretical results are presented in section 5.
The conclusion is given in section 6.

2. Preliminaries

2.1. Notations

Throughout this paper, Rn denotes the set of n-dimensional Euclidean space. For any square matrix
A ∈ RN×N , AT represents the transpose of A. N+ is the set of nonnegative natural numbers. C[X,Y] is
a space of continuous mappings from space X to space Y. Diagonal matrix B is denoted as
diag[b1, b2, · · · , bn]. IN denotes the N-dimensional identity matrix and 0N denotes the N-dimensional
zero matrix. 1N indicates the N-dimensional column vector in which all the elements are equal to 1.
A ⊗ B indicates the Kronecker product between matrices A and B. ‖ · ‖ is the Euclidean norm of vector
or matrix. For any vector x = (x1, x2, ..., xn)T , the Euclidean norm is presented as

‖x‖ =

√
x2

1 + · · · + x2
n.

2.2. Graph theory

Graph is a very important and practical tool to describe interconnected relation between agents. In
this subsection, we will introduce some basic concepts. A directed graph G = (V,E,A) is a network
with a finite set of nodes V = {1, 2, 3, · · · ,N}, a set of edges E = {(i, j) : i, j ∈ V} ⊆ V × V and
a weighted coupling matrix A = [ai j] ∈ RN×N . The entry ai j of matrix A represents the information
communication between agent i and agent j. If there is a path from node i to node j, then ai j ≥ 0;
otherwise, ai j = 0. There are no repeated edges and self-loops. All the neighbors of i are denoted as
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Ni = { j ∈ V : (i, j) ∈ E, i , j}. The out-degree of node i in a directed graph is defined as degout(i) =∑N
j=1 ai j. The corresponding diagonal matrix is D = diag[degout(1), degout(2), · · · degout(N)] ∈ RN×N

which consists of the out-degree of each node. The Laplacian matrix of graph G is defined as L =

D−A. For a directed graph G, a Laplacian matrix L = [li j]N×N , where

li j =


degout(i), i = j
−ai j, j ∈ Ni

0, otherwise.

Define Ḡ as a directed graph consisting of graph G and an added node 0, where V̄ = {0, 1, 2, ...N},
Ē = {(i, j) : i, j ∈ V̄} ⊆ V̄ × V̄ and a weighted coupling matrix Ā = [āi j] ∈ R(N+1)×(N+1).

3. Problem formulation

As we know, impulsive intervals make a great influence on the consensus of multi-agent systems
via impulsive protocol and the assumption of impulsive interval is fixed. In this paper, impulsive time
windows for consensus of multi-agent systems have been proposed, where the impulsive instants can
be randomly changed in the impulsive time windows that are different from the traditional impulsive
protocol. Actuator saturation is also considered for restraining the impulsive input beyond the
threshold. These give us a new way to analysis the impulsive consensus problem.

Consider multi-agent systems with actuator saturation of nonlinear dynamic which are described by

ẋi(t) = f (xi(t), t) + Sat(ui(t)). (3.1)

xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn is the state of agent i, where i = {1, 2, · · · ,N}. f (xi(t), t) :
Rn × [0,+∞)→ Rn is a nonlinear function of agent i. Sat(ui(t)) ∈ Rn is the control protocol of ith agent
with saturation constraint which will be designed later. The initial condition xi(t0) ∈ C[t0,Rn].

Compared with the traditional control system where the control input is usually unconstrained, we
will design a constrained input which is called the actuator saturation. The saturation function can be
described as follow

Sat(ui j(t)) =


1, ui j(t) > 1
ui j(t), −1 ≤ ui j(t) ≤ 1
−1, ui j(t) < 1,

where ui(t) = (ui1(t), ui2(t), · · · , uin(t))T ∈ Rn, i = {1, 2, · · · ,N}, j = {1, 2, · · · , n}, and Sat(ui(t)) =

(Sat(ui1(t)),Sat(ui2(t)), · · · Sat(uin(t))T.
The leader of multi-agent systems can be expressed as follows

ẋ0(t) = f (x0(t), t), (3.2)

where x0(t) = (x01(t), x02(t), · · · , x0n(t))T ∈ Rn is the state of leader node. Its initial condition is given
as x0(t0) ∈ C[t0,Rn]. In this paper, we assume the leader is the root node in graph Ḡ that contains a
spanning tree.

Definition 1. The multi-agent systems are said to achieve leader-following consensus for any
initial states, if

lim
t→∞
‖xi(t) − x0(t)‖ = 0,
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where i = {1, 2, ...,N}.
Definite ζi(t) =

∑N
j∈Ni

ai j(xi(t) − x j(t)) + bi(xi(t) − x0(t)). Then the impulsive control protocol of ith
agent with a leader is designed as

ui(t) =
∑∞

k=1 ckζi(t)δ(t − tk). (3.3)

Therefor the multi-agent systems via impulsive protocol and saturation constraint input can be
described as {

ẋi(t) = f (xi(t), t), t , tk

∆xi(tk) = xi(t+
k ) − xi(t−k ) = Sat(ckζi(tk)), t = tk.

(3.4)

ck ∈ R is the impulsive control gain at tk. bi ∈ R is a weight value from leader node to follower node
i. bi > 0, if there are information exchange between leader and ith follower, otherwise bi = 0. δ(t)
is the Delta function satisfying

∫ +∞

−∞
δ(t)dt = 1. The instant tk satisfies 0 ≤ t0 < t1 · · · < tk < · · · and

limk→∞ tk = +∞. Suppose xi(t) is left continuous at tk, then limt→t−k
xi(t) = xi(t−k ) = xi(tk), limt→t+k

xi(t) =

xi(t+
k ).
Define the error state between agent i and leader as ei(t) = xi(t) − x0(t), then e(t) = (e1(t), e2(t),

· · · , eN(t))T ∈ RNn. System (3.4) can be rewritten as{
ėi(t) = f (xi(t), t) − f (x0(t), t), t , tk

∆ei(tk) = Sat(ckζi(tk)), t = tk.
(3.5)

System (3.5) can be described with the Kronecker product{
ė(t) = F(x̃(t), t), t , tk

∆e(tk) = Sat((ck(L + B) ⊗ In)e(tk)), t = tk,
(3.6)

where x̃(t) = {x0(t), x1(t) · · · , xN(t)}, B = diag[b1, b2 · · · , bN] ∈ RN×N and F(x̃(t), t) = [( f T(x1(t), t) −
f T(x0(t), t)), ( f T(x2(t), t) − f T(x0(t), t)), · · ·, ( f T(xN(t), t) − f T(x0(t), t))]T.

Lemma 1. [38] Assume there exist two vectors v, µ ∈ RN satisfying v = (v1, v2, · · · , vN)T, µ =

(µ1, µ2, · · · , µN)T. Denote F = {Fi : i = 1, 2, · · · , 2N} ∈ RN×N is the set of diagonal matrices consisting
of scalars 0 or 1. If |µi| ≤ 1 for all i, then the constraint function Sat(v) ∈ co{Fiv + F−i µ : i =

1, 2, · · · , 2N}, where F−i = IN − Fi. {Fiv + F−i µ} represents the vector consisting of the elements that
some are from v and the rest are from µ. Define e(t) ∈ RN and E,H ∈ RN×N . If ‖He(t)‖∞ ≤ 1, then
Sat(Ee(t)) ∈ co{(FiE + F−i H)e(t) : i = 1, 2, · · · , 2N}. Moreover, if there exists κi ∈ [0, 1] satisfying∑2N

i=1 κi = 1, then the following equality Sat(Ee(t)) =
∑2N

i=1 κi(FiE + F−i H)e(t) holds.
Lemma 2. [38] For any constant ε > 0, if there exist two vectors a ∈ RNn, b ∈ RNn, then the

following inequality 2aTb ≤ εaTa + ε−1bTb holds.
Assumption 1. [18] The nonlinear function f (xi(t), t) : Rn × [0,+∞)→ Rn satisfies the Lipschitz

condition, if there exists a nonnegative constant θ satisfying

‖ f (xi(t), t) − f (x0(t), t)‖ ≤ θ‖xi(t) − x0(t)‖.

∀xi(t), x0(t) ∈ Rn and θ is the Lipschitz constant.
Assumption 2. [36] The directed graph Ḡ of leader-following communication topology contains

a spanning tree rooted at the leader node 0.
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Assumption 3. [33] The time parameters of Figure 1 satisfy the relations as follow

T l
k−1 < tk−1 < T r

k−1 < T l
k < tk < T r

k ,

where the interval [T l
k,T

r
k] is the kth impulsive time window. T l

k, T r
k , Tk are the left endpoint, right

endpoint and the center of the kth time window, respective.

Figure 1. Impulsive time windows.

The Lipschitz condition of Assumption 1 is used in Theorem 1 to deal with the nonlinear terms
for obtaining a differential inequality. Assumption 2 guarantees all of the eigenvalues of matrix L + B
have positive real parts, and Assumption 3 ensures that there is one and only one impulsive instant
in each impulsive time window where impulsive instant tk could happen everywhere and the adjacent
impulsive time windows are independent with each other.

4. Main results

4.1. Consensus of impulsive time windows

In this subsection, the constraint impulsive consensus problem of multi-agent systems with
impulsive time windows is investigated by using the Lyapunov function mathematical induction
method. The impulsive instant tk, left endpoint T l

k and right endpoint T r
k in impulsive time window

satisfy Assumption 3, and the relations of central positions, left endpoints, right endpoints and
impulsive instants are shown in Figure 1 The interval [T l

k,T
r
k] indicates the possible range of

impulsive instant tk, which corresponds to the so-called impulsive time window. Now our main results
are shown in the following theorem, which implies the admissible parameter Tk in impulsive time
window plays an important role for consensus of multi-agent systems.

Theorem 1. Under Assumption 1–3, the multi-agent systems via impulsive protocol can achieve
consensus if there exist a positive definite matrix P ∈ RNn×Nn and some positive scalars ε, α, λk < 1, η >
1 satisfying the following conditions

(i) εP2 + ε−1θ2INn ≤ αP,
(ii) [(INn + Mk)]TP[(INn + Mk)] ≤ λkP,

(iii) α(Tk+1 − Tk) + ln(λkη) < 0,

where Mk =
∑2Nn

i=1 κi(Fi(ck(L + B) ⊗ In) + F−i H), θ is the Lipschitz constant, and 0 < Tk+1 − Tk < ∞

is the centre distance of adjacent impulsive time windows. Then multi-agent systems with constraint
impulsive protocol can achieve consensus.
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Proof. Consider a candidate Lyapunov function as

V(t) = eT(t)Pe(t).

From Assumption 1 and Lemma 2, for t ∈ (tk−1, tk], the right and upper Dini’s derivative of V(t)
along Eq (3.6) is

D+V(t) =ėT(t)Pe(t) + eT(t)Pė(t)
=2eT(t)PF(x̃(t), t)
≤εeT(t)P2e(t) + ε−1FT(x̃(t), t)F(x̃(t), t)
≤εeT(t)P2e(t) + ε−1θ2eT(t)e(t)
=eT(t)(εP2 + ε−1θ2INn)e(t)
≤αV(t).

By differential inequality theorem [39], if scalar function V(t) is continuous on t ∈ (tk−1, tk], and the
right-up Dini derivative D+V(t) exists and satisfies the differential inequality{

D+V(t) ≤ αV(t)
V0 = V(t+

k−1),

where V0 is the initial value of V(t), then it follows that

V(t) ≤ V(t+
k−1) exp(α(t − tk−1)). (4.1)

On the other hand, when t = tk, by Lemma 1, we can obtain

V(t+
k ) =eT(t+

k )e(t+
k )

=[e(tk) + Sat((ck(L + B) ⊗ In)e(tk))]TP[e(tk) + Sat((ck(L + B) ⊗ In)e(tk))]

≤[(INn +

2Nn∑
i=1

κi(Fi(ck(L + B) ⊗ In) + F−i H))e(tk)]TP[(INn

+

2Nn∑
i=1

κi(Fi(ck(L + B) ⊗ In) + F−i H))e(tk)]

=[(INn + Mk)e(tk)]TP[(INn + Mk)e(tk)]
=λkeT(tk)Pe(tk)
=λkV(tk).

(4.2)

In the process of proving Theorem 1, different results of V(t) are obtained according to the relative
position between t and tk. The impulsive instant tk can randomly change in the impulsive time window.

For t ∈ [t0,T1], there are two cases (See Figure 2) to be discussed.
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Figure 2. The diagram for t ∈ [t0,T1].

N Case 1. When t0 ≤ t ≤ t1.
It follows from (4.1) that

V(t) ≤ V(t0) exp(α(t − t0)). (4.3)

N Case 2. When t1 < t ≤ T1.
Combining (4.1) and (4.2), we can obtain

V(t) ≤V(t+
1 ) exp(α(t − t1))

≤λ1V(t1) exp(α(t − t1))
≤λ1V(t0) exp(α(t − t0)).

(4.4)

Therefore, combining (4.3) and (4.4), for t ∈ [t0,T1], we have

V(t) ≤ λm1
1 V(t0) exp(α(t − t0)), (4.5)

where

mk =

{
0, t < tk

1, t ≥ tk, k ∈ N+.
(4.6)

The value of mk is decided by impulsive instant tk.
For t ∈ (T1,T2], there are three cases (See Figure 3) to be discussed.

Figure 3. Impulsive time windows.

N Case 1. When T1 < t ≤ t1.
It follows from (4.1) that

V(t) ≤ V(t0) exp(α(t − t0)). (4.7)
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N Case 2. When t1 < t ≤ t2.
Combining (4.1) and (4.2), we can obtain

V(t) ≤V(t+
1 ) exp(α(t − t1))

≤λ1V(t1) exp(α(t − t1))
≤λ1V(t0) exp(α(t − t0)).

(4.8)

N Case 3. When t2 < t ≤ T2.
Combining (4.1) and (4.2), we can obtain

V(t) ≤V(t+
2 ) exp(α(t − t2))

≤λ2V(t2) exp(α(t − t2))
≤λ1λ2V(t0) exp(α(t2 − t0)) exp(α(t − t2))
=λ1λ2V(t0) exp(α(t − t0)).

(4.9)

Therefore, for t ∈ (T1,T2], we have

V(t) ≤ λm1
1 λm2

2 V(t0) exp(α(t − t0)), (4.10)

where the decision value mk is defined in (4.6).
In general, for t ∈ (Tk−1,Tk], we can derive

V(t) ≤ V(t0)λ1 · · · λk−2λ
mk−1
k−1 λ

mk
k exp(α(t − t0)). (4.11)

From condition (iii), we have

λk exp(α(Tk+1 − Tk)) <
1
η
. (4.12)

Thus, for t ∈ (Tk−1,Tk],

V(t) ≤V(t0)λ1 · · · λk−2λ
mk−1
k−1 λ

mk
k exp(α(t − t0))

≤V(t0)λ1 · · · λk−2λ
mk−1
k−1 λ

mk
k exp(α(Tk − t0))

=V(t0) exp(α(T1 − t0))λ1 exp(α(T2 − T1)) · ··
λk−2 exp(α(Tk−1 − Tk−2))λmk−1

k−1 λ
mk
k exp(α(Tk − Tk−1))

≤
1
ηk−2 V(t0) exp(α(T1 − t0))λmk−1

k−1 λ
mk
k exp(α(Tk − Tk−1)).

(4.13)

Since T1 − t0 < ∞,Tk − Tk−1 = ∆k < ∞, λk,mk and θ are finite constants, then V(t0) exp(α(T1 −

t0))λmk−1
k−1 λ

mk
k exp(α(Tk − Tk−1)) is a finite constant. 1

ηk−2 → 0 as k → ∞, which indicates the consensus
error e(t) is asymptotically stable at the origin. Then multi-agent systems (3.1) can achieve constraint
impulsive consensus. Here the proof is completed. �

Remark 1. This theorem indicates multi-agent systems (3.1) can achieve constraint impulsive
consensus via impulsive time windows under suitable conditions. The Lipschitz parameter θ,
impulsive control gain ck and the centre distance (Tk+1 − Tk) of adjacent impulsive time windows play
important roles for impulsive consensus. Usually we discuss the impulsive consensus in the interval
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t ∈ (tk−1, tk], k ∈ N+, but by using impulsive time windows we would change the interval to
t ∈ (Tk−1,Tk], k ∈ N+, which is novel and flexible and gives us a new way to analysis the impulsive
consensus problem. By expanding the central interval, we will deduce more interesting results in
Theorem 2.

Remark 2. The impulsive control gain ck and the centre distance (Tk+1−Tk) of adjacent impulsive
time windows are changing with k. If ck = c is time-invariant , ∆k = Tk − Tk−1 = ∆ is a fixed interval
and P = INn, then we can get easier conditions for constraint impulsive consensus

(i) ε + ε−1θ2 ≤ α,

(ii) α∆ + ln(λη) < 0,

where λ is the maximum eigenvalue of (M + INn)T(M + INn).

4.2. Consensus of larger impulsive interval

In this subsection, we consider the interval t ∈ [T l
2k−1,T

r
2k]. Only the odd central position T2k−1 in

impulsive time window has been used to prove the consensus of multi-agent systems. We just need
to choose suitable impulsive instant t2k−1in [T l

2k−1,T
r
2k−1]. The restriction of impulsive instant t2k in

impulsive time window [T l
2k,T

r
2k] can be released, and the random even impulsive instant t2k changes

to more larger control range (t2k−1, t2k+1).
Theorem 2. Under Assumption 1–3, the multi-agent systems via impulsive protocol can achieve

constraint impulsive consensus if there exist a positive definite matrix P ∈ RNn×Nn and some positive
scalars ε, α, λk < 1, η > 1 satisfying the following conditions

(i) εP2 + ε−1θ2INn ≤ αP,
(ii) [(INn + Mk)]TP[(INn + Mk)] ≤ λkP,

(iii) α(T2k+1 − T2k−1) + ln(λ2k−1λ2kη) < 0,

where Mk has been definition in Theorem 1. Then multi-agent systems (3.1) can achieve impulsive
consensus.

Proof. Consider a candidate Lyapunov function as

V(t) = eT(t)Pe(t).

Similar to the process of proving Theorem 1, we can easily obtain (4.1) and (4.2) . Combining (4.1)
and (4.2), for t ∈ (tk−1, tk], it yields{

V(t) ≤ V(t+
k−1) exp(α(t − tk−1)), t , tk

V(t+
k ) ≤ λkV(tk), t = tk.

(4.14)

From condition (iii), we can obtain

λ2k−1λ2k exp(α(T2k+1 − T2k−1)) <
1
η
. (4.15)

Using the result of Theorem 1, we consider two cases to prove the consensus of multi-agent systems.
N Case 1. When T2k−1 < t ≤ T2k.
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V(t) ≤V(t0)λ1 · · · λ2k−2λ
m2k−1
2k−1 λ

m2k
2k exp(α(t − t0))

≤V(t0)λ1 · · · λ2k−2λ
m2k−1
2k−1 λ

m2k
2k exp(α(T2k − t0))

=V(t0) exp(α(T1 − t0))λ1λ2 exp(α(T3 − T1))λ3λ4 exp(α(T5 − T3))
· · · λ2k−3λ2k−2 exp(α(T2k−1 − T2k−3))λm2k−1

2k−1 λ
m2k
2k exp(α(T2k − T2k−1))

≤
1
ηk−1 V(t0) exp(α(T1 − t0))λm2k−1

2k−1 λ
m2k
2k exp(α(T2k − T2k−1)).

(4.16)

N Case 2. When T2k < t ≤ T2k+1.

V(t) ≤V(t0)λ1 · · · λ2k−1λ
m2k
2k λ

m2k+1
2k+1 exp(α(t − t0))

≤V(t0)λ1 · · · λ2k−1λ
m2k
2k λ

m2k+1
2k+1 exp(α(T2k+1 − t0))

=V(t0) exp(α(T1 − t0))λ1λ2 exp(α(T3 − T1))λ3λ4 exp(α(T5 − T3))
· · · λ2k−3λ2k−2 exp(α(T2k−1 − T2k−3))λ2k−1λ

m2k
2k λ

m2k+1
2k+1 exp(α(T2k+1 − T2k−1))

≤
1
ηk−1 V(t0) exp(α(T1 − t0))λ2k−1λ

m2k
2k λ

m2k+1
2k+1 exp(α(T2k+1 − T2k−1)).

(4.17)

Since V(t0), θ, λk,mk and (Tk − Tk−1) = ∆k < ∞ are finite constants. 1
ηk−1 → 0 as k → ∞, which

indicates the consensus error e(t) is asymptotically stable at the origin. Then multi-agent systems (3.1)
can achieve constraint impulsive consensus. Here the proof is completed. �

Remark 3. It follows from conditions of Theorem 2 that the central position T2k−1 of the
impulsive time window has obvious influence for the impulsive consensus of multi-agent systems.
And only the central position T2k−1 of the impulsive time window is necessary. The impulsive instant
tk and even central position T2k are not needed. From Theorem 2, we need to choose the suitable odd
impulsive instant in corresponding impulsive time window. However, the even impulsive instant t2k

can be randomly changing in the larger interval (t2k−1, t2k+1) without any constraint and the
corresponding impulsive time window is no more restriction on t2k which can be removed. This is one
of the advantage of multi-agent systems with impulsive time windows that have been designed in this
paper.

If we expand the central interval to larger range t ∈ (Tn0(k−1)+1,Tn0k+1], There are more random
impulsive instants out of constraint impulsive time windows. Here is the corollary.

Corollary 1. Under Assumption 1-3, the multi-agent systems via impulsive protocol can achieve
consensus if there exist a positive definite matrix P ∈ RNn×Nn and some positive scalars ε, α, λk < 1, η >
1 satisfying the following conditions

(i) εP2 + ε−1θ2INn ≤ αP,
(ii) [(INn + Mk)]TP[(INn + Mk)] ≤ λkP,

(iii) α(Tkn0+1 − T(k−1)n0+1) + ln(λ(k−1)n0+1λ(k−1)n0+2 · · · λkn0η) < 0,

where Mk has been definition in Theorem 1. Then multi-agent systems (3.1) can achieve constraint
impulsive consensus.

Proof. From condition (iii), we can get

λ(k−1)n0+1λ(k−1)n0+2 · · · λkn0 exp(α(Tkn0+1 − T(k−1)n0+1) <
1
η
. (4.18)
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Similar to the proof of Theorem 2, we will discuss n0 situations of the consensus problem.
N Case 1. When Tn0(k−1)+1 < t ≤ Tn0(k−1)+2.

V(t) ≤V(t0)λ1 · · · λn0(k−1)λ
mn0(k−1)+1

n0(k−1)+1λ
mn0(k−1)+2

n0(k−1)+2 exp(α(t − t0))

≤V(t0)λ1 · · · λn0(k−1)λ
mn0(k−1)+1

n0(k−1)+1λ
mn0(k−1)+2

n0(k−1)+2 exp(α(Tn0(k−1)+2 − t0))

=V(t0) exp(α(T1 − t0))λ1λ2 · · · λn0 exp(α(Tn0+1 − T1))λn0+1λn0+2 · · · λ2n0

exp(α(T2n0+1 − Tn0+1)) · · · λn0(k−2)+1λn0(k−2)+2 · · · λn0(k−1)

exp(α(Tn0(k−1)+1 − Tn0(k−2)+1))λ
mn0(k−1)+1

n0(k−1)+1λ
mn0(k−1)+2

n0(k−1)+2

exp(α(Tn0(k−1)+2 − Tn0(k−1)+1))

≤
1
ηk−1 V(t0) exp(α(T1 − t0))λ

mn0(k−1)+1

n0(k−1)+1λ
mn0(k−1)+2

n0(k−1)+2

exp(α(Tn0(k−1)+2 − Tn0(k−1)+1)).

(4.19)

N Case 2. When Tn0(k−1)+2 < t ≤ Tn0(k−1)+3.

V(t) ≤V(t0)λ1 · · · λn0(k−1)+1λ
mn0(k−1)+2

n0(k−1)+2λ
mn0(k−1)+3

n0(k−1)+3 exp(α(t − t0))

≤V(t0)λ1 · · · λn0(k−1)+1λ
mn0(k−1)+2

n0(k−1)+2λ
mn0(k−1)+3

n0(k−1)+3 exp(α(Tn0(k−1)+3 − t0))

=V(t0) exp(α(T1 − t0))λ1λ2 · · · λn0 exp(α(Tn0+1 − T1))λn0+1λn0+2 · · · λ2n0

exp(α(T2n0+1 − Tn0+1)) · · · λn0(k−2)+1λn0(k−2)+2 · · · λn0(k−1)

exp(α(Tn0(k−1)+1 − Tn0(k−2)+1))λn0(k−1)+1λ
mn0(k−1)+2

n0(k−1)+2λ
mn0(k−1)+3

n0(k−1)+3

exp(α(Tn0(k−1)+3 − Tn0(k−1)+1))

≤
1
ηk−1 V(t0) exp(α(T1 − t0))λn0(k−1)+1λ

mn0(k−1)+2

n0(k−1)+2λ
mn0(k−1)+3

n0(k−1)+3

exp(α(Tn0(k−1)+3 − Tn0(k−1)+1)).

(4.20)

...

N Case n0. When Tn0k < t ≤ Tn0k+1.

V(t) ≤V(t0)λ1 · · · λn0k−1λ
mn0k

n0k λ
mn0k+1

n0k+1 exp(α(t − t0))

≤V(t0)λ1 · · · λn0k−1λ
mn0k

n0k λ
mn0k+1

n0k+1 exp(α(Tn0k+1 − t0))

=V(t0) exp(α(T1 − t0))λ1λ2 · · · λn0 exp(α(Tn0+1 − T1))λn0+1λn0+2 · · · λ2n0

exp(α(T2n0+1 − Tn0+1)) · · · λn0(k−2)+1λn0(k−2)+2 · · · λn0(k−1)

exp(α(Tn0(k−1)+1 − Tn0(k−2)+1))λn0(k−1)+1λn0(k−1)+2 · · · λn0k−1λn0k

exp(α(Tn0k+1 − Tn0(k−1)+1))
1
λn0k

λ
mn0k

n0k λ
mn0k+1

n0k+1

≤
1
ηk V(t0) exp(α(T1 − t0))

1
λn0k

λ
mn0k

n0k λ
mn0k+1

n0k+1 .

(4.21)

Since V(t0), θ, λk,mk, n0 and (Tk−Tk−1) = ∆k are finite constants. 1
ηk−1 → 0 and 1

ηk → 0 as k → ∞, which
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indicates the consensus error e(t) is asymptotically stable at the origin. Then multi-agent systems (3.1)
can achieve constraint impulsive consensus. Here the proof is completed. �

Remark 4. Conditions of Theorem 1 and Theorem 2 are special cases of the inequation in
Corollary 1. When n0 = 1, it corresponds to the fixed impulsive time windows in Theorem 1. When
n0 = 2, the even impulsive instant t2k can be given anywhere in the interval (t2k−1, t2k+1) without the
restriction of corresponding impulsive time window. When n0 = 3, we just need to choose suitable
impulsive instant t3k−2 in the impulsive time window [T l

3k−2,T
r
3k−2], and the impulsive instants t3k−1, t3k

in (t3k−2, t3k+1) can be arbitrarily selected just satisfying t3k−1 < t3k. The restriction of corresponding
impulsive time windows has been released. By comparison, it concludes that lager n0 allows for more
arbitrary impulsive instants and removes more uncontrolled impulsive time windows. However lager
n0 corresponds to more complex inequality condition that is not good for system design. Therefor, we
should choose suitable parameter n0 according to practical application.

5. Numerical simulations

In this section, examples are given to illustrate the inequality conditions of Theorem 1 and Theorem
2 and to demonstrate the consensus of multi-agent systems. Consider the topology Ḡ of five multi-
agents which contains a leader agent. The communication of topology diagram is described in Figure 4.

0

4

2

3

1

Figure 4. The topology of multi-agents with a leader.

For simplify, let xi(t) = xi, then the nonlinear system is described as

f (xi, t) =

(
0.2xi2 + sin(xi1) + tanh(xi2)
−0.3xi1 + arctan(xi2) + 2 cos t2

)
,

where xi ∈ R2, f (xi, t) ∈ R2, and take the Lipschitz constant θ = 2. From Figure 4, the adjacency matrix
and Laplacian matrix of topology Ḡ are described as follow

A =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 , L =


1 −1 0 0
0 1 0 −1
−1 0 1 0
0 0 −1 1

 ,
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and the matrix of the information exchange from leader to followers is

B =


2 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

 .

We suppose the impulsive gain ck = −1, ε = 2, η = 1.1, P = INn, H = diag[−0.2,−0.2,−0.2,−0.2]⊗
I2, κ1 = κ2 = κ3 = κ4 = κ5 = 0.2 and the rest ones are 0. Then, we have

INn + Mk = INn +

2Nn∑
i=1

κi(Fi(ck(L + B) ⊗ In) + F−i H)

=


0.24 0.2 0 0

0 0.64 0 0.2
0.2 0 0.24 0
0 0 0.2 0.64

 ⊗ I2.

By numerical calculation, take α = ε + ε−1θ2 = 4. λk = 0.5984 is the maximum eigenvalue of
(Mk + INn)T(Mk + INn) and the centre distance of adjacent impulsive time windows is deduced as ∆ =

Tk − Tk−1 < −
ln(λkη)
α

= 0.1045. We chose ∆ = 0.1. Then conditions of remark 2 can be easily obtained.
When the conditions are satisfied, then all of the agents achieve constraint impulsive consensus with
impulsive time windows. The results are shown from Figure 5 to Figure 10. Figure 5 to Figure 8 show
the different convergence effects between unconstraint impulsive and constraint impulsive protocol.
Figure 9 and Figure 10 show the error states of multi-agent systems with constraint impulsive protocol.
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Figure 5. States xi1(t) with unconstraint impulsive.
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Figure 6. States xi1(t) with constraint impulsive.
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Figure 7. States xi2(t) with unconstraint impulsive.
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Figure 8. States xi2(t) with constraint impulsive.
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Figure 9. Error states ei1(t) with constraint impulsive.
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Figure 10. Error states ei2(t) with constraint impulsive.

The relation between the impulsive instant tk and the central position Tk is expressed in Figure 11.
The diagram indicates that the impulsive instants tk are randomly distributed on both sides of the central
position Tk.

Now, we analysis the holding condition of Theorem 2. Assuming ck = −1, ε = 2, η = 1.1, P = INn,
and λ2k = λ2k−1 = 0.5984, we can obtain

T2k+1 − T2k−1 < −
ln(λ2kλ2k−1η)

α
= 0.2329.

Then the constraint impulsive consensus of multi-agent systems can be achieved with impulsive
time windows. Figure 12 expresses the relation between the impulsive instants t2k, t2k−1 and the central
position Tk. Comparing the distance from different impulsive instant to corresponding central position,
we could see t2k (blue point) has a larger variable range than t2k−1 (red point). This is the one of the
advantage of Theorem 2 which guarantees larger variable range of even impulsive instant.
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Figure 11. The relative position between tk and Tk.
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Figure 12. The relative positions between t2k−1, t2k and Tk.

6. Conclusions

In this paper, the constraint impulsive consensus problem of nonlinear multi-agent systems in
directed network with impulsive time windows is investigated. Based on algebraic graph theory,
convex combination analysis, matrix theory and impulsive protocols, some sufficient conditions of
impulsive consensus have been proposed. The simulations have demonstrated that constraint
impulsive protocol with impulsive time windows is efficient and flexible for consensus. Constraint
impulsive protocol may decrease the convergence rate, but it is more practical in industrial
applications. It should be also pointed out that the centre distance of adjacent or non-adjacent
impulsive time windows plays an important role for impulsive consensus. By comparison, the larger
central interval is helpful to allow for more arbitrary impulsive instants without restriction of
impulsive time windows but corresponds to more complex inequality conditions, so a good tradeoff of
the centre interval is very essential. In the next future, the theory of impulsive time windows could be
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utilized to study Razumikhin stability for impulsive stochastic delay differential systems, stabilization
of stochastic nonlinear delay systems with impulsive event-triggered feedback control, and moment
exponential stability of stochastic nonlinear delay systems with impulse effects at random times with
noise disturbances.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grants
61873213 and 61633011, and in part by National Key Research and Development Project under Grant
2018AAA0100101.

Conflict of interest

The authors declare that they have no conflict and interests.

References

1. H. G. Tanner, A. Jadbabaie, G. J. Pappas, Flocking in fixed and switching, IEEE Trans. Autom.
Control, 52 (2007), 863–868.

2. Y. Cao, W. Yu, W. Ren, et al. An overview of recent progress in the study of distributed multi-agent
coordination, IEEE Trans. Ind. Inform., 9 (2013), 427–438.

3. X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method,
Appl. Math. Comput., 342 (2019), 130–146.

4. Z. Guan, Y. Wu, G. Feng, Consensus analysis based on impulsive systems in multiagent networks,
IEEE Trans. Circuits Syst. I, 59 (2012), 170–178.

5. Y. Han, C. Li, W. Zhang, et al. Impulsive consensus of multiagent systems with limited bandwidth
based on encoding-decoding, IEEE Trans. Cybern., 50 (2020), 1–12.

6. A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous agents using
nearest neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988–1001.

7. H. Du, G. Wen, G. Chen, et al. A distributed finite-time consensus algorithm for higher-order
leaderless and leader-following multiagent systems, IEEE Trans. Syst. Man Cybern., 47 (2017),
1625–1634.

8. B. Cui, C. Zhao, T. Ma, et al. Leaderless and leader-following consensus of multi-agent chaotic
systems with unknown time delays and switching topologies, Nonlinear Anal. Hybrid Syst., 24
(2017), 115–131.

9. D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent
switching and dynamic output feedback, Nonlinear Anal. Hybrid Syst., 32 (2019), 294–305.

10. X. Tan, J. Cao, X. Li, et al. Leader-following mean square consensus of stochastic multi-agent
systems with input delay via event-triggered control, IET Control Theory Appl., 12 (2018), 299–
309.

AIMS Mathematics Volume 5, Issue 4, 3682–3701.



3700

11. Q. Zhang, S. Chen, C. Yu, Impulsive consensus problem of second-order multi-agent systems with
switching topologies, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 9–16.

12. Z. Xu, C. Li, Y. Han, Leader-following fixed-time quantized consensus of multi-agent systems via
impulsive control, J. Franklin Inst., 356 (2019), 441–456.

13. J. Hu, Y. Hong, Leader-following coordination of multi-agent systems with coupling time delays,
Phys. A Stat. Mech. Appl., 374 (2007), 853–863.

14. F. Wang, Y. Yang, Leader-following exponential consensus of fractional order nonlinear multi-
agents system with hybrid time-varying delay: A heterogeneous impulsive method, Phys. A, 482
(2017), 158–172.

15. G. Wen, W. Yu, Y. Xia, et al. Distributed tracking of nonlinear multiagent systems under directed
switching topology: An observer-based protocol, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017),
869–881.

16. Z. Guan, Z. Liu, G. Feng, et al. Impulsive consensus algorithms for second-order multi-agent
networks with sampled information, Automatica, 48 (2012), 1397–1404.

17. Y. Han, C. Li, Z. Zeng, et al. Exponential consensus of discrete-time non-linear multi-agent systems
via relative state-dependent impulsive protocols, Neural Netw., 108 (2018) 192–201.

18. Y. Han, C. Li, Z. Zeng, Asynchronous event-based sampling data for impulsive protocol on
consensus of non-linear multi-agent systems, Neural Netw., 115 (2019), 90–99.

19. X. Li, J. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential
equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14–22.

20. X. Li, P. Li, Q. Wang, Input/output-to-state stability of impulsive switched systems, Syst. Control
Lett., 116 (2018), 1–7.

21. X. Liu, C. Du, P. Lu, et al. Distributed event-triggered feedback consensus control with state-
dependent threshold for general linear multiagent systems, Internat. J. Robust Nonlinear Control,
27 (2017), 2589–2609.

22. Z. Cao, C. Li, X. Wang, et al. Finite-time consensus of linear multi-agent system via distributed
event-triggered strategy, J. Franklin Inst., 355 (2018), 1338–1350.

23. T. Ma, Z. Zhang, C. Bing, Adaptive consensus of multi-agent systems via odd impulsive control,
Neurocomputing, 321 (2018), 139–145.

24. Y. Wang, J. Yi, Consensus in second-order multi-agent systems via impulsive control using
position-only information with heterogeneous delays, IET Control Theory Appl., 9 (2015), 336–
345.

25. F. Jiang, D. Xie, M. Cao, Dynamic consensus of double-integrator multi-agent systems with
aperiodic impulsive protocol and time-varying delays, IET Control Theory Appl., 11 (2017), 2879–
2885.

26. Q. Zhu, J. Cao, R. Rakkiyappan, Exponential input-to-state stability of stochastic Cohen-Grossberg
neural networks with mixed delays, Nonlinear Dyn., 79 (2014), 1085–1098.

27. Q. Zhu, pth Moment exponential stability of impulsive stochastic functional differential equations
with Markovian switching, J. Franklin Inst., 351 (2014), 3965–3986.

AIMS Mathematics Volume 5, Issue 4, 3682–3701.



3701

28. Q. Zhu, J. Cao, Stability analysis of Markovian jump stochastic BAM neural networks with impulse
control and mixed time delays, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 467–479.

29. Y. Li, J. Lou, Z. Wang, et al. Synchronization of dynamical networks with nonlinearly coupling
function under hybrid pinning impulsive controllers, J. Franklin Inst., 355 (2018), 6520–6530.

30. C. Huang, J. Lu, D. W. C. Ho, et al. Stabilization of probabilistic Boolean networks via pinning
control strategy, Inf. Sci., 510 (2020), 205–217.

31. X. Wang, C. Li, T. Huang, et al. Impulsive control and synchronization of nonlinear system with
impulse time window, Nonlinear Dynam., 78 (2014), 2837–2845.

32. Y. Feng, C. Li, Comparison system of impulsive control system with impulse time windows, J. Intell.
Fuzzy Syst., 32 (2017), 4197–4204.

33. X. Wang, H. Wang, C. Li, et al. Synchronization of coupled delayed switched neural networks with
impulsive time window, Nonlinear Dynam., 84 (2016), 1747–1757.

34. X. Wang, J. Yu, C. Li, et al. Robust stability of stochastic fuzzy delayed neural networks with
impulsive time window, Neural Netw., 67 (2015), 84–91.

35. Y. Feng, C. Li, T. Huang, Periodically multiple state-jumps impulsive control systems with impulse
time windows, Neurocomputing, 193 (2016), 7–13.

36. T. Ma, Z. Zhang, C. Bing, Variable impulsive consensus of nonlinear multi-agent systems,
Nonlinear Anal. Hybrid Syst., 31 (2019), 1–18.

37. Li. L, C. Li, H. Li, An analysis and design for time-varying structures dynamical networks via state
constraint impulsive control, Int. J. Control, 92 (2019), 2820–2828.

38. Li. L, C. Li, H. Li, Fully state constraint impulsive control for non-autonomous delayed nonlinear
dynamic systems, Nonlinear Anal. Hybrid Syst., 29 (2019), 383–394.

39. X. Liao, L. Wang, P, Yu, Stability of dynamical systems, Elsevier, 2007.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 4, 3682–3701.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Notations
	Graph theory

	Problem formulation
	Main results
	Consensus of impulsive time windows
	Consensus of larger impulsive interval

	Numerical simulations
	Conclusions

