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1. Introduction

Concurrent with the development of classic calculus theory, quantum calculus (calculus without
limit) have received a great deal of attention in the last three decades. Quantum calculus have been
found in many problems such as particle physics, quantum mechanics, and calculus of variations. In
this paper, we study on the development of Hahn calculus, which is a type of quantum calculus. Hahn
difference operator was first introduced by Hahn [1] in 1949 in the form of

_ flgt+w) - f(O) w

D,.,f@):= .t =—
A s R g

This operator has been further employed in many research works such as the studies of the right inverse
and its properties of Hahn difference operator [2, 3], Hahn quantum variational calculus [4, 5, 6],
the initial value problems [7, 8, 9], and the boundary value problems [10, 11]. The approximation
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problems and constructing families of orthogonal polynomials [12, 13, 14], Hahn difference operator
is an important tool used to study in these areas.

Based on the iadea of Hahn, in 2017, Brikshavana and Sitthiwirattham [15] introduced a general
case of order of Hahn’s operator, the so-called fractional Hahn difference operators. This operator
has been used in the study of existencne and uniqueness of solution of boundary value problems for
fractional Hahn difference equations (see [16, 17, 18, 19]).

The symmetric Hahn difference operator Dq,w is another opertor related to Hahn’s operator. It was
introduced by Artur et al. in 2013 [20] where

flgt+ ) - fg”'(t - w))
(@—g D+ +gHw
Recently, Patanarapeelert and Sitthiwirattham [21] introduced the fractional symmetric Hahn
integral, Riemann-Liouville and Caputo fractional symmetric Hahn difference operators and their
properties. To present the advantage of this newest knowledge, in this paper, we devote our attention
to study the solutions of boundary value problem for fractional symmetric Hahn difference equation.
Our problem is a nonlocal fractional symmetric Hanh integral boundary value problem for fractional
symmetric Hahn integrodifference equation of the form

Dy ut) = F(tu@,Dh u@), ¥ u@),), tell

g
wwo) = A4 Ly,gmum), (1.1)
u(T) LI em)uGp),  mam €1, —{wo. T},

where 1], = (¢"T +wlkl,  k €T} Ul @ € (1,21 7,600,602 € 011 0> 0; g€ 0.1); A1, s €
R*; FeC(l,, xR R)and g,¢& € C(I],,R*) are given functions; and for ¢ € C(I] , x I}, [0, 00)),
we define

for t # wy.

Dyuf() :=

q,w>

y ¢ ! y
vy u(t) = (1 wgou)(t) =1 = f (t—s) o(t, 22 () (a2 (5)) dyos.
qw wo

In the next section, we give some definitions and lemmas related to fractional symmetric Hahn
calculus. In section 3, we analyze the existence and uniqueness of a solution of problem (1.1) by using
the Banach fixed point theorem. Moreover, we show the existence of at least one solution of problem
(1.1) by using the Schuader’s fixed point theorem. Finally, we present an example to illustrate our
results in the last section.

2. Preliminaries

2.1. Basic knowledge

In this section, we provide some notations, definitions, and lemmas related to the fractional
symmetric Hahn difference calculus as follows [20, 21, 22, 23].

ForO<g<1,w>0, wo——and[k]q i —L—, we define
l_qZk

m, = 1_q2:[k]f’ ber

1, k=0,
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T 6=, M, = | [ —5%. keN
T i=1

q 1-¢

1, k=0.
The g, w-forward jump operator is defined by
O'I;’w(l) = qkt + wlk],,

and the ¢, w-backward jump operator is defined by

t— wlk]
p’;,w(t) = Tq,

where k € N.

Letn e Ny :={0,1,2,...}, and a, b € R. We define the power functions as follows:
e The g-analogue of the power function

n—1
(a-byg:=1,  (a=b):=| |@@-bg).
i=0
e The g-symmetric analogue of the power function
0 n—1
@=by,:=1, (@=by,:=| [@-bg"".
i=0

e The g, w-symmetric analogue of the power function

S

~—n

@=b),, =1, (a=by,=|[la-c2w)].

1
i=0

Generally, for @ € R, we have

0 (b 2i+l
@by =a|| 1= (%)

Ll (S) g+l ’

—_— @ ) 1_(M)q2i+1

(m))iw - ((a —wy) — (b - wo)); = (a — wy) . (Z:_Z{;Oqz(mi)ﬂ ’

a+0,

a * wg.

Particularly, we have a; = a; = a and (a/——\c_/uo)iw = (a—wy)* if b = 0. If a = b, we define

(0) = (0), = (wp),,, = O fora > 0.
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The g-symmetric gamma and g-symmetric beta functions are defined as

—~ x—1

-5t (=g, L
f*q(x) = (l;i),i—] - (l_qZ)x—] ’ X € R \ {O’ 17 2a -"}
[x — 11,1, xeN

. N -
Bq(x, y) = ](; (q_ls)x_1 (m);;qus = —l;f((xil};);)
q

respectively.

Lemma 2.1. [2]] For m,n € Ny and a € R,
(@) (x0T, = (@ -w) (=g,
N =«

(B) (5, () =0, (), = ¢"(x = wo)"(1 = g™,

Definition 2.1. [20] For q € (0,1), w > 0, and f is a function defined on I; » € R, the symmetric
Habhn difference of f is defined by
- L) = Wt
By fiy o= LT D= 10w ®
O-q,w(t) - pq,w(t) ’
Dq,w f(wo) = f'(wy) where f is differentiable at wy.

Eq,w f is called g, w-symmetric derivative of f, and f is q, w-symmetric differentiable on Iziw'
In addition, we define

DY, f(x) = f(x) and Dﬁ]\f L) = Dq,wf);\f ~1 f(x) where N € N.

Remarks If f and g are ¢, w-symmetric differentiable on 17

qw’
((1) ?q,w[f(t) + g(t)] = Dq,wf(Q + Dq,wg(t)’ _
(b) Dqulf(D8D] = f(pg.0(1))Dgw8g(1) + 8(04.u(1)) Dy f(1),
© D [f 0] 804Dy f(1) = f(040(1))Dy08(t)
q,w

s 80 D8 4D + 800u()8(040(0) # 0,

(d) D,,[C]=0 where C is constant.

Definition 2.2. [20] Let I be any closed interval of R containing a,b and wy and f : I — R be a given
function. The symmetric Hahn integral of f from a to b is defind by

b b a
f fOd, = f f@)d, .t — f fd, .t

Lt 0= [ S0dut= 1= a0 Y £ (02 ). xel.
@o k=0

where

Providing that the above series converges at x = a and x = b, f is symmetric Hahn integrable on [a, b].
In addition, f is symmetric Hahn integrable on I if it is symmetric Hahn integrable on [a, b] for all
a,bel.
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In addition,
I f() = f), IV,f(x)=1,,I),f(x) where N €N,

Dq,qu,wf(x) = f(X), and jq,qu,wf(x) = f(.X) - f(wO)
Remarks [20] Leta,b € I}, and f, g be symmetric Hahn integrable on I/ ,. Then,

(@ [ f6)dyut =0,

®) [ fOdgot =~ [ fOdyot,

© [ fOdyot = [ fOdyot + [ fOdyut, ¢ €10y, a<c<b,

@ [ [af@) +BsO]dyut = a [ fO)dyut +B [ §0dyut, @B ER,

© [ [FeocDes®| dyot = [FDD1. = [ 18(000(0) Dy fO] dyot:

Lemma 2.2. [20] [Fundamental theorem of symmetric Hahn calculus]
Let f : I — R be continuous at wy. Then,

F(x):= f ' fd,t, xel

0

is continuous at wy and Eq,wF(x) exists for every x € o ,(I) := {qt + w : t € I} where
Dy F(x) = f(x).

In addition, ,
f Dq,wf(t)‘zq,wt = f(b) — f(a) forall a,b € I.

Lemma 2.3. [2]]Let0 < g <1, w>0and f : I - R be continuous at wy. Then,

! r ! !
f f(s) Czq,wsczq,wr = le f flgs + w) Jq,wrdq,ws'
wo [oh) [oh) qs+w

Definition 2.3. [2]] Let a,w > 0, 0 < g < 1, and f be a function defined on I;w. The fractional
symmetric Hahn integral is defined by

~ @) [ e 3
1,,/@) = 'fq(a) f (t—s)qj] f(ag;}(s))dq,ws
q wo
_ (1 =990 - wy) 1 2k O o 2kta
) T,(@) ;q SO Com)

(9

A== 00 O i T\ o ke
- Fy(@) ;;q (=), flogiew)

and I3,0)0) = f().
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Definition 2.4. [2]1] For a,w > 0, 0 < g < 1 and f defined on I;w, the fractional symmetric Hahn
difference operator of Riemann-Liouville type of order « is defined by

D:, f() = DN, INf(r)

q.w* qw
(_Z(Y) t —~~— —a—1
_ q f ( @ —a—1 7
= = t—5) ., flos (8))dyws,
Fq(_a) wo ’ ( * ) !

D) = f@
where N—1<a <N, NeN.
Lemma 2.4. [2]] Let a,0w>0,0<g<1land f: I;w — R. Then,

1% DY £(f) = f(t) + Ci(t — wo)* ™" + Colt — w)* ™ + ... + Cy(t — wo)*™N

q,w" q,w

forsome C;eR,i=1,2,...,Nand N—-1<a < N for N € N.

Lemma 2.5. [24] (Arzeld-Ascoli theorem) A set of function in Cla, b] with the sup norm, is relatively
compact if and only if it is uniformly bounded and equicontinuous on |[a, b].

Lemma 2.6. [24] If a set is closed and relatively compact then it is compact.

Lemma 2.7. [25] (Schauder’s fixed point theorem) Let (D,d) be a complete metric space, U be a
closed convex subset of D, and T : D — D be the map such that the set Tu : u € U is relatively
compact in D. Then the operator T has at least one fixed point u* € U: Tu* = u".

2.2. Auxiliary lemmas

In this section, we formulate some lemmas that will be used as a tool for our calculations as follows.

Lemma 2.8. Let g € (0,1),w > 0 and n > 0. Then,

f t n
f c?q,ws =t—wy and f (s — wo)" Jq,ws = ,_z_, (t — wo)™!.
wo wo [n+ 1],

Proof. Using the definition of symmetric Hahn integral, we have

! )
f dyos = (1=g)(t=-w) ) ¢
@wo k=0
1
l-¢q

(1—6]2)(f—w0)[ z}zf—wo,

and

! [e]
f (s—wo)'dgws = (1=g)(t—wy) ) g (025 (0) = wo)
wp k=0
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= ¢'(1 - q2) (t wo)n+1 Zq(n+1)2k
k=0

1
_ n 2 n+1
= Q(l—Q)(t—wo)Jr[m]

- L i—wy
[n+1],

n+1

The proof is complete.

Lemma 2.9. Let a,5>0, g € (0,1) and w > 0. Then,

(i) (?TE);%‘ Jys = L20"
[a],

(i) f o (0705 - o) dys = %t — wo) BB + 1,0,

fqywl(v) _ — p-1 _ 5 qaﬁ
(iii) f f (0'“ 1(s)—r) dyordyws = 7 (t—wo)“+ﬁBq(ﬂ+ L, a).

q,w
q

Proof. From the definition of g, w-symmetric analogue of the power function, Lemma 2.1 and
Definition 2.2, we obtain

a—1

(i f(r o qws—(l—qm—wo)Zqz" (1- o),

=(1-¢")(t- am)aszk(l Feny

) . 1= q2k+2i+2
=(1-g¢ )(t—wo)“Zq []_[ Wm]
k=0 i=0
_ (t — wp)”
[al,

(i) f O (072 (5) - w0 dys

:(l—qz)(l—wo)iffk aZk“a)) 1(qf“( 21(1) = ) )
k=0

=¢P0 - t-w )‘“ﬂzq%(l 2k+1) 7P

o a —~— a—-1 _ B ~
=q" (t — wy) +ﬁf (1-9),, (q ls) dyws

wo

=q"" (t — wo)"* B,(B + 1, ).
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Using (i) and (ii), we have

Zwl(y) — p-1 5
f f (0’“ I(s) — r) . d ol dpws
wo
—~— a-1 Z“’] (s) — B-1
f( S)q“’f (0‘“ l(s)—r) dqwr dpws
=— f (ﬁ):j (ag’;l(s) — wo)ﬁ dNP,ws
1B, Joo

= q—(w(l‘—a)o)a+ﬁg (ﬁ+ 1 (I)
8], e

2.3. Lemma for linear variant form

The following lemma present a solution of a linear variant form of the problem (1.1).

Lemma 2.10. Ler A #0; w > 0; g € (0,1); a € (1,2]; 61,6, € (0,1]; 21,4, € R*; h e C( qw,R)

and g,g, € C(IT 20 RY) be given functions. Then the linear variant form

DS u@) = hr), tel]

q.w>
u(wo) = I ,gm)ulm), (2.1)
wT) = LIP,emu(n), ni.mell, —{wo, T},

has the unique solution which is

—~— a—1

( - S)i h(O-Zwl (S)) Jq,ws

(@) Jo

_ (l—l

E= 1B, (4] + s 22)
(t — wp)*™? A1B, AlA,
_T{(1+ n )th]+ - @,[h]}

where the functionals ®[h], ®,[h] are defined by

- /11(](91) ©) fmf e (S) — 91 01~ el 0-1
il = L0 () wo ( To (5) r)q,w &1 (O-q"“ (S))X

h(oy, (1) dyurdy, (2.3)
gD+ q»of(s) —~ o1 o=l -
O, [h] := m f(;o (> — S)qw (0' (S) - r) 8 (O'Zwl(S)) X
h(o . (1) dgordg.s — f (T = s)* (092(9)) dygoos. (2.4)
Iy [, () ’

and the constants A,,A,, B, B, and A are defined by

A (921) m.o ) a-1 ~
A, =2 (T =8 21 (951(9) (095 (s) = wo) 'y, (2.5)
1—‘(1(91)
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A (921) o~ -1 _ _ a-2 ~
y =2 071 = $)ge 81 (0051 (9)) (00151 (8) = o) dyuws,
Ty(01) Jon

Lg®D 4 _ _ a-1 ~
~2(] (1, — s);ng (o-fﬁwl (s)) (o-gfwl (s) — wo) dywS,
L'y(62) Ju,

g (g 6r-1 6r-1 =2 5
_ (12 = g 82 (0251 (9)) (0251 (9) = wp) ~ dyas,
Ty(02) Jon

B] = (T - wo)“_l -

B, :=(T — wy)* % -

A I:AzBl —Ale.

Proof. Taking fractional symmetric Hahn integral of order « for (2.1), we obtain
u(t) = Cy(t — w)™ ™" + Calt — wp)* 2 + a9 f NEr (047 (5)) dys
Fy@) Jup 0 e

Taking fractional symmetric Hahn integral of order 6;, i = 1,2 for (2.10), we get

9
. Do~ g
1

I u() = ~q ) [C](O’Z’;;l(s) - a)o)a_1 + CQ(O-ZI;Z)I(S) - a)o)a_z] czq,ws
Ly(60) Juy

N e -1,
61(2’)+(z) ’f‘rq»w () 01, o 17— =L

4+ (E——\E) ” O-el,wl(S)_r h O_a;l(r) J’wrd ’wS.
L0 (@) Jwy S o ( 1 )q,w ( 9. ) qwlldyq

After substituting i = 1 into (2.11) and employing the first condition of (2.1), we have
A C+A,Cp = —O[h].
Taking i = 2 into (2.11) and employing the second condition of (2.1), we have
B,C, + B,C, = Oy[h],
where ©[h], D,[h], A1, Ay, B, and B, are defined as (2.3) — (2.8), respectively.
Solving the system of Eqs (2.12) — (2.13), we have

AA
c, 132

B, D[] + A D[k 1 AB
_ B, 1[]/+\ Dolh] CZZ_A_Z{(lJr 1A2)q>1[h]+ cbz[h]},

where A is defined as (2.9). Substituting the constants C; and C, into (2.10), we obtain (2.2).

3. Main results

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

In this section, we prove the existence and uniqueness of solution of the problem (1.1). Furthermore,

we show the existence of at least one solution of problem (1.1).
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3.1. Existence and uniqueness result

In this section, we consider the existence and uniqueness result for the problem (1.1). Let C =
C (I r ) be a Banach space of all function u with the norm defined by

q.w’

D5 )] .

luelle = max {
where @ € (1,2]; B,v,601,0, € (0,1]; w > 0; g € (0,1); 4;,4;, € R*. We define an operator ¥ : C — C
as

(Fu®) = f e
o
F(O'Z,wl (s), u (O'Z,wl (S)) DE u (0';;1 (s)) P u ( i (s)) ) S
) 0 0]+ Astal )

_ a-2
_(f wo) { 14+ AB,
A, A

AA
)d>1[f(u)]+ =0y f(w)] (3.1)

where the functionals @[ F(u)], ®,[F(u)] are given by

gD+ pmopolte -1 -
PilFel= rl(gl)r @ f (=5 (o @ =), (0519
F(o2) (), u (o Zwl(r)) (05 ), P (09 () )dyordyws, (3.2)
(@) oo, .
D[ F ()] := Fﬂz(gz)r " f G (D r) Le2(0(9)
F(Ug,wl(r),u( Zwl(r)) ( (r)), ( Zwl(r))) dyordyos

qC: — ool
_ f“q(a) fwo (T - s)q,w X
F(O'Z;)l (r),u (G'Z;)l (r)) , Df;wu (G'Z;ul (r)) , ‘i’g,wu ( Zwl (r)) ) S5 (3.3)

and the constants A, A,, B;, B, and A are defined by (2.5)-(2.9), respectively.

We find that the problem (1.1) has solution if and only if the operator ¥ has fixed point.

Theorem 3.1. Assume that F : I} , x R* — R, and g,&, : 1, — R* are continuous, and ¢ :
I;w X I;w — [0, 00) is continuous with ¢y = max {¢(t, s) : (¢, ) € I;w X Ii o} Suppose that the following
conditions hold:

(Hy) There exist constants €y, {,, 3 > 0 such that for each t € I;w and u,v € R,

|F (6, D5 0, ) = F (1,v, D v, 97,v)|

< €1|I/t - V| + fz'bg’wu — DH

+ 6397 u = 7 .
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(H,) There exist constants g;,G; > 0 where i = 1,2 such that for each t € I

q.w’

0< g < gi(t) < Gi.

(H;) © < 1,
where
.G ("M+(5)+01+a
Q =D e (3.4)
[0 +a+1)
1,Gor (D) +oa+a )
L, = 2RdT e e — L (T — ) (3.5)
[0 +a+1) Fya+1)
- .G (61)+01(a—1)f‘
A, = q(“)(m —wp) e > A, (3.6)
Fq(Gl + a)
— NG g(DE@DE (o 1) i
A, = d - wp)" ™2 > A, 3.7)
L6 +a-1)
1o g(DH01@DF (o, _ 1
43 =2 (D et < 4 (3.8)
T,06 +a-1)
0 ~
- L MG () ]
By = (T — wp)" " + =% T — wp)** ! > B, (3.9)
Fq(Hz + a)
. .G (022)+02(a—2)f~ a—1
B, :=(T - w2+ = 24 o )(772 — w7 > B, (3.10)
T, +a-1)
A =818 |A:B1 ~AB,| < IA] 3.11)
and
T "\ (T — wo)* ' 1 —
O: (51 + 52 + 53 ()(~ (+ wol)) ) {( /(::O) [BzQ] +A2Q2]
‘]
(t - wo)“-z[( A Bz) AA, ] gGN(T — wo)a}
+ 1+ Q, + Q . 3.12
A} A )T TA R T a+1) -12)

Then the problem (1.1) has a unique solution in I;w.

Proof. To show that F' is contraction, we first consider

Hu — v|(t) = ‘F (t, u(), Df ,u(?), ‘T’Z,wu(t)) - F (t, v(t), Di (D), ‘I’Z,wv(t)) ,

for each r € I] , and u,v € C. We find that
O [F ()] - O, [F()]|

(D) il =
: M(;éq)r @ f f 1 0 (090 = ) = 0 s
q 11 q wo
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< (f1|u—v|+fz|DB u-D5, ‘+{’3|‘I’7 - |)><
Gig e f frqw © s et
F 0T Joo oy T Vs (4O = 7). dyrdys
[ om el 2o
Ly(y +
< = vlie (a t0+ 53%(?:_6“01):)

Similary,

T Y
‘q)z[F(u)] B (DZ[F(V)]| < lu—vllc (51 + 4 + g3§00%) Q
Loy

In addition, we find that
|(Fu)t) - (Fv)(@)|

¢® f (=)0 Hiu = vI(5) dyors
B VC) e

(T + wo)” \ (T — wp)*™!
+Hlu = V|c 1€ + & + E300=
| llc [ €1 2 3¢%0 q( ) A]

(T + wo) \ (T — wp)*™> ( Ale) AA,
+Hlu =Vl + 6 + € = 1+ Q +
= lle &+ &+ o =5 | =4 { T AT

(T + wp)” {q@w —w)* | (T —wy)"!

{Ble + AzQz}

o

[Ezgl + Kzgz]

< lu=vllclly +6 +¢€ = =
l lle {6 + € 39001_q(y+ D @+ A
— w)* 2 AB AA
+ (t w,?) 1 4 AiB2 Q + 1 2Qz
AS A* A*
= |lu=V||c®. (3.13)

Taking fractional symmetric Hahn difference of order v for (3.1), we obtain

(D) Fu)(1)
(;ﬁ)+((21) g ”;ﬁ:l(“) a—1
__4 — -1 _
- fq(_ﬁ)fq(a) »[)0 f(;o (t s)qw (O-q (S) r) wX
F(oo (0. u (0 (). DE u (00 () B u (092 (1) ) dyordy s
CI( ) "o~ - 1( 5

By D, [f(1)] + Ay D[ f(u)] B a-1
[ B F(—,B) 9 (7l 9~ ) dys
1 AB
—A—z[(u ‘Az) l[f(u>]+ CDz[f(u)]
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& g _
q —~ —B-1 _B_ a-2 ~
e R o ) s (3.14)
Similary, we have
(D, Fu)®) = (D, Fv)0)| < lu—vl|c®. (3.15)

From (3.13) and (3.15), we get
IFu—Fvllc < llu—vlcO.

Using (H3;) we can conclude that ¥ is a contraction. Based on Banach fixed point theorem, ¥ has a
fixed point which is a unique solution of problem (1.1) on IqT

3.2. Existence of at least one solution

In this section, we particularly study the existence of at least one solution of (1.1) by using the
Schauder’s fixed point theorem as follows

Theorem 3.2. Suppose that (H,) and (H3) defined in Theorem 3.1 hold. Then, problem (1.1) has at
least one solution on I;w.

Proof. The proof is established as the following structures.

Step L. Verify ¥ map bounded sets into bounded sets in Bg. Let By = {u € C(I;w) s lullc £ R},
max |F(¢,0,0,0) = M and choose a constant

€l ,

oyl — 2 i xA O Ty
M{—(T A By + Aos] + 1+ 5B )0y + B+ L }
R> — (16

Denote that
|K(t,u,0)| = ‘F(t, u(t), D8 ,u(), 7 ,u(t)) = F(,0,0, 0)‘ + |F(2,0,0,0)|-
We find that

‘cp [F(u)]

(91)+(17) 1 o-qw (s) . 1 _q ) )
< /;G(éq)r @ f S)ZT(O’ '(s) - r) o |‘K(t, u, O)|dq,a)rdq,w s
1) q

< |(am+ fz‘Dﬁwu‘ ¥ €3|‘I’7wu|) + M0,
[ T
< (fl +fz+f3§00%)llu—V|lc+M Ql
(T + wy)”
< 51 +fz+£3(,00~— R+ M Ql, (317)
I,(y+1)
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T
where t € 1, , and u € Bg.
Similary,

s F)]| <

(T+w0)7) ]
b +6,+ € ——|R+ M| Q,.
(1 2 3('001“( T 2

Employing (3.17) and (3.18), we find that

b4 _ a—1 . _
(Fuy@)| < (51 +O+ 5;¢0(~T+—“’°))R Ny POl WoNy WoN
q()’ 1) A
_ a-2 n A A (g) _ a
N (t wf) [(1 N A1?2)Q1 N AIAZQZ] L4 ~(T wo) }
A A X Fa+1)
< R
Since
‘(D{j,fu) 0| <R.

Therefore, ||F ullc < R. Hence, ¥ is uniformly bounded.
Step II. That the operator ¥ is continuous on By since the continuity of F.

Step III. Examine that # is equicontinuous on Bg.
For any t;,1, € I;w with t; < t,, by Lemma 2.9 we have

|(Fuyt) - (Fuy@)|

()
g ?IIFl
- F(a+1)‘(2_ wo)” = (f = wo)” '
(B0 + A, )IIF| . S
+ A* ‘(tz —wo)* = (11 = w)”
F AB AA
HA;”[(I + /1\ Z)Ql 292]‘(& — W) = (1 = wy)"?

and

(P @) - (B )
. g+ D)8 |

2 — W) P = (1) - wo)a_ﬁ‘

T T a-B+1)
(Db ()|IF
q AT (a(a;”) ”(B2Q1 AQ, |(f2—wo)a Bt — wp)* P!
q( D-es T, (a—l)IIFll[( K‘?Z)QI KKZQZ
AT (a-B-1) A A*

(3.18)

(3.19)

(3.20)

(3.21)

AIMS Mathematics Volume 5, Issue 4, 3556-3572.



3570

(tr — wo)* P77 = (1) — w)* 7. (3.22)
Since the right-hand side of (3.22) tends to be zero when |t, — #;| — 0, ¥ is relatively compact on Bg.
Therefore, the set ¥ (Bg) is an equicontinuous set. From Steps I to III together with the Arzeld-Ascoli
theorem, ¥ : C — C is completely continuous. By Schauder’s fixed point theorem, we can conclude
that problem (1.1) has at least one solution.

4. Example

Thoroughly, we provide the boundary value problem for fractional Hahn difference equation

.5 1 X
D3 t — =3t (.2 2 —(mr+cos? 7it) D3 u(t ‘
+e —(1+sin? 7if) % Lu (l)|]
2°3
4 ~3 15 15

u(10)

~§ 251n 7r)
31% 3 (32)

10 N
where 1 € Il 2 and ¢(t, 5) = (H_IO)%

We let a = ,91:%,6’2=1qz%,wz%,wozi:;—‘,T:m,m:

3
1 1-q
10(2)" + 2141, = g, mo=10(3) + 3061, = £, 4 =2, 4 =3, gi(t) = &™), gy(t) = "™ and

@o = max {¢(t, 5)}

win
i)
Il
@i
\<
Il

Forall € 1!°, and u,v € R, we have
2°3

‘F (t, u, DF u, \i’g,wu) -F (t, v, DS v, ‘i’z,wv)‘
1 1
= mlu v e (100¢2 + 100¢* + &)
1

+ | pr u—‘I” |,
(100e2+100e2 64)

u— D8]

| qw q,w

and 1 <gi(<e, +<g)<e

Thus, (H;) and (H;) hold with ¢; = 0.0000247, ¢, = 0.0000583, ¢; = 0.000496 and g; = é, g =
1 2
o G1:€, Gzze.

Since

Q, =0.161, Q,=21.708, A, =1518, A,=6.717, A} =0.909,
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B, =3.241, B, =30.841 and A* =1.247,

therefore, (H3) holds with
® =0.063 < 1.

Hence, by Theorem 3.1 problem (4.1) has a unique solution. O
5. Conclusion

The new problem containing two fractional symmetric Hahn difference operators and three
fractional symmetric Hahn integral with different numbers of order was proposed. The new concepts
of fractional symmetric Hanh calculus were used in the study of existence results of the govern
problem. The Banach fixed point and Schauder’s fixed point theorems were also employed in this
study.
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