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Abstract: In 1999, B. Y. Chen established a sharp inequality between the Ricci curvature and
the squared mean curvature for an arbitrary Riemannian submanifold of a real space form. This
inequality was extended in 2015 by M. E. Aydin et al. to the case of statistical submanifolds in a
statistical manifold of constant curvature, obtaining a lower bound for the Ricci curvature of the dual
connections. Also, the similar inequality for submanifolds in statistical manifolds of quasi-constant
curvature studied by H. Aytimur and C. Ozgur in their recent article. In the present paper, we give a
different proof of the same inequality but working with the statistical curvature tensor field, instead
of the curvature tensor fields with respect to the dual connections. A geometric inequality can be
treated as an optimization problem. The new proof is based on a simple technique, known as Oprea’s
optimization method on submanifolds, namely analyzing a suitable constrained extremum problem.
We also provide some examples. This paper finishes with some conclusions and remarks.
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1. Introduction

The curvature invariants play the most fundamental role in Riemannian geometry. They provide
the intrinsic characteristics of Riemannian manifolds, which affect the behavior in general of the
Riemannian manifold. They are the main Riemannian invariants and the most natural ones. They
are widely used in the field of differential geometry and in physics also. The innovative work of
Kaluza-Klein in general relativity and string theory in particle physics has inspired the mathematicians
and physicists to do work on submanifolds of (pseudo-)Riemannian manifolds. Intrinsic and extrinsic
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invariants are very powerful tools to study submanifolds of Riemannian manifolds. The Ricci curvature
is the essential term in the Einstein field equations, which plays a key role in general relativity. It is
immensely studied in differential geometry as it gives a way of measuring the degree to which the
geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean q-
space. A Riemannian manifold is said to be an Einstein manifold if the Ricci tensor satisfies the vacuum
Einstein equation. The lower bounds on the Ricci tensor on a Riemannian manifold enable one to find
global geometric and topological information by comparison with the geometry of a constant curvature
space form.

In the study of Riemannian submanifolds, it is a fundamental problem for the geometers to
establish some relationships between the main intrinsic invariants and the main extrinsic invariants
of a submanifold. B. Y. Chen, in his initial papers, obtained some useful inequalities between the
scalar curvature, the sectional curvature and the squared norm of the mean curvature of a submanifold
in a real space form. He also talked about the inequalities between k-Ricci curvature, the squared mean
curvature and the shape operator of a submanifold with arbitrary codimension of the same ambient
space [1]. Since then different geometers found the similar relationships for different submanifolds
and ambient spaces (for example [2–4]).

Differential geometry is a traditional yet currently very active branch of pure mathematics with
applications notably in a number of areas of physics. Until recently applications in the theory of
statistics were fairly limited, but within the last few years there has been intensive interest in the subject.
The notion of a statistical manifold has arisen from the study of statistical distribution. A differential
geometric approach for a statistical model of discrete probability distribution was introduced in 1985
by Amari [5]. Statistical manifolds have many applications in affine differential geometry, Hessian
geometry and information geometry. In 1989, Vos [6] introduced and studied the notion of statistical
submanifolds. Later, Furuhata [7] studied statistical hypersurfaces in the space of Hessian curvature
zero and provided some examples as well. Though, till the date it has made very little progress due
to the hardness to find classical differential geometric approaches for study of statistical submanifolds.
Geometry of statistical submanifolds is still young and efforts are on, so it is growing.

Generally, one cannot define a sectional curvature with respect to the dual connections (which are
not metric) by the standard definitions. However, B. Opozda [8, 9] defined a sectional curvature on
a statistical manifold. Suppose that (B̂, ∇̂, ĝ) is a q-dimensional statistical manifold and X1 is a unit
vector such that ||X1|| = 1. We choose an orthonormal frame {e1, . . . , eq} of T B̂ such that e1 = X1. Then
the Ricci curvature at X1 is given by

R̂ic
∇̂,∇̂∗

(X1) =

q∑
i=2

K̂ ∇̂,∇̂
∗

(X1 ∧ ei)

=
1
2

{ q∑
i=2

K̂(X1 ∧ ei) +

q∑
i=2

K̂ ∗(X1 ∧ ei)
}
,

where K̂ ∇̂,∇̂
∗

(ei ∧ e j) denotes the sectional curvature, with respect to ∇̂ and ∇̂∗, of the 2-plane section
spanned by ei and e j.

We denote the Ricci tensors of the induced connections ∇ and ∇0 respectively by Ric and Ric0.
K̂0(X1 ∧ ·) is the sectional curvature function of a statistical manifold with respect to the Levi-Civita
connection restricted to 2-plane sections of the tangent space which are tangent to X1. In [10], M.
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E. Aydin et al. proved the following Chen-Ricci inequality for a p-dimensional submanifold B in a
statistical manifold B̂ of constant curvature ĉ.

Ric(X1) ≥ 2Ric0(X1) −
p2

8
g(H,H) −

p2

8
g(H∗,H∗) + ĉ(p − 1)

−2(p − 1) max K̂0(X1 ∧ ·). (1.1)

Recently, in [11], H. Aytimur et al. obtained the same inequality for a p-dimensional statistical
submanifold B in a statistical manifold B̂ of quasi-constant curvature.

Ric(X1) ≥ 2Ric0(X1) −
p2

8
g(H,H) −

p2

8
g(H∗,H∗)

+â(p − 1) + b̂ + b̂(p − 2)F(X1)F(X1)

−2
p∑

i=2

K̂0(X1 ∧ ei). (1.2)

Remark that if b̂ = 0, then B̂ becomes a statistical manifold of constant curvature and
inequality (1.2) turns into (1.1).

Optimization on manifolds is about exploiting tools of differential geometry to build optimization
schemes on abstract manifolds, then turning these abstract geometric algorithms into practical
numerical methods for specific manifolds, with applications to problems that can be rephrased as
optimizing a differentiable function over a manifold. This research program has shed new light on
existing algorithms and produced novel methods backed by a strong convergence analysis. Here,
we point out that optimization of real-valued functions on manifolds is not the only place where
optimization and differential geometry meet and also is the Riemannian geometry of the central path
in linear programming. As applications to the area of optimization on manifolds, T. Oprea [12]
derived Chen-Ricci inequality by using optimization technique applied in the setup of Riemannian
geometry. The purpose of this paper is to adopt this technique to give another demonstration for the
inequalities (1.1) and (1.2) including the Ricci curvature.

2. Statistical manifolds and submanifolds

Definition 2.1. [5, 7] A Riemannian manifold (B̂, ĝ) with an affine connection ∇̂ is said to be a
statistical manifold (B̂, ĝ, ∇̂) if ∇̂ is a torsion free connection on B̂ and the covariant derivative ∇̂ĝ
is symmetric.

A statistical manifold is a Riemannian manifold (B̂, ĝ) endowed with a pair of torsion-free affine
connections ∇̂ and ∇̂∗ satisfying [5, 7]

X1g(Y1, X2) = ĝ(∇̂X1Y1, X2) + ĝ(Y1, ∇̂
∗
X1

X2),

for any X1,Y1, X2 ∈ Γ(T B̂). Here the connection ∇̂∗ is called the conjugate (or dual) connection. This
concept was widely studied in information geometry. Also,

(
∇̂∗

)∗
= ∇̂. If (∇̂, ĝ) is a statistical structure
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on B̂, then (∇̂∗, ĝ) is also a statistical structure. Moreover, a dual connection of any torsion free affine
connection ∇̂ is given by [5, 7]

2∇̂0 = ∇̂ + ∇̂∗, (2.1)

where ∇̂0 is the Levi-Civita connection on B̂.
Let (B̂, ∇̂, ĝ) be a statistical manifold and f : B→ B̂ an immersion. define g and ∇ on B by [7]

g = f ∗ĝ, and g(∇X1Y1, X2) = ĝ(∇̂X1 f∗Y1, f∗X2), (2.2)

for any X1,Y1, X2 ∈ Γ(T B), where the connection induced from ∇̂ by f on the induced bundle f ∗ :
T B̂→ B is denoted by ∇̂. Then the pair (∇, g) is called an induced statistical structure on B by f from
(∇̂, ĝ).

Definition 2.2. [7] Let (B̂, ∇̂, ĝ) and (B,∇, g) be two statistical manifolds. An immersion f : B → B̂
is called a statistical immersion if (∇, g) coincides with the induced statistical structure, that is, (2.2)
holds. Thus, (B,∇, g) is called a statistical submanifold of (B̂, ∇̂, ĝ).

Let (B̂, ∇̂, ĝ) be a statistical manifold and B be a statistical submanifold of B̂. By T⊥x B, we denote
the normal space of B, that is, T⊥x B =

{
v ∈ TxB̂

∣∣∣g(u, v) = 0, u ∈ TxB
}
. Then the Gauss and Weingarten

formulae are as follows [6]:

∇̂X1Y1 = ∇X1Y1 + h(X1,Y1), ∇̂∗X1
Y1 = ∇∗X1

Y1 + h∗(X1,Y1),

and

∇̂X1V = −AV(X1) + ∇⊥X1
V, ∇̂∗X1

V = −A∗V(X1) + ∇⊥∗X1
V,

for any X1,Y1 ∈ Γ(T B) and V ∈ Γ(T⊥B). Here ∇̂ and ∇̂∗ (respectively, ∇ and ∇∗) are the dual
connections on B̂ (respectively, on B), h and h∗ are symmetric and bilinear, called the imbedding
curvature tensor of B in B̂ for ∇̂ and the imbedding curvature tensor of B in B̂ for ∇̂∗, respectively.
Since h and h∗ are bilinear, the linear transformations AV and A∗V are related to the imbedding curvature
tensors by [6]

ĝ(h(X1,Y1),V) = g(A∗V(X1),Y1), and ĝ(h∗(X1,Y1),V) = g(AV(X1),Y1),

for any X1,Y1 ∈ Γ(T B) and V ∈ Γ(T⊥B).
Suppose that dim(B) = p and dim(B̂) = q. We consider a local orthonormal tangent frame

{e1, . . . , ep} of T B and a local orthonormal normal frame {ep+1, . . . , eq} of T⊥B in B̂. Then the mean
curvature vectors H and H∗ of B in B̂ are

H =
1
p

p∑
i=1

h(ei, ei), and H∗ =
1
p

p∑
i=1

h∗(ei, ei).

Also, we set

hr
i j = g(h(ei, e j), er), and h∗ri j = g(h∗(ei, e j), er),

for i, j ∈ {1, . . . , p}, r ∈ {p + 1, . . . , q}.
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Let R̂ and R be the curvature tensor fields with respect to ∇̂ and ∇, respectively. Similarly, R̂∗ and
R∗ are respectively the curvature tensor fields with respect to ∇̂∗ and ∇∗. Then the Gauss equation with
respect to ∇̂ and the dual connection ∇̂∗ on B̂ are respectively defined by [6]

ĝ(R̂(X1,Y1)X2,Y2) = g(R(X1,Y1)X2,Y2) + g(h(X1, X2), h∗(Y1,Y2))
−g(h∗(X1,Y2), h(Y1, X2)), (2.3)

and

ĝ(R̂∗(X1,Y1)X2,Y2) = g(R∗(X1,Y1)X2,Y2) + g(h∗(X1, X2), h(Y1,Y2))
−g(h(X1,Y2), h∗(Y1, X2)), (2.4)

for any X1,Y1, X2,Y2 ∈ Γ(T B).
The statistical curvature tensor fields of B̂ and B are respectively given by

2Ŝ = R̂ + R̂∗, and 2S = R + R∗. (2.5)

A statistical manifold (B̂, ∇̂, ĝ) is said to be of constant curvature ĉ ∈ R if the following curvature
equation holds [7]

Ŝ(X1,Y1)X2 = ĉ(ĝ(Y1, X2)X1 − ĝ(X1, X2)Y1), (2.6)

for any X1,Y1, X2 ∈ Γ(T B̂). It is denoted by B̂(ĉ), called a statistical manifold of constant curvature.
A statistical structure (B̂, ∇̂, ĝ) is said to be of quasi-constant curvature if the following curvature

equation holds [11]

Ŝ(X1,Y1)X2 = â[ĝ(Y1, X2)X1 − ĝ(X1, X2)Y1]
+b̂[F(Y1)F(X2)X1 − ĝ(X1, X2)F(Y1)P
+ĝ(Y1, X2)F(X1)P − F(X1)F(X2)Y1], (2.7)

where â, b̂ are scalar functions, P is a unit vector filed, and F is a 1-form defined by

ĝ(X1,P) = F(X1),

for any X1,Y1, X2 ∈ Γ(T B̂). It is called a statistical manifold of quasi-constant curvature.

3. Main inequalities

In this section, we prove the statistical version of well known Chen-Ricci inequality for statistical
submanifolds in statistical manifolds of constant (quasi-constant) curvature by optimization technique.

Optimizations on submanifolds: Let (B, g) be a Riemannian submanifold of a Riemannian manifold
(B̂, ĝ) and φ : B̂→ R be a differentiable function. Following [13], we have

Theorem 3.1. If x ∈ B is a solution of the constrained extremum problem min
x0∈B

φ(x0), then
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(a) (grad φ)(x) ∈ T⊥x B,
(b) the bilinear form π : TxB × TxB→ R,

π(X1,Y1) = Hessφ(X1,Y1) + ĝ(h
′

(X1,Y1), (grad φ)(x))

is positive semi-definite, where h
′

is the second fundamental form of B in B̂, grad φ denotes the gradient
of φ.

Theorem 3.2. Let (B,∇, g) be a p-dimensional submanifold in a statistical manifold B̂(ĉ) of constant
curvature ĉ.

(a) For each unit vector X1 ∈ T℘B, ℘ ∈ B, we have

Ric∇,∇
∗

(X1) ≥ 2Ric0(X1) − ĉ(p − 1) −
p2

8

[
||H||2 + ||H∗||2

]
. (3.1)

(b) Moreover, the equality holds in the inequality (3.1) if and only if

h(X1, X1) =
p
2

H(℘), h∗(X1, X1) =
p
2

H∗(℘),

and
h(X1,Y1) = 0, h∗(X1,Y1) = 0,

for all Y1 ∈ T℘B orthogonal to X1.

Proof. We choose {e1, . . . , ep} as the orthonormal frame of T℘B such that e1 = X1 and ||X1|| = 1, and
{ep+1, . . . , eq} as the the orthonormal frame of T℘B in B̂. Then by (2.3), (2.4) and (2.5), we have

2Ŝ(e1, ei, e1, ei) = 2S(e1, ei, e1, ei) − g(h(e1, e1), h∗(ei, ei))
−g(h∗(e1, e1), h(ei, ei)) + 2g(h(e1, ei), h∗(e1, ei))

= 2S(e1, ei, e1, ei) − {4g(h0(e1, e1), h0(ei, ei))
−g(h(e1, e1), h(ei, ei)) − g(h∗(e1, e1), h∗(ei, ei))
−4g(h0(e1, ei), h0(e1, ei)) + g(h(e1, ei), h(e1, ei))
+g(h∗(e1, ei), h∗(e1, ei))}

= 2S(e1, ei, e1, ei) − 4
q∑

r=p+1

(h0r
11h0r

ii − (h0r
1i )

2)

+

q∑
r=p+1

(hr
11hr

ii − (hr
1i)

2) +

q∑
r=p+1

(h∗r11h∗rii − (h∗r1i )
2),

where we have used the notations Ŝ(X1,Y1, X2,Y2) = g(Ŝ(X1,Y1)Y2, X2) and 2h0 = h + h∗ (see (2.1)).
Summing over 2 ≤ i ≤ p and using (2.6), we have
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2ĉ(p − 1) = 2Ric∇,∇
∗

(X1) − 4
q∑

r=p+1

p∑
i=2

(h0r
11h0r

ii − (h0r
1i )

2)

+

q∑
r=p+1

p∑
i=2

(hr
11hr

ii − (hr
1i)

2) +

q∑
r=p+1

p∑
i=2

(h∗r11h∗rii − (h∗r1i )
2),

where Ric∇,∇
∗

(X1) denotes the Ricci curvature of B with respect to ∇ and ∇∗ at ℘. Further, we derive

2Ric∇,∇
∗

(X1) − 2ĉ(p − 1) = 4
q∑

r=p+1

p∑
i=2

(h0r
11h0r

ii − (h0r
1i )

2)

−

q∑
r=p+1

p∑
i=2

(hr
11hr

ii − (hr
1i)

2)

−

q∑
r=p+1

p∑
i=2

(h∗r11h∗rii − (h∗r1i )
2). (3.2)

By Gauss equation with respect to Levi-Civita connection, it follows that

Ric0(X1) − ĉ(p − 1) =

q∑
r=p+1

p∑
i=2

(h0r
11h0r

ii − (h0r
1i )

2).

Substituting into (3.2), we arrive at

2Ric∇,∇
∗

(X1) − 2ĉ(p − 1) = 4[Ric0(X1) − ĉ(p − 1)]

−

q∑
r=p+1

p∑
i=2

(hr
11hr

ii − (hr
1i)

2)

−

q∑
r=p+1

p∑
i=2

(h∗r11h∗rii − (h∗r1i )
2).

On simplifying the previous relation, we get

−2Ric∇,∇
∗

(X1) − 2ĉ(p − 1) + 4Ric0(X1)

=

q∑
r=p+1

p∑
i=2

(hr
11hr

ii − (hr
1i)

2)

+

q∑
r=p+1

p∑
i=2

(h∗r11h∗rii − (h∗r1i )
2)

≤

q∑
r=p+1

p∑
i=2

hr
11hr

ii +

q∑
r=p+1

p∑
i=2

h∗r11h∗rii . (3.3)

Let us define the quadratic form φr, φ
∗
r : Rp → R by
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φr(hr
11, h

r
22, . . . , h

r
pp) =

q∑
r=p+1

p∑
i=2

hr
11hr

ii,

and

φ∗r(h∗r11, h
∗r
22, . . . , h

∗r
pp) =

q∑
r=p+1

p∑
i=2

h∗r11h∗rii .

We consider the constrained extremum problem max φr subject to

Q :
p∑

i=1

hr
ii = αr,

where αr is a real constant. The gradient vector field of the function φr is given by

grad φr = (
p∑

i=2

hr
ii, h

r
11, h

r
11, . . . , h

r
11).

For an optimal solution a = (hr
11, h

r
22, . . . h

r
pp) of the problem in question, the vector grad φr is

normal to Q at the point a. It follows that

hr
11 =

p∑
i=2

hr
ii =

αr

2
.

Now, we fix x ∈ Q. The bilinear form π : TxQ × TxQ→ R has the following expression:

π(X1,Y1) = Hessφr (X1,Y1)+ < h
′

(X1,Y1), (grad φr)(x) >,

where h
′

denotes the second fundamental form of Q in Rp and < ·, · > denotes the standard inner
product on Rp. The Hessian matrix of φr is given by

Hessφr =



0 1 . . . 1
1 0 . . . 0
...
...

. . .
...

1 0 . . . 0
1 0 . . . 0


.

We consider a vector X1 ∈ TxQ, which satisfies a relation

p∑
i=2

Xi
1 = −X1

1 .

As h
′

= 0 in Rp, we get
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π(X1, X1) = Hessφr (X1, X1) = 2
p∑

i=2

X1
1 Xi

1

= (X1
1 +

p∑
i=2

Xi
1)2 − (X1

1)2 − (
p∑

i=2

Xi
1)2

= −2(X1
1)2 ≤ 0.

However, the point p is the only optimal solution, that is, the global maximum point of problem.
Thus, we obtain

φr ≤
1
4

(
p∑

i=1

hr
ii)

2 =
p2

4
(Hr)2. (3.4)

Next, we deal with the constrained extremum problem max φ∗r subject to

Q∗ :
p∑

i=1

h∗rii = α∗r,

where α∗r is a real constant. By similar arguments as above, we find

φ∗r ≤
1
4

(
p∑

i=1

h∗rii )2 =
p2

4
(H∗r)2. (3.5)

On combining (3.3), (3.4) and (3.5), we get our desired inequality (3.1). Moreover, the vector field
X1 satisfies the equality case if and only if

hr
1i = 0, h∗r1i = 0, i ∈ {2, . . . , p},

and

hr
11 =

p∑
i=2

hr
ii, h∗r11 =

p∑
i=2

h∗rii , r ∈ {p + 1, . . . , q},

which can be rewritten as
hr

11 =
p
2

H,

and
h∗r11 =

p
2

H∗.

Thus, it proves our assertion. �

Corollary 1. Let (B,∇, g) be a p-dimensional submanifold in a statistical manifold B̂(ĉ) of constant
curvature ĉ. For each unit vector X1 ∈ T℘B, ℘ ∈ B, we have

Ric∇,∇
∗

(X1) ≥ 2Ric0(X1) − ĉ(p − 1) −
p2

2
||H0||2 +

p2

4
g(H,H∗).
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Corollary 2. Let (B,∇, g) be a p-dimensional submanifold in a statistical manifold B̂(ĉ) of constant
curvature ĉ. If B is minimal with respect to Levi-Civita connection, then for each unit vector X1 ∈ T℘B,
℘ ∈ B, we have

Ric∇,∇
∗

(X1) ≥ 2Ric0(X1) − ĉ(p − 1) +
p2

4
g(H,H∗).

By similar arguments as in Theorem 3.2, one can obtain the following inequality for any
submanifold in a statistical manifold of quasi-constant curvature.

Theorem 3.3. Let (B,∇, g) be a p-dimensional submanifold in a statistical manifold B̂ of quasi-
constant curvature.

(a) For each unit vector X1 ∈ T℘B, ℘ ∈ B, we have

Ric∇,∇
∗

(X1) ≥ 2Ric0(X1) − [â(p − 1) + b̂ + b̂(p − 2)F(X1)F(X1)]

−
p2

8

[
||H||2 + ||H∗||2

]
. (3.6)

(b) Moreover, the equality holds in the inequality (3.6) if and only if

h(X1, X1) =
p
2

H(℘), h∗(X1, X1) =
p
2

H∗(℘),

and
h(X1,Y1) = 0, h∗(X1,Y1) = 0,

for all Y1 ∈ T℘B orthogonal to X1.

Corollary 3. Let (B,∇, g) be a p-dimensional submanifold in a statistical manifold B̂ of quasi-constant
curvature. For each unit vector X1 ∈ T℘B, ℘ ∈ B, we have

Ric∇,∇
∗

(X1) ≥ 2Ric0(X1) − [â(p − 1) + b̂ + b̂(p − 2)F(X1)F(X1)]

−
p2

2
||H0||2 +

p2

4
g(H,H∗).

Corollary 4. Let (B,∇, g) be a p-dimensional submanifold in a statistical manifold B̂ of quasi-constant
curvature. If B is minimal with respect to Levi-Civita connection, then for each unit vector X1 ∈ T℘B,
℘ ∈ B, we have

Ric∇,∇
∗

(X1) ≥ 2Ric0(X1) − [â(p − 1) + b̂ + b̂(p − 2)F(X1)F(X1)] +
p2

4
g(H,H∗).

4. Some examples

The family D of distribution represented by the pdf θ(u,Φ) is called an n-dimensional statistical
model D = {θ(u,Φ)|Φ ∈ Θ ⊂ Rn}. There are many examples of statistical models, such as Poisson
distribution, Normal distribution or Gaussian distribution, inverse Gamma distribution, Weibull
distribution and Pareto distribution (see [14, 15] for details).
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Example 4.1. Let (B̂, ĝ) be a family of exponential distributions of mean 0:

B̂ := {θ(u,Φ)|θ(u,Φ) = Φe−Φu, u ∈ [0,∞),Φ ∈ (0,∞)},

a Riemannian metric is given by

ĝ := Φ−2(dΦ)2,

and α-connection on B̂ is defined by

∇̂α∂
∂Φ

∂

∂Φ
= (α − 1)Φ−1 ∂

∂Φ
.

Then, (B̂, ∇̂α, ĝ) is a 1-dimensional statistical manifold.
We remark that one can also construct examples for higher dimension by defining Fisher

information metric and α-connection on a family of statistical distribution (cf. [7]).

Example 4.2. ( [16]) The set F of Freund bivariate mixture exponential density functions,

f (x, y) =

{
α1β2 e−β2y−(α1+α2−β2)x for 0 < x < y,
α2β1 e−β1 x−(α1+α2−β1)y for 0 < y < x

where parameters α1, α2, β1, β2 > 0, is a 4-manifold with Fisher information metric

[ĝi j] =



1
α2

1+α1α2
0 0 0

0 α2
β2

1(α1+α2)
0 0

0 0 1
α2

2+α1α2
0

0 0 0 α1
β2

2(α1+α2)


.

The α-connection (α ∈ R) ∇̂α and the curvature tensors R̂ with respect to ∇̂α are respectively
given on pages-77 and 78 of [16]. Thus, (F , ĝ, ∇̂α) is a 4-dimensional statistical manifold of constant
curvature 1−α2

4 . Especially, (F , ĝ, ∇̂±1) is flat, respectively. The constant scalar curvature of F with
respect to ∇̂α is 3

2 (1 − α2). The α-mean curvatures with respect to ∇̂α are given by

Hα
1 =

(1 − α2)α2

6(α1 + α2)
, Hα

2 =
1 − α2

6
,

Hα
3 =

(1 − α2)α1

6(α1 + α2)
, Hα

4 = Hα
2 .

The Freund submanifold F2 of dimension 2 in F is defined by F2 ⊂ F : α1 = α2, β1 = β2. The
density functions are of form:

f (x, y) =

{
α1β1 e−β1y−(2α1−β1)x for 0 < x < y,
α1β1 e−β1 x−(2α1−β1)y for 0 < y < x
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with α1, β1 > 0. The Fisher metric tensor on F2 is given by

[gi j] =


1
α2

1
0

0 1
β2

1

 .
It is easy to see that (F2, g,∇α) is a statistical submanifold of F . The sectional, Ricci and scalar

curvatures with respect to ∇α of F2 are zero.

Example 4.3. Following are the other trivial examples for the submanifolds of F [16]:

(a) The Freund submanifold F1 of dimension 2 in F is defined by F1 ⊂ F : β1 = α1, β2 = α2. The
space F1 is the direct product of the two corresponding Riemannian spaces {α1 e−α1 x, α1 > 0} and
{−α2 e−α2y, α2 > 0}. The Fisher metric tensor on F1 is given by

[gi j] =


1
α2

1
0

0 1
α2

2

 .
(b) The Freund submanifold F3 of dimension 2 in F is defined by F3 ⊂ F : β1 == β2 = α1 + α2. The

density functions are of form:

f (x, y) =

{
α1(α1 + α2) e−(α1+α1)y for 0 < x < y,
α2(α1 + α2) e−(α1+α1)x for 0 < y < x

with α1, α2 > 0. The Fisher metric tensor on F2 is given by

[gi j] =


α2+2α1

α1(α1+α2)2
1

(α1+α2)2

1
(α1+α2)2

α1+2α2
α2(α1+α2)2

 .
It is easy to see that (F1, g,∇α) and (F3, g,∇α) are statistical submanifolds of F . The sectional,

Ricci and scalar curvatures with respect to ∇α of F1 and F3 are zero.

Now, we provide a non-trivial example for the submanifold of F [16]:

Example 4.4. The submanifold F4 ⊂ F with the density functions:

f (x, y) =


λ1λ(λ12+λ2)

λ1+λ2
e−λ1 x−(λ2+λ12)y for 0 < x < y,

λ2λ(λ12+λ1)
λ1+λ2

e−λ2y−(λ1+λ12)x for 0 < y < x

where λ1, λ12, λ2 > 0 and λ = λ1 + λ2 + λ12. The metric tensor in the coordinate system λ1, λ12, λ2 is

[gi j] =



λ2

(
1
λ1

+
λ1+λ2

(λ1+λ12)2

)
(λ1+λ2)2 + 1

λ2
λ2

(λ1+λ2)(λ1+λ12)2 + 1
λ2

−1
(λ1+λ2)2 + 1

λ2

λ2
(λ1+λ2)(λ1+λ12)2 + 1

λ2

λ2
(λ1+λ12)2

+
λ1

(λ1+λ12)2

λ1+λ2
+ 1

λ2
λ1

(λ1+λ2)(λ2+λ12)2 + 1
λ2

−1
(λ1+λ2)2 + 1

λ2
λ1

(λ1+λ2)(λ2+λ12)2 + 1
λ2

λ1

(
1
λ2

+
λ1+λ2

(λ2+λ12)2

)
(λ1+λ2)2 + 1

λ2
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The α-connections and the curvatures with respect to ∇α were computed in [16].
Note that the above example can be studied for λ1 = λ2. In this case, the curvature tensor, Ricci

curvature, and scalar curvature with respect to ∇α are zero.

Example 4.5. Let {e1, e2, e3} be an orthonormal frame field on a statistical manifold (B̂ = {(x, y, z) ∈
R3}, ∇̂, ĝ = dx2 + dy2 + dz2). Then an affine connection ∇̂ on B̂ is given as [11]

∇̂e1e1 = βe1, ∇̂e2e2 = ∇̂e3e3 =
β

2
e1,

∇̂e1e2 = ∇̂e2e1 =
β

2
e2,

∇̂e1e3 = ∇̂e3e1 =
β

2
e3,

∇̂e2e3 = ∇̂e3e2 = 0,

where β is some constant. Thus, (B,∇, ĝ) is a statistical manifold of constant curvature β2

4 . The scalar
curvature of B̂ is 3β2

2 .

Example 4.6. We consider (R,∇R, g1 = dz2) a trivial statistical manifold and (R2(−1),∇R
2
, g2 = dx2 +

dy2) a 2-dimensional statistical manifold of constant curvature −1. Then, the scalar curvature of R2 is
−2. The dualistic structure on a product of two statistical manifolds B̂ = R × R2 is as follows:

∇̂∂z∂z = ∂z, ∇̂∗∂z∂z = −∂z,

∇̂∂z∂x = ∇̂∂x∂z = ∇̂∗∂z∂x = ∇̂∗∂x∂z = 0,
∇̂∂z∂y = ∇̂∂y∂z = ∇̂∗∂z∂y = ∇̂∗∂y∂z = 0,

∇̂∂x∂x = ∂y, ∇̂∂y∂y = 0, ∇̂∂x∂y = ∇̂∂y∂x = ∂x,

∇̂∗∂x∂x = −∂y, ∇̂∗∂y∂y = 0, ∇̂∗∂x∂y = ∇̂∗∂y∂x = −∂x.

Thus, (B̂ = R × R2(−1), ∇̂, ĝ = g1 + g2) is a statistical manifold. By [11], we conclude that B̂ =

R × R2(−1) is a statistical manifold of quasi-constant curvature with constant functions â = b̂ = −1.

As we know that the Levi-Civita connection of a Riemannian metric has symmetric Ricci tensor, but
this property is not viable for any torsion-free affine connection. In fact, this property is so related to
the idea of parallel volume element. Now, this is the known fact that any torsion-free affine connection
on a simply connected q-manifold has symmetric Ricci tensor if and only if it is locally equiaffine
(that is, a nonvanishing q-form is a parallel volume element or the connection preserves a volume q-
form). Let (B̂(ĉ), ∇̂, ĝ) be a q-dimensional statistical manifold with constant curvature ĉ. Then, for any
X1,Y1 ∈ Γ(T B̂), we have

R̂ic
∇̂,∇̂∗

(X1,Y1) = (q − 1)ĉĝ(X1,Y1).

Moreover, if B̂ is an equiaffine, then we can say that it is an Einstein statistical manifold. In
particular, B̂ is a Ricci-flat if ĉ = 0.
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Example 4.7. Let Hq+1 = {(x1, . . . , xq+1) ∈ Rq+1|xq+1 > 0} be an upper half space of constant curvature
−1 with metric

ĝ =

∑q+1
i=1 dx2

i

x2
q+1

.

We can easily verify that (Hq+1, ∇̂, ĝ) is a statistical manifold of constant curvature 0 (see [10]). Thus,
(Hq+1, ∇̂, ĝ) is a Ricci-flat manifold.

5. Conclusions and remarks

Here we note some conclusions and remarks from this work:

(a) In [10], M. E. Aydin et al. found a lower bound for Ricci curvatures Ric and Ric∗ respectively with
respect to ∇ and ∇∗ of a submanifold in a statistical manifold of constant curvature. Recently,
Aytimur et al. [11] derived the similar inequality for a submanifold in a statistical manifold of
quasi-constant curvature. In the present work, we have used the statistical curvature tensor fields
(that is, Ŝ with respect to ∇̂ and ∇̂∗, and S with respect to ∇ and ∇∗) and applied Theorem 3.1
to show that the Ricci curvature with respect to ∇ and ∇∗ is bounded below by the squared norm
of the mean curvature with respect to ∇̂ and ∇̂∗. The characterisation of equality cases is also
discussed here. More nice applications of Theorem 3.1 can be found in [12].

(b) Theorem 3.2 can work for finding the sharp estimates of the squared mean curvature (with respect
to Levi-Civita connection) of any submanifold with arbitrary codimension when H and H∗ are
orthogonal.
For instance, let (B,∇, g) be a p-dimensional submanifold in a statistical manifold (Hq+1, ∇̂, ĝ) of
constant curvature 0. For each unit vector X1 ∈ T℘B, ℘ ∈ B, we have

||H0||2 ≥
4
p2 Ric0(X1) −

2
p2 Ric∇,∇

∗

(X1).

In addition, (Hq+1, ∇̂, ĝ) is a Ricci-flat manifold (from relation (4.1)).
(c) From Theorem 3.2, we remark that the relation in (3.1) is the statistical version of well known

Chen-Ricci inequality for a Riemannian submanifold of a real space form given by B.-Y. Chen
in [1].

(d) We hope that the results stated here will open the door for the researcher and motivate further
studies to obtain such inequality, which has the great geometric importance, for different ambient
statistical manifolds by using an optimization technique (see [4]). For instance, by following [11]
and the similar arguments in the proof of Theorem 3.2, one can easily derive the inequality (3.6)
(see Theorem 3.3).

(e) The forthcoming challenge is to improve such geometric inequalities for different ambient
statistical manifolds by adopting different techniques. Note that such geometric inequalities can
also be proved via algebraic techniques.
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